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Summary. — The production of a stochastic background of gravitational waves
is a fundamental prediction of any cosmological inflationary model. The features of
such a signal encode unique information about the physics of the Early Universe and
beyond, thus representing an exciting, powerful window on the origin and evolution
of the Universe. We review the main mechanisms of gravitational-wave production,
ranging from quantum fluctuations of the gravitational field to other mechanisms
that can take place during or after inflation. These include e.g. gravitational waves
generated as a consequence of extra particle production during inflation, or during
the (p)reheating phase. Gravitational waves produced in inflation scenarios based
on modified gravity theories and second-order gravitational waves are also consid-
ered. For each analyzed case, the expected power spectrum is given. We discuss the
discriminating power among different models, associated with the validity/violation
of the standard consistency relation between tensor-to-scalar ratio r and tensor spec-
tral index nT. In light of the prospects for (directly/indirectly) detecting primordial
gravitational waves, we give the expected present-day gravitational radiation spec-
tral energy-density, highlighting the main characteristics imprinted by the cosmic
thermal history, and we outline the signatures left by gravitational waves on the
Cosmic Microwave Background and some imprints in the Large-Scale Structure of
the Universe. Finally, current bounds and prospects of detection for inflationary
gravitational waves are summarized.
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PACS 98.80.Cq – Particle-theory and field-theory models of the early Universe.
PACS 04.30.-w – Gravitational waves.
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1. – Introduction

A general, and extremely important, prediction of cosmological Inflation is the gener-
ation of a stochastic background of primordial gravitational waves (GW), the detection
of which would be of massive importance for Cosmology. Primordial GW are in fact
not expected in the framework of non-inflationary Early-Universe models, making them
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a smoking-gun probe of Inflation(1). In the standard single-field, slow-roll inflationary
scenario, tensor fluctuations of the metric (i.e. primordial GW) are characterized by a
nearly scale-invariant power spectrum on super-horizon scales. The amplitude of the
GW signal is usually described by the tensor-to-scalar ratio r, defined as the ratio be-
tween the tensor and scalar power spectrum amplitudes, at a given pivot scale k∗. The
current best bound on r comes from the joint analysis of Planck, BICEP2, Keck Array
and other data, which yields r < 0.07 at 95% C.L. for k∗ = 0.05 Mpc−1 [6] assuming the
consistency relation r = −8nT, where nT is the tensor spectral index. Excluding tem-
perature data and assuming a scale-invariant GW power spectrum, the bound becomes
r < 0.09 at 95% C.L. for k∗ = 0.05 Mpc−1 [6], corresponding to a present time spectral
energy-density ΩGW(f) � 10−15 for f � 10−17 Hz. A crucial point is that, even in the
simplest, single-field framework, different inflationary scenarios predict different values of
r. The study of observational signatures of primordial GW thus provide not only a way to
probe the general inflationary paradigm, but also to discriminate in detail among specific
models. If we move beyond single-field Inflation, even more specific signatures can be
generated. For example, in the presence of additional fields besides the Inflaton, an extra
GW background, not due to vacuum oscillations, can be produced [7-11]. Interestingly,
classical generation of GW is also possible during the inflationary reheating phase [12];
the primordial GW background therefore also opens a potential window on the study of
reheating mechanisms, and related parameters. On top of this, a primordial GW detec-
tion would not only be of paramount importance for Cosmology, as discussed so far, but
also have far reaching consequences for High Energy and Fundamental Physics. The in-
flationary GW background is in fact generated at energy scales which are many orders of
magnitude above those achievable in collisions by present-day particle accelerators. The
energy scale of Inflation is moreover directly linked to the value of the tensor-to-scalar-
ratio. Therefore, a detection of r not only would provide strong evidence for Physics
beyond the Standard Model of Particle Physics, but also give a precise indication of the
energy regime of such new Physics. It is also very important to stress that inflationary
tensor fluctuations of the background Friedmann-Robertson-Walker metric arise from
quantum fluctuations in the gravitational field itself, via a mechanism that is similar to
that leading to their scalar counterparts. Their observation would thus also produce the
first experimental evidence of a quantum gravity phenomenon. In light of all this, it is
not at all surprising that primordial GW are the object of a growing experimental effort,
and that their detection will be a major goal for Cosmology in the forthcoming decades.
The main observational signature of the inflationary GW background is a curl-like pat-
tern (“B-mode”) in the polarization of the Cosmic Microwave Background (CMB). A
number of, present or forthcoming, ground-based or balloon-borne experiments, such as
ACTPol [13], Polarbear [14], CLASS [15], Piper [16] and Spider [17], are specifically
aimed at B-mode detection. In addition, CMB satellites such as WMAP and Planck
have, in recent years, provided bounds on r, such as the one reported above. Finally,
several next-generation CMB space missions have been proposed in recent years, with
the specific goal of B-mode detection in mind, like COrE [18], PRISM [19], LiteBIRD [20]
and PIXIE [21]. In addition to the B-mode, evidence of primordial GW could come from
galaxy and CMB curl-like lensing signatures, induced by tensor modes [22-24], or from

(1) During the early stages of the Universe, other processes, over than inflation, can act as
sources of GW, such as the electroweak phase transition [1], the first-order phase transitions [2,3]
(and references therein) and the topological defects [4, 5].
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parameters related to the small modification in the expansion history of the Universe,
due to the GW contribution to the overall energy budget [25]. Finally, the possibility of
a future direct detection, by experiments such as aLIGO [26] or eLISA [27, 28], cannot
be ruled out, especially if some specific inflationary mechanism produced a blue-tilted
primordial tensor spectrum. This point holds even more true in these days, in light of the
recent, exciting discovery of a gravitational-wave signal, interpreted as the gravitational
radiation emitted by a black-hole merger(2), by the LIGO and Virgo collaborations [32].
Whatever the origin of the signal is, this very important result does provide the first
direct experimental confirmation of GW, and increase our confidence that, as they just
did for Astronomy and Astrophysics (see, for example, [33] for a recent review), GW
might soon open a new observational window and a new era in Cosmology.

Armed with this —reasonable— hope, and given all the important scientific premises
above, we feel it is a proper time to review the current theoretical and observational
status of primordial GW from Inflation, with the following plan: in sect. 2 we overview
predictions about GW related to the standard single-field slow-roll inflationary scenario,
and we illustrate the main properties that make them a significant physical observable.
Then, in sect. 3 we explain the possible mechanisms, different from vacuum oscillations
of the gravitational field, by which primordial GW can be produced during inflation. GW
generation during the reheating stage of the Universe is reviewed in sect. 4, followed by
GW predictions related to a few inflationary models built in the framework of modified
gravity. In sect. 6, an overview of the analyzed model is provided. In sect. 7 we rapidly
outline the issue of the quantum to classical transition of inflationary fluctuations. The
predictions about the validity and the violation of the standard inflationary consistency
relation between the tensor-to-scalar ratio r and the tensor spectral index nT are pre-
sented in sect. 8. In sect. 9, signatures of the thermal history of the Universe on the
present GW spectral energy-density are shown. Afterward, significant imprints on CMB
and LSS of primordial GW are outlined. In sect. 11 we summarize current results and
observational prospects about primordial GW. We conclude in sect. 12.

2. – Gravitational waves from single-field slow-roll inflation

The inflationary scenario provides an elegant solution to some internal inconsistencies
of the Big Bang Theory, such as the horizon and flatness problems [34-40]. It consists
in a sufficiently long period of accelerated expansion of the Universe at early times [41].
Besides solving the mentioned problems, considering its quantum aspects reveals that it
provides an elegant mechanism for generating the initial seeds of all observed structures
in the Universe and the anisotropies of the CMB radiation, which otherwise have to be
implemented by hand, without a physical motivation [42-47]. This result is achieved by
considering quantum fluctuations of the fields that describe the dynamics of the Universe
in such an epoch: usually a neutral scalar field and the metric tensor. Developing a per-
turbation theory within General Relativity, one finds that, besides a set of perturbations
coupled to the energy density of the Universe, tensor perturbations are produced. The
latter are due to fluctuations of the metric tensor and constitute the so called Gravita-
tional Wave background.

(2) A different source for the detected GW is not completely excluded; in [29-31] the interpre-
tation of the signal as due to a merger of a black-hole binary of primordial origin is discussed.
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We start this section with a summary of the classical aspect of the basic inflationary
paradigm and then we move to considering quantum aspects, in order to show how the
primordial GW should have been produced.

2.1. The Physics of inflation. – Standard cosmology is built starting from an isotropic
and homogeneous Universe described by Friedman-Robertson-Walker (FRW) metric:

(1) ds2 = −dt2 + a2(t)
[

dr2

1 − Kr2
+ r2(dθ2 + sin2 θdϕ2)

]
,

where t is the cosmic time, r, θ, ϕ are the comoving spherical coordinates and K the
curvature of the three-dimensional spatial hyper-surfaces. The metric is identified by the
evolution of the “scale-factor” a(t) and the spatial curvature parameter K. To get the
evolution of the scale-factor via Einstein’s equations we need to specify the energy form
of the cosmic medium. Under the hypothesis of homogeneous and isotropic Universe Tμν

can be that of a perfect fluid:

(2) Tμν = (ρ + P )uμuν + Pgμν ,

where ρ is the density, P the pressure, uμ the 4-velocity of fluid elements and gμν the
metric tensor. Then, using this expression for the stress-energy tensor and the metric (1)
in Einstein’s equations, the Friedman equations are obtained:

(3) H2 =
8πG

3
ρ − K

a2
,

ä

a
= −4πG

3
(ρ + 3P ),

where H is the Hubble parameter defined as H ≡ ȧ/a. Hereafter we will set K = 0, in
agreement with observational constraints which imply negligible spatial curvature [48].
The Friedman equations reveal which kind of perfect fluid can drive the dynamics. The
basic requirement of the inflationary mechanism consists in ä > 0, that is an accelerated
expansion of the Universe. From eq. (3) this corresponds to P < −ρ

3 . One guesses
immediately that an inflationary period cannot be driven neither by ordinary radiation
nor matter. The simplest way to obtain such a kind of dynamics is the case in which
P � −ρ, that, in the equality case, means an evolution of the scale-factor like

(4) a(t) = aIe
Hi(t−ti),

with Hubble parameter nearly constant in time H = Hi � const; here the subscript
i indicates the beginning of the inflationary period. A period characterized by this
evolution of the scale-factor is called de Sitter stage. It is now useful to introduce a
quantity called Hubble radius (or Hubble horizon), defined as RH ≡ 1/H(t), which
effectively sets the size of causally connected regions at each time. For a non-exotic
content of the Universe we have RH ∝ ct. In a de Sitter model, instead, the physical
Hubble radius is constant in time, while physical lengths continue to grow, thus being able
to exit the Hubble radius at some “horizon-crossing” time. The requirement of sufficiently
long inflation corresponds to the requirement that all scales relevant for cosmological
observations were able to exceed the Hubble radius during inflation.

The simplest way of implementing a source of stress-energy which provides P � −ρ,
consists in introducing a scalar field ϕ with suitable potential energy V (ϕ). Therefore,
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we introduce a minimally coupled scalar field described by the following Lagrangian:

(5) L = −1
2
∂μϕ∂μϕ − V (ϕ).

By varying the action with respect to ϕ, the equation of motion for the field, the Klein-
Gordon equation �ϕ = ∂V/∂ϕ, is obtained. With the FRW background it reads

(6) ϕ̈ + 3Hϕ̇ − 1
a2

∇2ϕ + V ′(ϕ) = 0,

where V ′(ϕ) = dV (ϕ)/dϕ. On the other hand varying the action (5) with respect to the
metric tensor the expression for the stress-energy tensor for the minimally coupled scalar
field is obtained,

(7) Tμν = −2
∂L

∂gμν
+ gμνL = ∂μϕ∂νϕ + gμν

[
−1

2
gαβ∂αϕ∂βϕ − V (ϕ)

]
.

Comparing this expression with eq. (2), one finds that a homogeneous scalar field ϕ(t)
behaves like a perfect fluid with energy-density background and pressure given by

(8) ρϕ =
ϕ̇2

2
+ V (ϕ), Pϕ =

ϕ̇2

2
− V (ϕ).

Therefore the quantity that establishes the sign of the acceleration of the Universe, from
the second equation of (3), reads

(9) ρϕ + 3Pϕ = 2
[
ϕ̇2 − V (ϕ)

]
,

so one concludes that V (ϕ) > ϕ̇2 suffices to obtain accelerated expansion. In particular
to obtain a quasi-de Sitter stage, from eqs. (9) we need

(10) V (ϕ) � ϕ̇2.

From this simple calculation, we realize that a scalar field whose energy density is dom-
inant in the Universe and whose potential energy dominates over the kinetic one gives
rise to an inflationary period. The simplest way to satisfy eq. (10) is to introduce a scalar
field slowly rolling towards the minimum of its potential.

2.1.1. Slow-roll conditions. Let us now better quantify under which circumstances a
scalar field and its potential may give rise to a period of inflation.

The simplest way to satisfy eq. (10) is to require that there exist regions of field-
configuration space where the potential is sufficiently flat, see fig. 1.

In such a situation, for sufficiently late times the evolution of the scalar field is driven
by the friction term, that is we can consider ϕ̈ � 3Hϕ̇. Exploiting the Friedman equa-
tions, these conditions can be summarized by restrictions on the form of the inflaton
potential V (ϕ) and its derivatives. Employing eq. (10) and the second condition just
mentioned, in eqs. (3)-(6) the equations become

(11) H2 � 8πG

3
V (ϕ), 3Hϕ̇ + Vϕ = 0,
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Fig. 1. – Example of inflationary potential with a “flat” region. After the slow roll of the inflaton
field ϕ, the reheating phase starts, the field is supposed to oscillate around the minimum of the
potential and to decay in other particles; see sect. 2

.
1.3. Δϕ indicates the inflaton excursion

between the horizon exit of a given comoving scale and the end of inflation; see sect. 2
.
4.1.

where we have assumed that the inflaton is a homogeneous field that dominates the energy
density of the Universe and the subscript ϕ means the derivation w.r.t. such a field. The
second expression gives ϕ̇ as a function of V ′(ϕ), then the slow-roll condition (10) is
satisfied provided that

(Vϕ)2

V
� H2 =⇒ ε ≡ M2

pl

2

(
Vϕ

V

)2

� 1,(12)

Vϕϕ � H2 =⇒ η ≡ M2
pl

Vϕϕ

V
� 1,(13)

where ε and η are the so-called slow-roll parameters [49-51] and Mpl ≡ (8πG)−1/2 is the
reduced Planck mass. Notice that we can also write the first parameter in terms of the
Hubble parameter and its derivative as ε = −Ḣ/H2. Then, the slow-roll conditions can
be expressed by a hierarchy of slow-roll parameters involving higher-order derivatives of
the potential V (ϕ) [50]; for example we can define a second-order slow-roll parameter ζ2 =
1/(8πG)(VϕVϕϕϕ/Vϕϕ). Once these constraints are satisfied, the inflationary process
happens generically for a wide class of models V (ϕ). As soon as these conditions fail,
inflation ends. During inflation, the slow-roll parameters can be considered constant in
time at first order, since, as it is easy to show, ε̇, η̇ = O(ε2, η2).

2.1.2. Duration and end of inflation. Successful inflation must last for a long enough
period in order to solve the horizon and flatness problems, which means that, at least,
all what is now inside the Hubble horizon, in particular those regions which entered the
Hubble horizon during radiation and matter dominance, was inside a causally connected
region at some time in the past. Therefore, we need a primordial period of accelerated
expansion long enough that a smooth region smaller than the Hubble horizon at that time,
can grow up to encompass at least the entire observable Universe; see fig. 2. Typically,
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Fig. 2. – Time evolution of the comoving Hubble horizon during inflation and the following
epoch, compared to the evolution of a comoving scale λ [53]. During the accelerated expansion
the comoving Hubble horizon decreases in time, while it grows during the radiation and matter
dominated epochs. At a certain time during inflation, the comoving scale λ exits the comoving
Hubble horizon and then re-enters after inflation is over. The behavior of the comoving Hubble
horizon shown in this figure, provides a solution to the horizon problem.

this feature is expressed in terms of the number of e-foldings [50], defined as:

(14) Ntot ≡
∫ tf

ti

H dt,

where ti and tf are the starting and ending time of inflation, that, in case the scale-factor
evolution is described by (4), reads N = ln(af/ai), where aλ = a(t(λ)). The lower bound
required to solve the horizon problem number is N � ln 1026

∼ 60 [52].

2.1.3. Reheating phase. Inflation cannot proceed forever: the greatest successes of the
Standard Big Bang model, such as primordial nucleosynthesis and the origin of the CMB,
require the standard evolutionary progression from radiation to a matter domination era.

In the single-field slow-roll scenario, inflation ends when the inflaton field starts rolling
fast along its potential, it reaches the minimum and then oscillates around it. Anyhow,
we know that the Universe must be repopulated by hot radiation in order to initiate the
hot Big Bang phase. The process by which the Universe moves from the inflationary
dynamics to the hot Big Bang is called reheating [40, 39,41,54].

By investigating primordial GW, we cannot neglect this stage, for several reasons.
First, there are many models for the reheating period which provide further GW pro-
duction, besides that of the inflationary phase. Moreover, it can be shown that reheating
parameters are related to inflationary power spectra ones, so that the constraints on
tensor perturbations are related to those on the reheating period of the Universe.

The main requirement for the developing of the hot Big Bang is a radiation-dominated
Universe at T � 1 MeV. However at the end of inflation most of the energy density of
the Universe is stored in the scalar field(s), as the other components have been diluted
by the accelerated expansion. The reheating process so consists in the conversion of such
an energy into other forms, which ultimately lead to a radiation-dominated scenario
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in thermal equilibrium. The temperature of the Universe at the time this process is
substantially completed is called reheat temperature. Many models have been proposed to
describe this transition, some of which include the perturbative decay of the inflaton field
while others involve non-perturbative mechanisms, such as parametric resonance decay.
If the fluctuations are sufficiently small, inflaton quanta could decay into relativistic
products. This happens as soon as the inflaton decay rate Γ becomes comparable to the
Hubble constant. If the decay is slow, only fermionic decays are available. Usually each
decay product is supposed to thermalize quickly so that their energy distribution can be
described by a black-body function and the reheating temperature for a sudden process
is Treh ∼ √

MplΓ. Then a mechanism is supposed to take place that leads to energy
transfer of the decay products into radiation. Otherwise, if the scalar field decays into
bosonic particles, we can have a rapid decay through a parametric resonance mechanism.
The process may be so fast that it ends after a few oscillations of the inflaton field. This
phase is called preheating phase [55].

2.2. Quantum fluctuations: origin of cosmological perturbations. – We can now move
to consider quantum aspects of the inflationary paradigm. The current understanding of
structure formation and generation of CMB anisotropies requires the existence of small
fluctuations that entered the horizon during the radiation and matter era. Employing
only the standard cosmology we cannot explain the presence of perturbations. On the
other hand, the quantum aspects of the inflationary mechanism constitute a natural way
to explain the presence of such small seeds.

According to quantum field theory, each physical field involved in a theory is charac-
terized by quantum fluctuations: they oscillate with all possible wavelengths maintaining
zero average on a sufficient macroscopic time. The inflationary accelerated expansion can
stretch the wavelength of these fluctuations to scales greater than the Hubble horizon
k � aH, where k is the comoving wave number of a given fluctuation, so that they
become classical [42,44,43,56,45]. Here the fluctuation amplitudes approximately do not
change in time in contrast with their wavelengths that go on increasing exponentially.
When inflation ends and the radiation and matter dominated eras develop, these pertur-
bations are encompassed a second time by the Hubble horizon starting from the smallest
ones. When a perturbation returns to be embedded by a causally connected region we
have fluctuations on sufficient large scales and with non-zero amplitude so that the action
of gravity leads to the present large-scale structure (LSS) and CMB anisotropy pattern.

In virtue of such a mechanism, the quantities we are interested in are the perturbations
left over by the accelerated expansion on super-horizon scales.

In the basic inflationary scenario the fields involved in the dynamics of the Universe
are two: the inflaton and the metric tensor which describes the gravitational degrees of
freedom. In what follows we will consider in such a scenario the fluctuations of these fields
and study their dynamics. We will find out that the inflaton fluctuations are coupled to
scalar perturbations of the metric while tensor perturbations constitute the real degrees
of freedom of the gravitational field, i.e. gravitational waves(3).

2.2.1. Perturbed tensors. To get the dynamical equations for the perturbations, we
have to perturb tensor objects, the metric and the stress-energy tensor. The most useful
way to do it consists in decomposing perturbations in parts which have well-defined
transformation properties with respect to the underlying three-dimensional space.

(3) See [57,58] for a discussion about the quantum/classical origin of inflationary GW.
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Perturbations of the metric tensor. Defining the conformal time τ ≡ ∫
dt/a(t), the

perturbed FRW metric can be decomposed in the following way [59-61]:

g00 = −a(τ)

(
1 + 2

+∞∑
r=1

1
r!

Ψ(r)

)
,(15)

g0i = a2(τ)
+∞∑
r=1

1
r!

ω
(r)
i ,(16)

gij = a2(τ)

{[
1 − 2

(
+∞∑
r=1

1
r!

Φ(r)

)]
δij +

+∞∑
r=1

1
r!

h
(r)
ij

}
,(17)

where we can recognize the background metric (1) and where the functions Φ(r), ω
(r)
i ,

Ψ(r), h
(r)
ij represent the rth-order perturbations of the metric and h

(r)
ij is a transverse

(∂ihT
ij = 0) and traceless (h(r)i

i = 0) tensor.
It is useful to decompose these quantities in objects with well-defined transformation

under spatial rotations [62,63], since their dynamics is uncoupled at first order. Exploit-
ing Helmholtz theorem, we can decompose each vector object into a solenoidal and a
longitudinal part, respectively called vector part and scalar part :

(18) ωi = ∂iω
‖ + ω⊥

i ,

where ω⊥
i is a solenoidal vector, i.e. ∂iω⊥

i = 0 and ω‖ the longitudinal object. Similarly,
the traceless part of the spatial metric can be written as

(19) hij = Dijh
‖ + ∂ih

⊥
j + ∂jh

⊥
i + hT

ij ,

where h‖ is a suitable scalar function, h⊥
i is a solenoidal vector field, and the tensor

part hT
ij is symmetric, solenoidal and trace-free. We have used the trace-free operator

Dij := ∂i∂j − δij∇2/3, and we omitted the apex (r) for simplicity. Hereafter, where we
neglect such an apex we mean a perturbation of first order.

Perturbations of the stress-energy tensor. The stress-energy tensor for a fluid can be
written as

(20) Tμν = (ρ + P0) uμuν + P0gμν + πμν ,

with ρ the energy density, P0 the pressure, uμ the four-velocity and πμν the anisotropic
stress tensor. The latter tensor is subject to the constraints πμνuν = 0, πμ

ν = 0, and
vanishes for a perfect fluid or a minimally coupled scalar field. Perturbing eq. (20)
and decomposing each physical quantity according to its transformation properties, the
first-order components of the stress-energy tensor can be written as

T 0
0 = −ρ0 + δρ,(21)

T i
i = 3 (P0 + δP ) = 3P0 (1 + πL) ,(22)

T i
0 = T 0

i = 0,(23)
T i

j = P0

[
(1 + πL) δi

j + π i
T, j

]
,(24)
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where we have neglected vector perturbations. πL is interpreted as the amplitude of an
isotropic pressure perturbation and correspondingly πT is interpreted as the amplitude
of an anisotropic stress perturbation, practically imperfections of the fluid.

The gauge problem. Because of Einstein’s equations, we have to study at the same time
inflaton and metric perturbations. We have then to manipulate perturbations of objects
which live on a manifold, such as the stress-energy tensor, and at the same time consider
the perturbation of the manifold itself, as described by the metric tensor. This situation
determines the so-called gauge problem [62]: a generic perturbation ΔT of a tensor field
T is usually defined as the difference between the value T has in the physical (that is
perturbed) space-time and the value T0 the same quantity has in the given background
space-time. The two considered tensors are so defined on two different varieties, the
physical and the background space-times. However, in order to make the comparison of
tensors meaningful, one has to consider them at the same point. Therefore they can be
compared only after a prescription for identifying points of these varieties is given. This
is a gauge choice, that is a one-to-one correspondence between the background and the
physical space-time. A change in the correspondence between physical and background
points, keeping the background coordinates fixed, is called a gauge transformation.

The standard procedure to address the issue consists in finding the relation between
quantities defined in several gauges and then constructing variables that do not change
under gauge transformations and which describe the physical quantities, that is gauge-
invariant objects [63,64]. Tensor perturbations hij are gauge-invariant objects at linear
order.

2.2.2. The dynamics. Here we present the dynamics of the inflationary perturbations
at linear order.

The system of interest can be described by the action of a scalar field minimally
coupled to gravity, i.e.

(25) S =
∫

d4x
√−g

[
1
2
M2

plR − 1
2
gμν∂μϕ∂νϕ − V (ϕ)

]
,

where R is the Ricci scalar. We know that with the energy density dominated by a
scalar field, the Universe metric is of the form (1), where the evolution of the scale-factor
depends on the relation between the kinetic and the potential energy of the scalar field.
Then, the background metric that follows from the previous action is described by a
FRW metric.

In the next sections we will examine separately each kind of perturbation. As antici-
pated, at first order tensor perturbations will result uncoupled with the other ones. More-
over, we will find that the scalar (when expressed in terms of a suitable gauge-invariant
potential) and the tensor perturbations remain almost frozen until their wavelengths cor-
respond to super-horizon scales, so that the amplitude at the time they re-enter into the
causally connected region is the same as the first horizon crossing during inflation.

The power spectrum. An efficient way to characterize the properties of a field perturba-
tions is given by the power spectrum. For a generic random field g(x, t), which can be
expanded in Fourier space as

(26) g(x, t) =
∫

d3k
(2π)3/2

eik·x gk(t),
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the dimensionless power spectrum Pg(k) is defined as

(27) 〈gk1 , g
∗
k2
〉 ≡ 2π2

k3
Pg(k) δ(3)(k1 − k2),

where angle brackets denote ensemble average. The power spectrum measures the am-
plitude of the fluctuation at a given mode k. This definition leads to the usual relation

(28) 〈g2(x, t)〉 =
∫

dk

k
Pg(k),

which tells that Pg is the contribution to the variance per unit logarithmic interval in
wave-number k. To describe the slope of the power spectrum a spectral index is also
defined in the following manner:

(29) ng(k) − 1 ≡ d ln Pg

d ln k
.

Let us specify the form that the power spectrum gets when the random field is a canon-
ically quantized scalar field χ.

We split the scalar field as χ(x, τ) = χ(τ) + δχ(x, τ), where χ(τ) denotes the homo-
geneous classical value of the scalar field and δχ(τ,x) the fluctuation. Before performing
the quantization, it is useful to perform the redefinition δ̃χ = a δχ. We promote δ̃χ to
an operator and we decompose it defining two operators ak and a†

k:

(30) δ̃χ(x, τ) =
∫

d3k
(2π)3/2

[
uk(τ)akeik·x + u∗

k(τ)a†
ke−ik·x

]
,

where uk and u∗
k satisfies the canonical commutation relations u∗

ku′
k − uku′∗

k = −i by

(31) [ak, ak′ ] = 0, [ak, a†
k′ ] = δ3(k − k′).

From the redefinition of δ̃χ and eqs. (30)-(31) we get

(32) 〈δχk1δχ
∗
k2
〉 =

|uk|2
a2

δ(3)(k1 − k2),

which leads to the power spectrum

(33) Pδχ(k) =
k3

2π2
|δχk|2 ,

with δχk ≡ uk/a.
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2.2.3. Scalar perturbations. In the present section we only deal with scalar perturba-
tions. Later, we will concentrate on the tensor perturbations in a dedicated section. For
a detailed analysis of scalar perturbations see [65] and references therein.

Gauge-invariant curvature perturbation of the uniform energy-density hypersurfaces. We
need a gauge-invariant quantity which univocally describes scalar perturbations. Let us
work with a space-time described by the perturbed metric (15) at first order. Consider
the intrinsic spatial curvature on hyper-surfaces of constant conformal time at linear
order,

(34) (3)R =
4
a2

∇2Φ̂, where Φ̂ ≡ Φ +
1
6
∇2χ‖.

Φ̂ is usually referred to as the curvature perturbation, however it is not a gauge-invariant
quantity, since under a transformation on constant time hyper-surfaces τ → τ + α we
have: Φ̂ → ˜̂Φ = Φ̂−Hα, where H ≡ a′/a is the Hubble parameter in conformal time and
the prime denote differentiation w.r.t. it. What we need is a gauge-invariant combination
that reduces to the curvature perturbation choosing a particular gauge. Consider the
following expression:

(35) −ζ ≡ Φ̂ + Hδρ

ρ′
.

Considering the Φ̂ transformation and the gauge transformation for scalars, the quan-
tity (35) results gauge-invariant and it is referred to a gauge-invariant curvature pertur-
bation of the uniform energy-density hyper-surfaces.

Power spectrum of curvature perturbations. A way to track the evolution of ζ consists in
exploiting the perturbed Klein-Gordon equation for the field ϕ from the action (25):

(36) δϕ′′ + 2Hδϕ′ −∇2δϕ + a2δϕ
∂2V

∂ϕ2
a2 + 2Ψ

∂V

∂ϕ
− ϕ′

0

(
Ψ′ + 3Φ′ + ∇2ω‖

)
= 0.

To get a simpler equation of motion we introduce the so-called Sasaki-Mukhanov gauge-
invariant variable [66]

(37) Qϕ ≡ δϕ +
ϕ′

HΦ.

This quantity is linked to ζ, so if we are able to solve (36) for this variable we are also
able to get the power spectrum for ζ.

Let us introduce the field Q̃ϕ = aQϕ, so that the Klein-Gordon equation reads [67]

(38) Q̃ϕ
′′

+
(

k2 − a′′

a
+ M 2

ϕa2

)
Q̃ϕ = 0, where M 2

ϕ =
∂2V

∂ϕ2
− 8πG

a3

(
a3

H
ϕ2

)
.

In the slow-roll approximation the latter expression reduces to M 2
ϕ/H2 = 3η− 6ε, where

η and ε are the slow-roll parameters defined in eqs. (12). Moving to Fourier space,
the solution of (38) is a combination of the Hankel functions of the first and second
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order, which for super-horizon scales and at lowest order in the slow-roll parameters, are
approximated by(4)

(39) |Qϕ(k)| =
H√
2k3

(
k

aH

)3/2−νϕ

,

where νϕ � 3
2 + 3ε − η. To obtain the ζ power spectrum, let us consider the gauge-

invariant curvature perturbation on comoving hyper-surfaces, which, in the case of a
stress-energy tensor of a single scalar field, reads [68,69,49,51]

(40) R ≡ Φ̂ +
H
ϕ′ δϕ.

From eq. (37) we immediately have R = HQϕ/ϕ′. On the other hand, R is related to
the curvature perturbation ζ by

(41) −ζ = R +
2ρ

9(ρ + P )

(
k

aH

)2

Ψ,

where Ψ is the perturbation that appears in eq. (15). From this relation on large scales
we have R � −ζ. Then, combining eq. (39) and the expression of R into eq. (33), we
obtain the power spectrum for ζ on large scales:

(42) Pζ =
(

H2

2πϕ̇

)2 (
k

aH

)3−2νϕ

�
(

H2

2πϕ̇

)2

∗
,

where the asterisk denotes quantities evaluated at the epoch a given perturbation mode
leaves the horizon during inflation, that is k = aH. Equation (42) shows that curva-
ture perturbations remain time-independent on super-horizon scales. So, the solution
obtained for ζ is valid throughout the different evolution eras of the Universe until the
mode remains super horizon. We will see that the same happens with tensor perturba-
tions.

The spectral index at the lowest order in slow-roll reads

(43) nζ − 1 = 3 − 2νϕ = −6ε + 2η.

Scalar power spectrum parametrization. In order to compare these theoretical predictions
with observational data, it is useful to introduce a phenomenological parametrization of
the power spectrum [52]

(44) PS = AS

(
k

k∗

)nS−1+ 1
2

dnS
d ln k ln(k/k∗)+...

,

where AS is the amplitude of the perturbations to a fixed pivot scale k∗, nS is the spectral
index and dnS/d ln k the running of the spectral index. These quantities are usually

(4) We will specify this procedure in sect. 2
.
3.
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expressed by the so called Hubble flow-functions εi [70,50], which express the conditions
of slow-roll in terms of deviations with respect to an exact exponential expansion: ε1 =
−Ḣ/H2, εi+1 ≡ ε̇i/(Hεi). These parameters are linked to those in eq. (12) by: ε1 � ε
nad ε2 � −2η + 4ε, at the first order in slow-roll parameters. Up to second order the
power spectrum parameters read [71]

nS − 1 = −2ε1 − ε2 + −2ε21 − (2C + 3)ε1ε2 − Cε2ε3,(45)
dnS

d ln k
= −2ε1ε2 − ε2ε3,(46)

where C = ln 2 + γE − 2 ≈ −0.7296, with γE the Euler-Mascheroni constant.

First-order vector perturbations. For vector perturbations there is only a constraint
equation which relates the gauge-invariant vector metric perturbation to the divergence-
free velocity of the fluid, which obviously vanishes in the presence of scalar fields only.

2.3. Gravitational waves from inflation. – The inflationary scenario predicts also the
production of a background of stochastic GW [72-75, 46]. Tensor fluctuations of the
metric represent the degrees of freedom of the gravitational sector: there are no constraint
equations coming from the stress-energy continuity equation for these modes (in the case
of a perfect fluid). Their evolution is only regulated by the traceless spatial part of
the Einstein equation, which, in the presence of perfect fluids does not contain direct
influence from the energy content of the Universe except for the underlying background
solution. We will see later that a coupling between GW and the content of the Universe
grows up only in the presence of anisotropic stress tensor.

2.3.1. Evolution equation and power spectrum. Perturbing (25) at first order leads to
the following action for tensor perturbations [76,77]:

(47) S
(2)
T =

M2
pl

8

∫
d4x a2(t)

[
ḣij ḣij − 1

a2
(∇hij)

2

]
,

as already mentioned hij is a gauge-invariant object, so varying the action with respect
to this quantity, we get the required equation of motion

(48) ∇2hij − a2ḧij − 3aȧḣij = 0.

It is now clear that tensor perturbations solve a wave equation, hence the name gravita-
tional waves. Recalling that hij is symmetric, transverse and trace-free, the solutions of
eq. (48) present the following form:

(49) hij(x, t) = h(t)e(+,×)
ij (x),

where e
(+,×)
ij is a polarization tensor satisfying the conditions eij = eji, kieij = 0,

eii = 0, with +,× the two GW polarization states [78]. Equation (49) reflects the fact
that tensor modes are left with two physical degrees of freedom: starting from six of the
symmetric tensor hij , four constraints are given by the requirement of being trace-free
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and transverse. In summary the most general solution of eq. (48) reads

(50) hij(x, t) =
∑

λ=(+,×)

h(λ)(t)e(λ)
ij (x).

To get the solution of the equation of motion it is useful to perform the transformation

(51) vij ≡ aMpl√
2

hij .

In terms of vij the action (47) reads

(52) S
(2)
T =

M2
pl

8

∫
d4x

[
v′

ijv
′
ij − (∇vij)

2 +
a′′

a
vijvij

]
,

which can be interpreted as the action for two scalar fields in Minkowski space-time,
with effective mass squared equal to a′′/a(5). Being interested in the power spectrum,
we move to Fourier space and write

(53) vij(x, t) =
∫

d3k
(2π)3

∑
λ=(+,×)

v
(λ)
k (t)e(λ)

ij (k)eik·x,

where v
(λ)
k is the Fourier transform of the scalar amplitude. From (53), the equation of

motion for each mode v
(λ)
k then reads

(54) v
(λ)
k

′′ +
(

k2 − a′′

a

)
v
(λ)
k = 0.

We obtained a wave equation. Let us study the qualitative behavior of its solutions. We
can identify two main regimes depending on the relative magnitude of the second and
third term. First, consider the case in which a′′/a � k2. Ignoring the second term in
parentheses, the equation for vk becomes that of a free harmonic oscillator, so that tensor
perturbations hij oscillate with a damping factor 1/a. This approximation corresponds
to overlook the effect of the expansion of the Universe. To make explicit the physical
condition corresponding to this regime, notice that, since a′′/a ∼ (a′/a)2, a′′/a � k2

corresponds to k � aH, i.e. to the sub-horizon behavior (check for example the case of
a de Sitter space-time where a(τ) ∼ 1/τ). Keeping in this regime, the solution of (54)
reads

(55) vk(τ) = Aeikτ ,

which means that the amplitude of the modes of the original field hij decrease in time
with the inverse of the scale-factor as an effect of the Universe expansion. Consider

(5) The appearance of this effective mass term indeed follows from the non-invariance under
Weyl transformations of the tensor mode action (47).
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now the regime in which the second term is negligible with respect to the third one:
k2 � a′′/a. There are two possible solutions of eq. (54):

(56) vk(τ) ∝ a and vk(τ) ∝ 1/a2,

which corresponds to h ∝ const and a decreasing in time solution, respectively. This situ-
ation clearly corresponds to the super-horizon regime. In particular we will be interested
in the solutions with constant amplitude.

Now we calculate more accurately the power spectrum of tensor perturbations, solv-
ing (54). We perform the standard quantization of the field writing

(57) v
(λ)
k = vk(τ)â(λ)

k + v∗
k(τ)â(λ)†

−k ,

where the modes are normalized so that they satisfy v∗
kv′

k−vkv′∗
k = −i, and this condition

ensures that â
(λ)
k and â

(λ)†
−k behave as the canonical creation and annihilation operators.

Following the simplest and most natural hypothesis, as initial condition, we assume that
the Universe was in the vacuum state defined as â

(λ)
k |0〉 = 0 at past infinity, that is the

“Bunch-Davies vacuum state” [79].
Equation (54) is a Bessel equation, which, in case of de Sitter spacetime, has the

following exact solution [46]:

(58) vk(τ) =
√−τ

[
C1H

(1)
ν (−kτ) + C2H

(2)
ν (−kτ)

]
,

where C1, C2 are integration constants, H
(1)
ν , H

(2)
ν are Hankel functions of first and

second order and ν � 3/2 + ε. Remember we have negative sign to τ because, from
its definition, it lies in −∞ < τ < 0. To determining C1 and C2, we impose that in
the UV regime, that is sub-horizon scales, the solution matches the plane-wave solution
e−ikτ/

√
2k found before. This hypothesis is a direct consequence of the Bunch-Davies

vacuum condition. Using the asymptotic form of Hankel functions

(59) H(1)
ν (x � 1) ∼

√
2

πx
ei(x−π

2 ν−π
4 ), H(2)

ν (x � 1) ∼
√

2
πx

e−i(x−π
2 ν−π

4 ),

the second term in the solution has negative frequency, so that we have to fit C2 = 0,
while matching the asymptotic solution to a plane wave leads to

(60) C1 =
√

π

2
ei(ν+ 1

2 ) π
2 .

Then the exact solution becomes

(61) vk =
√

π

2
ei(ν+ 1

2 ) π
2
√−τH(1)

ν (−kτ).

In particular, for our purpose we are interested in the super-horizon wavelength be-
haviour, where the Hankel function reads

(62) H(1)
ν (x � 1) ∼

√
2/πe−i π

2 2ν− 3
2 [Γ(ν)/Γ(3/2)] x−ν ,
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so that the fluctuations on such scales become

(63) vk = ei(ν− 1
2 ) π

2 2(ν− 3
2 ) Γ(ν)

Γ(3/2)
1√
2k

(−kτ)
1
2−ν ,

where Γ is the Euler function.
With the latter equation we can now write the sought tensor power spectrum. Em-

ploying the expression (33) and considering that here we deal with two polarization
states, we have

(64) PT(k) =
k3

2π2

∑
λ

∣∣∣h(λ)
k

∣∣∣2 ,

so that on super-horizon scales the following power spectrum holds:

(65) PT(k) =
8

M2
pl

(
H

2π

)2 (
k

aH

)−2ε

.

Notice that it is almost scale-invariant, which means that all the GW produced, nearly
frozen on super-horizon scales, have all the same amplitude. Moreover, from eq. (12) the
tensor spectral index, defined in eq. (29), has to be negative in order to have Ḣ < 0,
that is in order to satisfy the Null Energy Condition (NEC) [53]. In this case the power
spectrum is called red, while for nT > 0 it is indicated as blue [80]. Later on we will refer
to the case in which nT = 0 as scale-invariant.

Tensor power spectrum parametrization. In analogy with the scalar perturbation power
spectrum, it is useful to parametrize (65) in the following manner [71]:

(66) PT(k) = AT

(
k

k∗

)nT+ 1
2

dnT
d ln k ln(k/k∗)+...

,

where AT is the tensor amplitude at some pivot scale k∗, nT is the tensor spectral index,
and dnT/d ln k the running of the spectral index.

Again, introducing the Hubble flow-functions, we can rewrite these quantities in terms
of the Hubble parameter and its derivatives. Up to second order they read

nT = −2ε1 − 2ε21 − 2(C + 1)ε1ε2,(67)
dnT

d ln k
= −2ε1ε2,(68)

where C = ln 2 + γE − 2 ≈ −0.7296.

2.3.2. Consistency relation. In the considered inflationary scenario an interesting con-
sistency relation holds between quantities which involve tensor perturbations. To get it,
we introduce the tensor-to-scalar ratio

(69) r(k∗) ≡ AT(k∗)
AS(k∗)

,
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that yields the amplitude of the GW with respect to that of the scalar perturbations
at some fixed pivot scale k∗. From eqs. (42)-(65), this quantity depends on the time-
evolution of the inflaton field, as

(70) r =
8

M2
pl

(
ϕ̇

H

)2

,

that is r = 16ε. Furthermore, we have shown that a nearly scale-invariant spectrum of
tensor modes is expected, being nT = −2ε. Therefore at the lowest order in slow-roll
parameters, one finds the following consistency relation [65]:

(71) r = −8nT.

Clearly, this equality can be checked only with a measure of the tensor power spectrum,
i.e. not only of its amplitude, but also of its spectral index. Furthermore if this relation
really holds true it means that it will be very hard to measure any scale dependence of
the tensors, since a large spectral index would invalidate the consistency relation. At
present we have only an upper bound on the tensor-to-scalar ratio: r0.05 < 0.07 at 95%
C.L. [6], assuming the consistency relation (71), where the subscript indicates the pivot
scale in Mpc−1 units.

2.3.3. Second-order gravitational waves. Up to now we have considered phenomena
concerning first-order perturbation theory on a FRW background. At that order, scalar,
vector and tensor modes evolve governed by uncoupled equations of motion. This fact
does not hold at higher order. In particular, the combination of first-order scalar per-
turbations represents a source for GW at second order. This means that when curvature
perturbations are present we always have generation of GW, even if tensor perturbations
of first order are absent. See sect. 3.

2.3.4. Post-inflationary evolution of gravitational waves. Let us have a look at how GW
behave at the time of radiation and matter domination, when accelerated expansion
has already ended. Inflation stretches tensor perturbations wavelengths to super-horizon
scales, making their amplitude almost frozen. During the radiation and subsequent
matter eras, tensor perturbation wavelengths re-enter the horizon sequentially. When
this happens the decaying solution has substantially disappeared, so what re-enters the
causally connected space is the almost scale-invariant power spectrum at the time of
first horizon crossing, which occurred during inflation. Then, modes that are inside the
horizon, start oscillating with the amplitude damped by a factor 1/a. In particular,
during radiation and matter dominance the scale-factor evolves as a ∼ τ and a ∼ τ2

respectively, so that eq. (54) becomes a Bessel equation with the following solutions
respectively, in terms of hij modes:

(72) hk(τ) = hk,ij0(kτ), hk(τ) = hk,i

(
3j1(kτ)

kτ

)
,

where hk,i is the amplitude at horizon crossing and j0 and j1 are the Bessel functions.
Looking at the dependence on k, these solutions tells us that tensor perturbations start
oscillating with a damping factor greater for high frequency waves.
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During an era of pure dominance of the cosmological constant, the space-time assumes
a de Sitter metric so that the scale-factor evolves in a exponential way, as during inflation
in case of ε = 0. Then, in such an epoch, the form of the solution of the GW equation of
motion (54) is given by eq. (58). In a dedicated section we will investigate the features
impressed in the present GW energy density due to these different ways of evolving.
Recently, the effect due to the presence of scalar fluctuations during the matter dominated
era on the GW background has been estimated in terms of a local blue or red shift of the
GW spectrum, proportional to the amplitude of scalar perturbations [81]; see also [82].

Energy-density of gravitational waves. Let us now introduce some useful definitions, in
particular to identify the GW energy-density. Consider the weak-field limit, where GW
can be described as space-time ripples propagating on a fixed background. The vacuum
field equations read Gμν = 0, which is equivalent to Rμν = 0. Making explicit the
Ricci tensor as a sum of a background term and perturbative terms up to second order,
Rμν = R̄μν + R

(1)
μν (h) + R

(2)
μν (h) + O(h3), one can deduce from the vacuum equations,

how the presence of the GW affects the background R̄μν (where, for example, R
(2)
μν (h)

indicates the contribution to the Ricci tensor which contains terms as ∼ h · h). The
terms that play this role then can be interpreted as a stress-energy tensor tμν due to
the presence of GW. In this direction it is useful to note that Rμν can be written as a
sum of two kinds of terms, those representing a smooth contribution and others which
encode the fluctuating part. Each of the two contributions vanishes on its own [78]. The
background term R̄μν varies only on large scales with respect to some coarse-graining
scale, therefore we are interested in the equation for the smooth contributions. The only
linear term R

(1)
μν (h) solves by itself R

(1)
μν (h) = 0(6). Then, the remaining equation for the

smooth part of the vacuum equation reads [78,83]:

(73) R̄μν + 〈R(2)
μν 〉 = 0,

where 〈. . .〉 indicates the average over several wavelengths which extracts the smooth
contribution with respect to the coarse-graining scale. An analogous reasoning can be
enlarged to the Einstein tensor, so that one gets the following Einstein equations, in
vacuum:

(74) Ḡμν = R̄μν − 1
2
R̄ḡμν = 〈R(2)

μν 〉 −
1
2
ḡμν〈R(2)〉.

The terms on the RHS tell how the presence of GW affects the background metric, then
they can be interpreted as the GW stress-energy tensor tμν , apart from a factor 8πG. In
terms of the tensor perturbations of the metric it reads [78]:

(75) tμν =
1

32πG
〈∂μhij∂νhij〉;

(6) More precisely, the perturbation hμν may contain non-linear corrections jμν , which lead to

a non-linear term, that we call R
(1)NL
μν (j). The latter contributes to the fluctuating part of the

Ricci tensor, but, being non-linear, is not constrained by the equation just shown in the text.
In fact, in general, smoothed parts can be obtained only from combinations ∼ hμνhρσ, where
the two high frequencies of each perturbation hμν can cancel each other, leading to a smooth
contribution [83].
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see also [83, 84]. From the previous equation, the GW energy-density, on a FRW back-
ground, reads

(76) ρgw =
1

32πGa2
〈h′

ij (x, τ) h′ij (x, τ)〉.

However, more often one makes use of the GW energy-density per logarithmic frequency
interval, normalized to the critical density ρc ≡ 3H2/8πG,

(77) ΩGW(k, τ) ≡ 1
ρc

dρgw

d ln k
.

2.4. Why are primordial gravitational waves so interesting? – Primordial GW repre-
sent a very interesting tool to constrain different aspects of the early Universe and of the
underlying fundamental physics theory.

2.4.1. Test and constrain single-field slow-roll inflation. If the single-field slow-roll in-
flationary paradigm holds, a detection of the GW power spectrum would provide an
estimate of the fundamental scales involved.

Energy scale of inflation. GW carry direct information about their generation mecha-
nism: a measurement of the amplitude of the tensor power spectrum would provide the
way to fix the energy scale of such a mechanism [85]. From eqs. (12)-(42), the scalar
power spectrum is related to the Hubble parameter, evaluated during inflation at the
horizon exit of a pivot scale, and to the slow-roll parameter ε in the following manner:

(78) PS(k) =
1

2M2
plε

(
H∗
2π

)2 (
k

aH∗

)nS−1

,

so that a measurement of the amplitude of scalar perturbations would provide an estimate
of H∗ in terms of the slow-roll parameter ε. Furthermore, the Friedman equations in the
slow-roll limit give a relation between the Hubble parameter and the energy scale of
inflation V : H2 = V/3M2

pl. In virtue of the latter equation, we can relate the energy
scale of inflation at the time when the pivot scale leaves the horizon, directly to the
parameter ε: V = 24π2M4

plASε. From the link between ε and the tensor-to-scalar ratio
r we have V = (3π2AS/2)M4

plr, so that considering the scalar amplitude estimated by
the Planck Collaboration [52] one gets the following relation between the energy scale of
inflation at the time when the pivot scale leaves the Hubble radius, and the tensor-to-
scalar ratio

(79) V =
(
1.88 × 1016 GeV

)4 r

0.10
.

Then r provides the energy scale of inflation.

Scalar field excursion during inflation. An estimation of the tensor-to-scalar ratio might
enlighten the variation of the inflaton field expectation value from the horizon crossing
of large-scale perturbations to the end of inflation [86-89]. We have just seen that in the
slow-roll model the tensor-to-scalar ratio relates to the slow-roll parameter ε and then to
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Fig. 3. – Example of large field inflationary potential. Δϕ indicates the inflaton excursion
between the horizon exit of a given comoving scale and the end of inflation.

the evolution of the inflaton field as (70). Restoring the definition of the e-foldings N ,
we can express the evolution in time of the field via such a quantity, that is

(80) r =
8

Mpl

(
dϕ

dN

)2

.

Integrating dϕ from the horizon crossing of a pivot scale to the end of inflation and
making explicit the dependence of r on N (see figs. 1-3), we have

(81)
Δϕ

Mpl
=

(
r(ϕcross)

8

)1/2 ∫ N(ϕend)

N(ϕcross)

(
r(N)

r(ϕcross)

)1/2

dN.

One can consider the second factor as the effective number of e-foldings

(82) Ne ≡
∫ N(ϕend)

N(ϕcross)

(
r(N)

r(ϕcross)

)1/2

dN,

so that

(83)
Δϕ

Mpl
=

(
r(ϕcross)

8

)1/2

Ne.

Ne depends on the evolution of the tensor-to-scalar ratio during inflation and so it is
model-dependent. In particular for the standard slow-roll model, r is constant up to the
second order, then the integral becomes simply the number of e-foldings. Keeping this
approximation, in agreement with the chosen pivot scale, one can find a lower bound
for the field excursion. The first evaluation of this bound was given by Lyth [86] and
refers to the scales corresponding to 1 < l < 100, and so he considered Ne � 4. Putting
Ne � 30 we obtain [87,89]

(84)
Δϕ

Mpl
� 1.06

(
r(ϕcross)

0.01

)1/2

.
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This bound tells that a model producing a large amount of GW would involve a field
excursion of the order of the Planck mass. This constraint leads to a classification of
inflationary models according to the field excursion: small field and large field models,
where the discriminating value is the Planck mass. Being this inflationary features strictly
related to the UV completion of gravity, constraining the inflaton excursion could provide
useful information about the correct quantum gravity theory; see [90,89,91-93].

Role of the consistency relation. Another interesting check involving the tensor pertur-
bation amplitude and spectral index is the consistency relation (71). This would be a
strong check to establish if the single-field slow-roll model is that realized by nature, but
also could constrain features of the inflationary models which lead to a peculiar deviation
from it. We will explain in detail these aspects in the dedicated sect. 8.

2.4.2. Beyond single-field slow-roll inflation: gravitational waves as a test of the infla-
tionary models. A measurement of the tensor power spectrum would represent not only a
way to constrain the features of the standard inflationary model, but also a way to dis-
criminate among the many inflationary scenarios and to test the underlying fundamental
physical theory.

Leaving the standard single-field slow-roll inflationary model, a great variety of scenar-
ios is currently admitted. We can refer to two main categories: models built employing
General Relativity (GR) as the theory of gravity and scenarios based on theories of mod-
ified gravity (MG). We will specify soon what we mean by this distinction. Many of them
can be distinguished in terms of the predictions concerning the tensor power spectrum,
such as its amplitude, spectral index, and the tensor bispectrum, as a measure of their
non-Gaussianity.

Among the models built on GR we can identify some main phenomena which might
lead to unusual GW power spectra: the production of tensor perturbations due to extra
mechanisms, and secondary modifications of the standard inflationary model, such as the
presence of spectator scalar fields. Moreover, one can also consider predictions coming
from specific scenarios, as for example solid [94] and elastic [95] inflation, or scenarios of
warm inflation [96-98].

As anticipated, one can also consider that GW can be produced during the reheating
period too and can be useful to constrain the physics of such a period (and viceversa).

Many inflationary models built on MG theories have been proposed as a way to obtain
an accelerated expansion stage in the early Universe. Considering the action

(85) S =
∫ √−g (Lgrav + Lmat) d4x,

where Lgrav is the gravitational Lagrangian and Lmat the Lagrangian describing the
matter content of the Universe, to obtain the accelerated expansion, one can introduce
a suitable Lmat and employ the Einstein-Hilbert Lagrangian as Lgrav, or one can apply
modifications of GR to achieve acceleration.

In the latter models the dynamics is usually governed by the gravitational sector
without involving any other fields since the equation of motion of the gravitational degrees
of freedom alone can lead to an accelerated expansion stage. Clearly, as for models based
on GR, one has to take care of the duration and of the end of such a period in order to
get to the radiation and matter dominated eras.
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Primordial gravitational waves in the EFT approach of inflation. In the direction of
testing the inflationary physics, the latter has been investigated also implementing the
approach of the Effective Field Theory [99] (see [100] for a review). In this way several
inflationary models can be taken into account in a unique analysis at the same time.
The basic idea of this approach is to write the most general action compatible with
the symmetries of the theory and given the fields that drive the dynamics, and then
calculate the predictions for observables as functions of the general coefficients of the
operators included in the action. While time diffeomorphism is surely broken, it has
been investigated also what happens to tensor modes when also spatial diffeomorphisms
are broken for fluctuations [101-106]. In this case the action for tensor perturbations
reads [101,106]

(86) S
(2)
T =

M2
pl

4

∫
dτ d3x a2(τ)α

[
h′

ijh
′
ij − c2

T (∇hij)
2 − m2h2

ij

]
,

where the parameters m, cT and α are obtained by combinations of the coefficients of
the operators appearing in the original action [99]. GW can get a mass m and a speed cT

different form that of light during inflation. From this action, at the leading order in slow
roll and with m/H � 1 and requiring as initial condition the Bunch-Davies vacuum, the
tensor mode power spectrum results of the form

(87) PT =
2H2

π2M2
plcT

(
k

k∗

)nT

, with nT = −2ε +
2
3

m2

αH2

(
1 +

4
3
ε

)
.

Notice that, given a pivot scale, the amplitude can be enhanced with respect to the
standard one by the non-canonical speed of tensor modes. Moreover, if the ratio m/H
is sufficiently large the tilt can be blue, while preserving the NEC, leading to a violation
of the consistency relation [101]. For a model in EFT approach, in which the speed of
sound for tensors is considered time-dependent see [107].

A test for the theory of gravity and high energy physics. As anticipated, constraining
inflationary models inevitably constitutes a test for the fundamental theories on the
basis of which each model is built, first of all the theory of gravity. If, on one side MG
theories naturally allow for a period of accelerated expansion, on the other side they
could lead to unusual features of the gravitational degrees of freedom. In particular, we
will show in sect. 5 that the propagation velocity of GW can be different from the speed
of light, in contrast with GR, or there can appear modifications of the friction term in
their equation of motion. We will see how these special properties affect the tensor power
spectrum.

2.4.3. Alternatives to inflation. An accelerated expansion phase in the early Universe
is not the only way to solve standard cosmology problems. Early Universe models which
provide an alternative to inflation have been proposed. We mention here the String Gas
Cosmology [108], the Pre-Big Bang Cosmology [109] and the Ekpyrotic Universe [110].
For each of these models predictions about GW have been obtained. These are however
outside the scope of the present review.
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3. – Classical production of primordial gravitational waves during inflation

In the next sections we will investigate the main mechanisms of GW production,
beyond vacuum oscillations of the gravitational field, that can take place during the
inflationary epoch and the preheating stage. At the end, in sect. 6, we will recap in a
summarizing table all the models we discuss in the present work.

During inflation and preheating, GW can be produced in two ways: from vacuum
fluctuations of the gravitational field or by a classical mechanism. The first case is
that we have shown in the previous section for the single-field slow-roll inflation. For
this kind of production, different predictions for the tensor power spectrum follow from
different theories of gravity underlying the inflationary model. On the other hand, the
GW classical production takes place when a source term in the GW equation of motion
(eq. (48)) is present. Such a kind of term can be provided by several situations, such
as a particle production or the presence of more than one scalar field during inflation.
Clearly, the features of the source term determine the GW power spectrum produced in
such a way. The interesting point then is to investigate what can provide a source term
during the inflationary and preheating stages and, for each kind of them, to determine
the form of the GW power spectrum.

In the following sections we will examine the classical production of GW and later
on their production from vacuum oscillations for several gravity theories different from
General Relativity.

In the previous section we have considered phenomena concerning first-order pertur-
bation theory on a FRW background. At such order scalar, vector and tensor modes
are independent. This fact does not hold at higher perturbative order: already at sec-
ond order, suitable combinations of scalar modes can give rise to second-order vector
or tensor perturbations, while, e.g., linear tensor modes give rise to scalar perturba-
tions [111,60,112]. This fact of course also holds at higher order, with the only constraint
that scalars, vectors and tensors of the same perturbative order remain uncoupled. In-
deed, a combination of two first order objects invariant under spatial rotations, that is
two scalars, might not be still invariant under such transformation. As a consequence,
when second-order perturbations of the metric and of the stress-energy tensor are taken
into account, the free wave equation that at the first order describes the dynamic of the
tensor modes, gets a source term. Combination of first-order scalar or vector pertur-
bations represent possible sources for GW [60]. First this means that when curvature
perturbations are present we always have generation of GW, even if tensor perturbations
of the first order are absent. More precisely, by looking at the traceless and divergence-
less spatial components of the second-order of Einstein’s equations, one finds that, in
contrast to the first-order case, other terms besides those involving the usual GW wave
equations are left: combinations of scalar and vector perturbations coming from the Ein-
stein tensor and from the anisotropic part of the stress-energy tensor. These terms give
rise to a source in the GW equation of motion [113,114,60,115-118,111,119]. Unlike GW
generated by quantum fluctuations of the gravitational field, here we are dealing with
classical mechanisms of GW production. Concerning the inflationary physics, second-
order sources are present during the accelerated expansion stage, given by the quantum
fluctuations of the inflaton or provided by other mechanisms, but also after the inflation-
ary period during the radiation and matter dominated epochs, when scalar and tensor
perturbations re-enter the horizon. Here we are specially interested in the first situation.

In most standard inflationary scenarios the extra amount of GW produced by this
mechanism results negligible compared to the first-order production and to the planned
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experimental capabilities. Nonetheless, there are many cases in which second-order GW
play a significant role because of the presence of efficient sources.

3.1. Production of second-order gravitational waves. – Consider the spatial part of
second-order Einstein equations and project them into their transverse and traceless
parts:

(88) Π̂ lm
ij G

(2)
lm = κ2Π̂ lm

ij T
(2)
lm ,

where Π̂lm
ij is the projector operator Π̂ lm

ij = Πi
lΠ

j
m− 1

2ΠijΠlm with Πij = δij−∂i∂j/Δ and
κ2 = 8πG. Consider the flat FRW second-order perturbed metric form eq. (15) neglecting
for simplicity first-order vector and tensor perturbations, and employ hij ≡ h

(2)
ij . From

this expression the Einstein tensor at second-order results [61]:

G
(2)i
j = a−2

[
1
4

(
h′′i

j + 2Hh′i
j −∇2hi

j

)
+ 2Ψ(1)∂i∂jΨ(1) − 2Φ(1)∂i∂jΨ(1)(89)

+ 4Φ(1)∂i∂jΦ(1) + ∂iΨ(1)∂jΨ(1) − ∂iΨ(1)∂jΦ(1) − ∂iΦ(1)∂jΨ(1)

+ 3∂iΦ(1)∂jΦ(1) +
(
Ψ(2),Ψ(2), ω

(2)
i term

)
+ (diagonal part) δi

j

]
.

The stress-energy tensor of a perfect fluid perturbed at second order reads [61]

(90) T
(2)i
j =

(
ρ(0) + P (0)

)
v(1)iv

(1)
j + P (0)π

(2)i
j + P (1)π

(1)i
j + P (2)δi

j .

Using the expressions for the first-order perturbations of the energy-momentum tensor
in terms of the linear metric perturbations and of the background value of the energy-
momentum tensor [120], eq. (88) becomes

(91) h′′
ij + 2Hh′

ij −∇2hij = −4Π̂lm
ij Slm,

with Slm:

Slm ≡ 2Ψ∂l∂mΨ − 2Φ∂l∂mΨ + 4Φ∂l∂mΦ + 4Ψ∂l∂mΨ(92)

+∂lΨ∂mΨ − ∂lΨ∂mΦ − ∂lΦ∂mΨ + 3∂lΦ∂mΦ

− 4
3(1 + ω)H2

∂l (Φ′ + 3HΨ) ∂m (Φ′ + 3HΨ)

− 2c2
S

3ωH2

[
3H (HΨ − Φ′) + ∇2Φ

]
∂l∂m(Ψ − Φ),

and ω ≡ P (0)/ρ(0), Ψ ≡ Ψ(1), Φ ≡ Φ(1) and cS = P (1)/ρ(1). Notice that the source Sij is
composed of terms coming from the Einstein tensor and others coming from the stress-
energy tensor. In order to solve eq. (91) we Fourier transform the tensor perturbations
as

(93) hij (x, τ) =
∫

d3k
(2π)3/2

eik·x [
hk(τ)eij(k) + h̄k(τ)ēij(k)

]
.
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The two polarization tensors eij , ēij can be expressed by the polarization vectors ei(k),
ēi(k) orthogonal to the propagation vector k as

eij(k) ≡ 1√
2

[ei(k)ej(k) − ēi(k)ēj(k)] ,(94)

ēij(k) ≡ 1√
2

[ei(k)ēj(k) − ēi(k)ej(k)] .(95)

In terms of the polarization tensors, then the RHS of eq. (91) is written as

(96) Π̂lm
ij Slm(x) =

∫
d3k

(2π)3/2
eik·x [

eij(k)elm(k) + ēij(k)ēlm(k)
]
Slm(k),

where Slm(k) is the Fourier transform of Slm(x′). Then, the equation of motion of
second-order tensor modes in Fourier space, for each polarization state, reads

(97) h′′
k + 2Hh′

k + k2hk = S (k, τ) ,

where the quantity

(98) S (k, τ) = −4elm(k)Slm(k)

is the convolution of two linear scalar perturbations. The equality (97) is a wave-equation
with a source, whose solution reads

(99) hk(τ) =
1

a(τ)

∫
dτ̃ Gk (τ ; τ̃) [a(τ̃)S (k, τ̃)] ,

where the Green function Gk solves the eq. (97) with the source given by (1/a)δ(τ − τ̃).
Gk then depends only on the evolution of the scale-factor. Given eq. (99), the expression
for the GW correlator can be written in terms of that of the source as

〈hk(τ)hk′(τ)〉 =(100)
1

a2(τ)

∫ τ

τ0

dτ̃1dτ̃2 a (τ̃1) a (τ̃2) Gk (τ ; τ̃1) Gk′ (τ ; τ̃2) 〈S (k, τ̃1) S (k′, τ̃2)〉 ,

where τ0 is the time when the source switches on. Equation (100) represents the general
expression for the GW power spectrum due to tensor modes that solve eq. (91). Then,
now the interesting point is to find out the solution for specific cases of the source term.

3.1.1. Second-order gravitational waves sourced by inflaton perturbations. The immediate
application of second-order perturbation theory consists in considering the inflationary
scalar perturbations as a source for GW. We have just seen that the very existence
of scalar perturbations gives rise to tensor modes, independently of how the first-order
scalars have been generated. Knowing the scalar power spectrum during the inflationary
period, the sourced-GW power spectrum can be calculated too. More precisely, Slm(k)
can be written highlighting the dependence on the perturbation Φk(τ) evaluated at early
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times, so that the correlator (100) can be written in terms of the primordial power
spectrum PΦ(k):

(101) 〈ΦkΦk′〉 =
2π2

k3
PΦ(k)δ (k + k′) ,

which is strongly constrained by CMB and LSS measurements. Scalar perturbations
play the role of GW source both during inflation and at the end of inflation, when
they re-enter the horizon after having been frozen [60]. Tensor modes generated by
curvature perturbations that re-enter the horizon after the end of inflation, can lead to
non-negligible contributions. More precisely, scalar perturbations that enter the horizon
during the radiation-dominated epoch [121, 120], generates tensor perturbations that at
the present time results on scales that could be interesting for experiments of direct GW
detection [121]. However, assuming an inflationary power law spectrum on all scales for
scalar perturbations, in accordance with current constraints coming from the CMB, the
GW spectral energy-density at the present time is several orders of magnitude smaller
than the sensitivity curve of planned experiments [121]. In particular, for a power-
law scalar power spectrum with a red tilt nS = 0.95, a GW spectral energy-density of
ΩGW � 10−22(f/Hz)−0.1 is expected [121]. Notice that in doing these estimates one
exploits values extrapolated from the scales of the CMB to constrain the scalar power
spectrum on scales smaller by ∼ 20 orders of magnitude.

The presence of second-order tensor modes sourced by first-order curvature perturba-
tions that re-enter the horizon after the matter-radiation equality, clearly affects also the
CMB polarization predictions [122]. This effect limits the ability of estimating the infla-
tionary first-order power spectrum of tensor modes and then it relaxes the constraints on
the energy scale of inflation. The amount of B modes due to the presence of second-order
GW is estimated as the second contribution after weak lensing. Numerically estimating
the B-mode power spectrum taking into account second-order vector and tensor modes,
and physical effects at recombination, the contribution to the GW power spectrum of
second-order vector and tensor modes is found to be comparable to that coming from
primordial GW for multipoles lower than � � 100, for r � 10−7 and lower than � � 700
for r � 10−5 [123].

The generation of second-order GW has been investigated also with respect to the
reheating phase, usually considered as a matter dominated epoch [124].

On the other hand the second-order contribution plays an interesting and non-
negligible role in several inflationary models, as for example scenarios with events of
particle production. In the next sections we will investigate some of those models. In
order to do so, the main work consists in solving the equation of motion of the extra
field, in order to write the source term and then solve the tensor mode equation (97) by
the Green’s function method. Only the tensor perturbations in the metric are usually
considered and the scalar and vector ones neglected. We will start by looking at the form
taken by eq. (88) with this assumption.

3.1.2. Gravitational-wave equation neglecting scalar and vector metric perturbations. Let
us consider the FRW metric perturbed at second order, neglecting scalar and vector
perturbations of first and second order. The equation of motion for GW (88) becomes

(102) h′′
ij + 2Hh′

ij −∇2hij =
2

M2
pl

Π̂lm
ij Tlm,
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where Tlm is a generic stress-energy tensor. Notice that here the source term is given
only by the stress-energy tensor, having set to zero scalar and vector perturbations in
the Einstein tensor. Equation (102) is solved by

(103) hij (k, τ) =
2

M2
pl

∫
dτ̃Gk (τ, τ̃) Π̂ lm

ij (k)Tlm (k, τ̃) ,

with Gk the Green function. Proceeding as before, the amplitude of the GW of a fixed
polarization states reads

(104) hk(τ) =
1

a(τ)

∫
dτ̃Gk (τ, τ̃) [a (τ̃) T (k, τ̃)] ,

where T (k, τ ′) is defined similarly to eq. (98). In order to specify the solution we
need to fix the evolution of the scale-factor and the projected stress-energy tensor. An
exact solution for the Green function exists for a de Sitter stage, and for a radiation or
matter dominated epoch. In most of the following scenarios we will consider a de Sitter
background. For such a case the Green function takes the following simple form [125]:

(105) Gk (τ, τ̃) =
1

k3τ̃2

[(
1 + k2τ τ̃

)
sin k (τ − τ̃) + k (τ̃ − τ) cos k (τ − τ̃)

]
Θ (τ − τ̃) ,

with Θ the Heaviside function.

3.2. Gravitational waves sourced by scalar perturbations. – We will consider two ex-
amples of inflationary models where the source of GW is due to the presence of a further
scalar field besides the inflaton. We investigate the amount of GW generated by the
perturbations of the extra field, without taking into account the source terms coming
from the Einstein tensor (that is we will calculate the Einstein tensor neglecting scalar
and vector perturbations).

3.2.1. Second-order gravitational waves in the curvaton scenario. In the curvaton sce-
nario [126], a scalar field, the curvaton, is added besides the inflaton, requiring that
it does not influence the inflationary dynamics. In the simplest curvaton scenario, the
curvature perturbations of the inflaton are considered negligible and not the seeds of
structure formation. This situation is achieved by lowering the energy scale of inflation
which leads to a suppression of the amount of GW produced by the standard mecha-
nism. More precisely, asking that the inflaton curvature perturbation is much smaller
than required to explain CMB anisotropies corresponds to H∗ � 10−5Mpl [127], with H∗
the Hubble rate estimated during inflation. At the same time, this requirement means
that the amount of GW generated from vacuum oscillations of the metric tensor is very
small. Then, in this scenario second-order GW might be significant with respect to those
produced at first order [127-130].

In [130], the particular case in which the inflaton contributes significantly in generating
curvature perturbations, in a way that allows the curvaton scalar perturbations to be
blue tilted, is considered.

Considering the most standard scenario, let us examine the role of the curvaton: the
presence of a second field leads to the generation of isocurvature perturbations. After
the end of inflation, the curvaton decays and isocurvature perturbations lead to adia-
batic perturbations, which give rise to structure formation. Tensor modes are sourced
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by isocurvature perturbations that re-enter the horizon between the end of inflation and
the time of curvaton decay, and by curvature perturbations after the curvaton decay.
The latter lead to a GW spectral energy-density of the order of ΩGW � 10−20 for thsoe
modes that cross the horizon during the radiation-dominated era [127]. The most inter-
esting result is that isocurvature perturbations that enter the horizon between the end
of inflation and the epoch of curvaton decay source an amount of GW larger than that
due to curvature fluctuations [127]. We consider the first contribution.

The equation that governs second-order scalar-sourced GW in which the source term
is given by isocurvature perturbation reads

(106) h′′
ij + 2Hh′

ij −∇2hij = − 2
M2

pl

Π̂lm
ij ∂lδσ∂mδσ,

where δσ are isocurvature perturbations of the curvaton field. The solution of this equa-
tion is given by eq. (103), where the Green function relative to the radiation-dominated
era reads Gk(τ̃ , τ) = sin[k(τ−τ̃)]/k, and the integration over time starts form the horizon
entry of the perturbations. The form of the Green function tells us that the main contri-
bution to each wavelength of the GW spectrum blows up at horizon entry of the scale.
Then, we approximate the power spectrum to that computed at horizon entry. The source
term in the integrand is determined by the curvaton fluctuations δσ so that the source
form depends on the time-dependence of the curvaton fluctuations at horizon crossing,
more precisely on whether it is already oscillating around the minimum of its potential or
not. If the zero mode of the curvaton decay is already oscillating, curvaton perturbations
are found to scale as δσk(τ) ∼ a−3/2, while those modes which enter the horizon before
the zero mode of the curvaton starts oscillating, scale as δσk(τ) ∼ a−1 [127]. This leads
to two different power spectra depending on the range of scale considered.

One can see that ΩGW, defined in (77), which depends on δσ, can be written in terms
of, in principle measurable quantities (that is relative to the curvature perturbations
ζ and the non-Gaussianity parameter f local

NL ) and quantities relative to the curvaton
physics. Super-horizon isocurvature perturbations produced during a de Sitter stage are
found to be δσk = H∗/2π [126]. These perturbations are then converted into curvature
perturbation ζk after curvaton decay. In particular, they are linked by [127]

(107) ζk � rc

(
δσk

σ̄∗

)
,

where rc ≡ (ρσ/ρ)D is the ratio between the produced radiation energy-density and the
total energy-density at the epoch of the decay, and where σ̄∗ is the background value of
the curvaton during inflation. The connection between the isocurvature perturbation and
the adiabatic ones, that are at the origin of structures and CMB anisotropies, allows to
write the GW power spectra in terms of measurable quantities, that is to substitute the
dependence on the isocurvature perturbations with the curvature one. It is interesting
to note that rc can be connected with f local

NL , a parameter which quantifies the level of (a
certain type —called “local”— of) non-Gaussianity of primordial scalar perturbations,
which is strongly constrained by Planck measurements [71]. The isocurvature perturba-
tions power spectrum, that inevitably appear in the second-order GW power spectrum,
can be written in terms of the ζ power spectrum, f local

NL and other quantities related to
the curvaton physics, such as the curvaton decay rate Γ, the curvaton mass m and the
decay temperature TD.
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We now assume a scale-invariant curvature power spectrum and, according to the
predictions of the curvaton scenario, we take AS � 2.5 × 10−9. Defining kD as the scale
that enters the horizon at the time of the curvaton decay, the GW spectral energy-density
today for each of the introduced range, results [127]

(108) ΩGW � 10−15

(
f local
NL

102

)2 (
k

kD

)5 (
Γ
m

)7/2

,

for kD ≤ k ≤ (m/Γ)1/2kD, that is for modes which enter the horizon when the curvaton
zero mode is already oscillating, and

(109) ΩGW � 10−15

(
f local
NL

102

)2 (
Γ
m

)
,

for k ≥ (m/Γ)1/2kD. From these expression, in the perturbative regime Γ � m and
maximizing the current constraints on the non-Gaussianity [71], the present GW spectral
energy-density ΩGW can be of the order of ΩGW � 10−19. To get such an amplitude in
the range of frequencies where planned experiments of direct detection are expected to
be more sensitive, a temperature TD � 108 GeV is needed.

3.2.2. Second-order gravitational waves sourced by spectator scalar fields. Let us now
present another inflationary model in which second-order GW can play a significant role.
In this scenario a so-called spectator scalar field σ, different from the inflaton, is assumed
to be light and not affecting the dynamics of the background. It plays a crucial role in
possibly leading to a significant production of second-order GW [11,131,132]. Contrary
to the curvaton scenario, here curvature perturbations are generated also by the inflaton
field. The intriguing fact is that, for a speed of sound cS of the spectator field smaller
than unity, we have a more efficient second-order GW production, with respect to the
case of a spectator scalar field with cS = 1. This can be easily obtained, for example,
with a general Lagrangian P (X,σ), with X the canonical kinetic term, so that the speed
of sound reads cS = ∂XP/(∂XP + 2X∂2

XXP ) (other examples are reported in [11]).
Consider the action for the scalar perturbations of the spectator field [11]

(110) S
(2)
δσ =

∫
dτ d3x a4

{
1

2a2

[
δσ′2 − c2

S (∇δσ)2
]
− V(2)

}
,

where V(2) is the second-order potential. In general, the presence of the spectator field
leads to the production of scalar perturbations, besides those due to the inflaton, whose
amplitude is determined by cS. As all scalar perturbations, also those of the spectator
field represent a source for second-order GW. Considering the role of σ fluctuations, the
equation of motion for tensor modes reads

(111) h′′
ij + 2Hh′

ij −∇2hij = −2
c2
S

M2
pl

Π̂lm
ij ∂lδσ∂mδσ.

Notice that a new factor appears in the source: the sound speed of the scalar field. Pro-
ceeding as in sect. 3.1.2, one gets the solution (104). Then, numerically integrating over
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the inflationary period, the second-order GW power spectrum sourced by the spectator
field on super-horizon scales is found to be [11]:

(112) PT = c
H4

c
18/5
S M4

pl

,

where c is a numerical factor c � 3 (in [131] and [132] an analysis is made with two
different covariant formulations of (110), providing the results for the related GW power
spectrum; the significant, and not obvious, point is that, in each case, the amplitude of
the sourced GW is found to be inversely proportional to a power of cS). In summary,
the total scalar and tensor power spectra are respectively a sum of two terms, one due
to vacuum fluctuations and the other due to the presence of the spectator field. There-
fore the overall tensor-to-scalar ratio results to be sensitive to the sound speed of the
spectator field. Clearly the dependence of the tensor-to-scalar ratio r on cS, introduces a
degeneracy between different parameters of the model. As a consequence, in particular,
the constraints on r no longer correspond directly to an upper bound on the energy scale
of inflation. On the other hand, we have to take into account that CMB data provide a
measurement of the amplitude of the scalar perturbations on CMB scales that has to be
satisfied. This constraint restricts the admitted range of values for the sound speed of the
spectator field, which, at the end, provides a limit on the extra GW production [131,132].
In particular, assuming that the spectator field does not significantly source curvature
perturbations, leads to a strict upper bound on the amplitude of the GW sourced by the
spectator field, on CMB scales, that results in a negligible contribution. On the other
hand, admitting a significant role of the curvature perturbations sourced by the spectator
field, and considering the amplitude of scalar perturbations obtained from CMB data,
the value of the tensor-to-scalar ratio can be larger than in the previous case. Notice that,
the presence of the sourced contribution, which includes a dependence on cS, introduces
a degeneracy between r and the energy scale of inflation.

In the case of a spectator field with a tiny mass m and evolving in a quasi-de Sitter
background, the spectral tilt of the power spectrum for δσ does not vanish (similarly to
what happens for ordinary scalar perturbations). This affects the generated GW power
spectrum, providing a tensor tilt [11]

(113) nT � 2
(

2m2

3H2
− 2ε

)
− 18

5
ċS

HcS
,

considering also that the sound speed can slowly vary during the inflationary period.
Equation (113) shows that the second-order tensor power spectrum can be blue, contrary
to the first-order GW produced by vacuum oscillations. Notice that, since ċs/Hcs appears
in the scalar spectral index of the power spectrum due to the spectator field too, in order
to avoid strict bounds on such quantity coming from CMB data, curvature perturbations
due to the spectator field are required to be negligible.

3.3. Particle production as a source of gravitational waves. – Several inflationary
models involving the production of quanta of extra fields during inflation, have been pro-
posed. If the inflaton is minimally, or non-minimally, coupled to another scalar or gauge
field, its energy can move from its sector to the others and give rise to the production
of extra quanta [133]. The new particles provide a further contribution to the stress-
energy tensor with a non vanishing anisotropic component, giving rise to a source of
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GW [134,7,135-138]. Different inflationary models have been built in this framework(7),
in particular scenarios where the extra quanta production occurs during the slow-roll of
the inflaton field, and others where the production occurs during the inflaton oscillations
at the end of the accelerated expansion phase. In this section we examine the first case,
next, in sect. 4, we will take into account the second one.

Among these models, the most interesting ones are those presenting a coupling be-
tween the inflaton and a gauge field Aμ [140]: a band of modes of the produced field
is subjected to an exponential growth which generates a large anisotropic stress. This
fact leads to a large amount of sourced GW, but, at the same time, the presence of
the new particles sources the production of curvature perturbations, for which we have
strict constraints from CMB observations. Current data concerning scalar perturbations
restrict hardly the parameter space of this kind of models but allows also for an amount
of GW in the window of sensitivity of some planned experiments.

The first models investigated in this framework present a non-minimal coupling be-
tween the inflaton and the extra field [125, 136, 134, 7, 135]. In particular the coupling
with a massive scalar field and a gauge field has been studied. In the first case a burst of
particle production happens while in the latter a continuous production develops during
the inflationary stage. In both scenarios the coupling between the two fields leads to
narrow the regions compatible with current observational constraints related to CMB
scales. Considering this fact, the case where the coupling which leads to the production
of the gauge quanta, is moved from the inflaton to another auxiliary field have been
investigated [8, 141]. In the latter case, the particle production is described by a hidden
sector constituted of a pseudo-scalar field and the gauge field, minimally coupled to the
inflaton, so that the production of GW can be efficient, preserving at the same time
current bounds on the associated features related to scalar quantities.

3.3.1. Inflaton coupled to a scalar field. Consider a system described by the following
Lagrangian [125]:

(114) L = −1
2
∂μϕ∂μϕ − V (ϕ) − 1

2
∂μχ∂μχ − g2

2
(ϕ − ϕ0)

2
χ2,

where ϕ is the inflaton, V (ϕ) is the potential that drives the dynamics of the inflationary
period, χ is an extra scalar field, and, for simplicity, the self-interaction of the field χ is
neglected. The mass of the secondary field, mχ, depends on time, being related to the
value of the inflaton field, which is rolling down its potential. When the inflaton ϕ reaches
the value ϕ0, mχ vanishes and the production of χ quanta becomes energetically favored.
During the period of time around which the inflaton is equal to ϕ0, a non-perturbative
production of such particles takes place. After this interval of time the Universe is filled
with χ particles besides the inflaton ones. The presence of the χ quanta gives rise to
a contribution to the stress-energy tensor of the system, more precisely its spatial part
reads Tab = ∂aχ∂bχ + δab(. . .), where the factor proportional to the Kronecker delta will
be projected away by Π̂lm

ij .

(7) For a recent work about analogous models in the framework of bouncing cosmologies,
see [139].
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We promote the scalar field χ(k, τ) to an operator χ̂(k, τ), and we move to Fourier
space

(115) χ̂ (x, τ) =
1

a(τ)

∫
d3k

(2π)3/2
eik·xχ̂ (k, τ) .

Substituting this expression into the stress-energy tensor and then in eq. (103), the
correlator of the sourced GW reads [125]

〈hij (k, τ) hij(k′, τ)〉 =
1

2π3M4
pl

∫
dτ̃1

a(τ̃1)2
Gk (τ, τ̃1)(116)

×
∫

dτ̃2

a(τ̃2)2
Gk′ (τ, τ̃2) Π ab

ij (k)Π cd
ij (k′)

×
∫

d3pd3p′pa (kb − pb) p′c (k′
d − p′

d)

×〈χ̂ (p, τ̃1) χ̂ (k − p, τ̃1) χ̂ (p′, τ̃2) χ̂ (k′ − p′, τ̃2)〉 .

Exploiting Wick’s theorem and neglecting the disconnected term, the GW power
spectrum results a function of the two-point correlator of the scalar operators
〈χ̂(p, τ̃1)χ̂(q, τ̃2)〉. The latter quantity is obtained solving the equation of motion for
the scalar field χ coming from the Lagrangian (114). Decomposing χ̂(k, τ) in terms of
creation and annihilation operators, as

(117) χ̂ (k, τ) = χ (k, τ) âk + χ∗ (−k, τ) â†
−k,

from the Lagrangian (114), the equation of motion for χ reads

(118) χ′′ (k, τ) + ω (k, τ)2 χ (k, τ) = 0,

with

(119) ω (k, τ)2 ≡ k2 + g2a(τ)2 [ϕ(τ) − ϕ0]
2 − a′′(τ)

a(τ)
.

This expression can be approximated in different ways depending on the behavior of the
system. In particular, three main periods can be identified:

– At the beginning of the inflationary stage, the Universe does not contain quanta of
the χ field, and then the source term of tensor modes equation vanishes.

– When the inflaton approaches ϕ0, and then mχ(t) goes to zero, the production of
the χ quanta starts and for a period Δtnad the evolution of mχ is non-adiabatic,
that is ṁχ ≥ m2

χ. In order to get efficient production Δtnad has to be shorter than
the Hubble time. During a de Sitter stage, the evolution equation of the inflaton is
approximated by a linear relation ϕ(t) = ϕ0+ϕ̇0t. Therefore, from the condition of
non-adiabaticity and the expression of mχ, one gets Δtnad � (gϕ̇0)−1/2, and then
the efficiency request, reads g � H2/|ϕ̇0|. At the same time this condition allows
us to neglect the expansion of the Universe in that interval of time.
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– When the inflaton leaves the ϕ0 value, mχ comes back to evolve adiabatically and
the production of χ quanta stops, but the Universe is left with a significant content
of χ particles which works as a source for GW.

Let us start by considering the latter stage. In order to obtain the power spectrum of the
sourced GW, one needs to find the amount of χ quanta left by the non-adiabatic stage.
Under the condition of non-adiabaticity and the approximation of linear evolution of the
inflaton, eq. (118) takes the form

(120) χ̈ +
(
k2H2τ2

0 + g2ϕ̇2
0t

2
)
χ = 0,

where ϕ(t = 0) = ϕ(τ = τ0) = ϕ0. From this equation, following the procedure of [142],
the amount of χ quanta produced during the non-adiabatic period can be found. During
the adiabatic stage, the expression of ω can be simplified as ω � |g[ϕ(τ)−ϕ0]/(Hτ)| [125],
where ϕ(τ) − ϕ0 � −(ϕ̇0/H) ln(τ/τ0). For τ → 0, that is at the end of inflation, the
correlator (116) results [125] in

〈hij(k)hij(k′)〉 =(121)

δ(3)(k + k′)
2π5k6|τ0|3

H4

Mpl

(
1 +

1
4
√

2

)
×

(
gϕ̇0

H2

)3/2

F|Δτnad/τ0|(k|τ0|),

where

(122) Fε(y) ≡
∣∣∣∣∫ 1−ε

0

x
(sin xy − xy cos xy)

lnx
dx

∣∣∣∣2 ε→0� [(y cos y − sin y) ln ε]2 .

To get the total inflationary GW power spectrum, this correlator has to be added to the
contribution from the vacuum oscillations of the metric tensor. Then we have

Ph(k) � 2H2

π2M2
pl

[
1 + 4.8 × 10−4 (kτ0 cos kτ0 sin kτ0)

2

|kτ0|3
(123)

× H2

M2
pl

(
gϕ̇0

H2

)3/2

ln2

(√
gϕ̇0

H

)]
.

The effect due to the particle production is represented by a scale-dependent contribution
added to the usual scale-invariant power spectrum. Observing that ϕ̇0 =

√
2εH Mpl and

considering reasonable values of ε, one can find that the correction to the standard
tensor power spectrum is at most of the order of 10−2

√
H/Mpl, which is several orders

of magnitude smaller than unity. We thus conclude that the presence of a scalar particle
gas during a de Sitter stage, does not give rise to a significant amount of GW able to
produce observable features in the power spectrum.

Let us now consider the non-adiabatic period, when χ quanta are rapidly produced.
Solving eq. (120), one can show that the contribution to the tensor power spectrum due
to this stage is of the same order of magnitude of that of the adiabatic period, modulo a
logarithmic term [125]. Therefore, again this term is negligible with respect to the usual
one. It has been noted that also if several bursts of scalar particles production develop
during the rolling down of the inflaton (trapped inflation; see [143] for a recent analysis
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of this scenario), the amount of generated GW is still several orders of magnitude smaller
than the contribution from vacuum oscillations [125].

In summary, the production of an extra scalar field coupled to the inflaton as described
by eq. (114), does not lead to a significant contribution to the GW power spectrum.

3.3.2. Axion inflation: pseudoscalar inflaton coupled to a gauge field. Consider a system
described by the Lagrangian

(124) L = −1
2
∂μϕ∂μϕ − V (ϕ) − 1

4
FμνFμν − ϕ

4f
FμνF̃μν ,

where the potential V (ϕ) drives the slow-roll evolution, f is the measure of the coupling
between the pseudo-scalar inflaton ϕ and the gauge field Aμ, Fμν = ∂μAν − ∂νAμ is the
field strength associated to the gauge field and F̃μν = τμνβFαβ/(2

√−g) its dual.
The coupling between the two fields leads to two main phenomena: the production of

GW (and of scalar perturbations) which we are interested in, but also the back-reaction
on the background dynamics. In fact the production of the gauge quanta involves transfer
of energy form the inflaton sector to the gauge sector, so that there is a new form of energy
that affects the background dynamics (see [144, 136, 135, 145, 137, 146]). Practically this
translates into the presence of an additional friction term in the equation of motion of
the scalar field, which slows down inflation.

As in the previous case the equation of motion for tensor modes is of the form (102),
with the solution (103). Working in the Coulomb gauge, Aμ can be described by a
vector potential A(τ,x), defined by a2B = ∇ × A, a2E = −A′, where E and B have
the usual relation with Fμν , so that the spatial stress-energy takes the form Tab =
−a2(EaEb + BaBb) + (. . .)δab.

We need to solve the equation of motion for the gauge field in order to insert the
expression in the stress-energy tensor [134, 135]. The equations of motion for the vector
potential introduced before, read

(125)
(

∂2

∂τ2
−∇2 − ϕ′

f
∇×

)
A = 0, ∇ · A = 0,

where ϕ spatial gradients have been neglected. We promote A(τ,x) to an operator
Â(τ,x) and decompose its modes in terms of creation and annihilation operators

Âi (x, τ) =
∫

d3k
(2π)2/3

eik·xÂi (τ,k)(126)

=
∑
s=±

∫
dk

(2π)3/2

[
εi
s(k)As (τ,k) âk

s eik·x + h.c.
]
,

where εi
s(k) are such that εi

±εi
∓ = 1 and εi

±εi
± = 0. Assuming a de Sitter background,

and approximating ϕ′/a =
√

2εHMpl � const, the equations of motion for the amplitude
A± read

(127)
dA±(k, τ)

dτ2
+

[
k2 ± 2k

ξ

τ

]
A± (τ, k) = 0, where ξ ≡ ϕ̇

2fH
=

√
ε

2
Mpl

f
,
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expresses the strength of the coupling between the gauge field and the inflaton. Equa-
tion (127) shows a different behavior for the two helicity states of the gauge field. De-
pending on the sign of ξ, one polarization mode is subjected to an instability, while the
other is approximately equal to zero. This fact is a direct consequence of the parity vio-
lation of the slowly rolling inflaton, and will generate a parity violating power spectrum
of GW. Assuming, for example, ξ > 0, the solution of eq. (127) for (8ξ)−1 � |kτ | � 2ξ
can be approximated by

(128) A+(k, τ) � 1√
2k

(
k

2ζaH

)1/4

eπξ−2
√

2ζk/aH ,

and at the same time we can put A− � 0, neglecting such modes.
In order to reveal the different behavior of the two helicity state of the GW we split

the tensor modes in the two contribution. Going to the momentum space and projecting
hij on the two helicity modes, GW can be described by the functions hs(k, τ):

(129) hij(k) =
√

2
∑
s=±

εi
s(k)εj

s(k)hs(k),

where hs(k, τ) are defined by h±(k) = Π̂ij
±(k)hij(k) with the polarization tensor Π̂ij

±(k) =
εi
∓(k)εj

∓(k)/
√

2. Promoting h± to an operator ĥ±, its expression can be explained in
terms of the Green function in an analogous way as (104) [134,135]:

ĥ±(k) =(130)

−2H2

M2
pl

∫
dτ̃ Gk (τ, τ̃) τ̃2

∫
d3q

(2π)2/3
Π̂lm

± (k)

×
[
Â′

l (q, τ̃) Â′
m (k − q, τ̃) − εlabqaÂb (q, τ̃) εmcd (kc − qc) Âd (k − q, τ̃)

]
,

where the Green function is given by eq. (105).
Putting (128) into the last expression and using Wick’s theorem, the GW power

spectrum can be written in terms of the Green’s functions and the amplitude of the
gauge field, in particular of the parameter ξ. For ξ > 1 the correlator results

〈hs(k)hs(k′)〉 =(131)

H4ξ

4π3M4
pl

e4πξδ (k + k′)
∫

dτ̃1dτ̃2 |τ̃1|3/2 |τ̃2|3/2
Gk (τ, τ̃1) Gk (τ, τ̃2)

×
∫

d3q
∣∣εi

−s(k)εi
+ (q)

∣∣2 ∣∣∣εj
−s(k)εj

+ (k − q)
∣∣∣2

×
√
|k − q|√qe−2

√
2ζ

(√
|τ̃1| +

√
|τ̃2|

)(√
q +

√
|k − q|

)
.

The two terms in the second line show the different behavior of the two polarization
states. In the limit kτ → 0 the above integrals are computed numerically, but can be
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approximated by an analytical expression, with accuracy improving with increasing ξ [7]:

〈h+(k)h+(k′)〉 � 8.6 × 10−7 H4

M4
pl

e4πξ

ξ6

δ(3) (k + k′)
k3

,(132)

〈h−(k)h−(k′)〉 � 1.8 × 10−9 H4

M4
pl

e4πξ

ξ6

δ(3) (k + k′)
k3

.(133)

The numerical factor reveals a difference of magnitude of about 3 between the two scale-
invariant correlators. Moving to the power spectra and adding the contribution of GW
coming from vacuum fluctuations, we have, respectively

P+
T =

H2

π2M2
pl

(
1 + 8.6 × 10−7 H2

M2
pl

e4πξ

ξ6

)
,(134)

P−
T =

H2

π2M2
pl

(
1 + 1.8 × 10−9 H2

M2
pl

e4πξ

ξ6

)
.(135)

The parity violation can be quantified by the chirality parameter [147]

(136) Δχ =
P+

T − P−
T

P+
T + P−

T

,

which in our case reads

(137) Δχ =
4.3 × 10−7 e4πξ

ξ6
H2

M2
pl

1 + 4.3 × 10−7 e4πξ

ξ6
H2

M2
pl

.

For small ξ, when vacuum oscillations dominate the tensor power spectrum, Δχ → 0,
while at large ξ, when sourced GW constitute the main contribution, Δχ → 1. Thus, the
departure of Δχ from zero represents an interesting feature, being a signature of a parity
violation mechanism, which is not expected for GW from vacuum fluctuations. In this
direction cross-correlations could carry significant information [148,149,135,141,150,151].

Constraints from current data. Since the gauge field is coupled to the inflaton, its in-
verse decay leads to the production of scalar perturbations besides those coming form
the vacuum oscillations of ϕ. More precisely, the presence of the gauge field fluctuations
gives rise to a source in the equation of motion of the inflaton perturbations. The gauge-
invariant scalar perturbation ζ̂ results proportional to the factor e2πξ/ξ3 [141], so that
a weaker coupling leads to a smaller amplitude of the sourced scalar perturbations (this
is interesting only if the inflaton field is the main source of the curvature fluctuations).
The scalar perturbations power spectrum is well constrained by measurements of CMB
anisotropies, concerning their amplitude, spectral index and level of non-Gaussianity.
The main point here is that, sourced curvature perturbations are expected to be highly
non-Gaussian [134, 7, 135, 137]. For this reason, a strict constraint for this kind of in-
flationary model, is provided by the upper bounds on non-Gaussianity. For weak gauge
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regime, the expected non-Gaussianity level is predicted to be [134,7]

(138) f equil
NL � 8.9 × 104 H6

M6
pl

ε3e6πξ

ξ9
,

for an equilateral configuration, which is that expected to present the maximal amplitude.
Considering the constraints on fNL obtained in the Planck 2015 release [71], results in
ξ < 2.5. Imposing this limit, the correction to the power spectrum due to the sourced GW
results negligible on cosmological scales compared to planned experimental sensitivity.

The possibility of a blue spectrum. Actually, constraints coming from CMB measurements
are limited to a range of scales. From that bounds, in principle, we cannot extract limits
on other scales. This is an interesting fact which leaves open the possibility of observing
these GW by interferometer experiments. In fact the model parameter ξ is actually time
dependent, more precisely it usually grows during the inflationary period in according
to the inflationary potential [125, 146]. Larger values of such a parameter, means larger
amplitudes of the sourced GW, correspondent to a blue power spectrum. Limits coming
from the CMB put constraints on the value of ξ only at the time of exit the horizon of
CMB scales, this means that we could have a higher ξ value corresponding to later times,
that is on scales interesting by interferometer experiments. The limits found above then
applies only to ξ evaluated on CMB scales. Moreover, when the gauge field becomes
non-negligible with respect to the background evolution, the bound (138) due to non-
Gaussianity of scalar perturbation cannot be applied yet, and then ξ is admitted to grow
rapidly [136, 137, 146]. The time dependence of ξ is obtained from the potential shape
of the inflaton field. Fixing the range of scales constrained by CMB experiments, and
choosing one of the allowed values of ξ corresponding to a scale in the explored range, one
can find the evolution of the parameter ξ and then the GW power spectrum corresponding
to the chosen value of ξ and to the inflationary potential. Based on these considerations,
for chaotic and Starobinsky inflationary potentials, a large amount of primordial GW can
be obtained, in principle detectable by future experiments [146] such as the Evolved Laser
Interferometer Space Antenna (eLISA) [27, 28] and the Advanced-Laser Interferometer
Gravitational-wave Observatory (aLIGO)-Advanced-Virgo (adVirgo) [26,152] network.

Alternative scenarios. In order to have positive prospects for GW detection, in particular
for CMB experiments, the model (124) seems to become interesting also admitting some
variations. In this direction, two modifications appear significant [7]: the introduction of
a second scalar field with the role of a curvaton, or of a great number of coupled gauge
fields, which fits in the framework of string theory.

Let us briefly consider the curvaton case. The presence of such a scalar field liberates
the inflaton from the task of generating all the amount of the observed scalar perturba-
tions. This fact also liberates the slow-roll parameter ε to be so small as in the standard
inflationary models. In this case f equil

NL continues to depend on the Hubble parameter,
ε and on ξ, but from the larger freedom in ε we gain the possibility to consider higher
values of ξ, on CMB scales, with respect to that of the previous model, so that for ex-
ample a fully chiral system with r � 0.009 is admitted by current constraints [71]. It is
found that in this case the parity violation would be detected at 95% confidence level by
a cosmic-variance-limited CMB experiment [153].

Another interesting modification seems to be the following [8]: the strict constraints
on our model parameters are due to the presence of sourced scalar perturbations, and we
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have seen that current constraints on the non-Gaussianity of scalar perturbations lead
to an upper bound for ξ, and then from eq. (134), to an upper bound on the generated
GW on CMB scales. Therefore, to get more freedom in the model parameters, the ratio
between the sourced scalar and tensor modes has to be minimized. A way to relax this
bound appeared to be the introduction of a pseudo-scalar field, coupled to the gauge
field through α/f , and both minimally coupled to the inflaton [8].

However, in general it is found that, for these kinds of scenarios, the tensor-to-scalar
ratio between sourced perturbations is of the order ∼ ε2, so that usually it is not possible
to reach a large value of r thanks to these kind of mechanisms, as noted in [8] and then
in [154,155].

3.3.3. Scalar inflaton and pseudoscalar field coupled to a gauge field. Considering the
mentioned idea, a system described by the following Lagrangian [8] was considered:

(139) L =
1
2
∂μϕ∂μϕ − V (ϕ) − 1

2
∂μψ∂μψ − U(ψ) − 1

4
FμνFμν − ψ

4f
FμνF̃μν ,

with ϕ the inflaton field, and ψ a pseudo-scalar; see also [156, 138]. The gauge field
is now minimally coupled to the main source of curvature perturbations, the inflaton.
The calculations needed to get the tensor power spectrum sourced by the gauge field are
exactly the same as for eq. (124).

Contrary to the first intuition, the curvature power spectrum sourced by the perturba-
tions of the scalar field δψ is found to be the same as the previous-analyzed model [155].
Also in the case in which the decaying of the pseudo-scalar field is considered [156],
the constraints coming from the non-Gaussianity of the scalar sector limits the GW
production. In particular, in the latter scenario, the amplitude of the sourced scalar per-
turbations actually results to be proportional to the number of e-foldings during which ψ
is rolling. This fact allows to obtain a rather large tensor-to-scalar ratio. However, cur-
vature perturbations due to the coupling with the pseudo-scalar field, are sourced mainly
in correspondence of those modes that cross the horizon when ψ̇ �= 0 [138]. Therefore,
choosing a suitable potential shape for the pseudo-scalar field, it is possible to obtain a
significant GW production on certain scales, satisfying at the same time the constraints
coming from CMB data. In fact, it has to be noted that in this case the primordial
non-Gaussianity signal will be mainly non-vanishing up to multipoles � � 100. This
would relax the bounds on the non-Gaussianity level since they would be obtained from
the CMB temperature anisotropies only up to those scales (see [138], for the case of a
specific potential and the calculations of CMB signatures). Then, for particular choices
of the pseudo-scalar potential, the sourced GW power spectrum is expected to be widely
scale-dependent. Clearly also the current bound on the tensor-to-scalar ratio has to be
considered.

Chirality. An interesting aspect is the capability of planned experiments to capture the
parity violation of CMB power spectra. In refs. [153,141,138,157] were the prospects for
a detection of the parity violation for this model in the CMB power spectra. Varying the
value of ξ and ε, and considering the current upper bound on the r value, it is found that
the detection of Δχ = 1 at 1σ is possible, in principle, by experiments such as Spider [17]
and CMBpol [158]. For the 1σ contours in the r-Δχ plane, see plot 4 of [8]. For further
details and references see sect. 10.1.3. The capability of a detection of the chirality by
laser interferometer experiments is discussed in [159-161]. In particular, in [161], the
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significant advantage, in this direction, of collecting data by a network composed of
more than two observatories is shown. In this kind of scenario also the contribution to
non-Gaussianity of CMB power spectra due to tensor modes is a significant aspect to be
taken into account too [141,138,157].

4. – Gravitational-wave production during reheating after inflation

As seen in sect. 3, in the presence of large, time-dependent inhomogeneities in the
distribution of the energy-density of the Universe, GW are produced in a classical way.
Such a situation could occur also during the reheating stage, where a source term in the
GW equation of motion can be provided by the rapid decay of the inflaton field.

The production of gravitational radiation during reheating was first pointed out by
Khlebnikov and Tkachev in [12]. Since such a stage occurs in most inflationary models,
the GW signal generated at that time in principle represents a source of information on
the inflationary physics and the subsequent reheating period. GW remain decoupled since
the moment of their production and therefore the features of their spectrum represent
a very interesting probe of the physics of the reheating period, such as the coupling
between the inflaton and other fields; see [162] and references therein.

At the end of inflation the field that has driven the accelerated expansion starts oscil-
lating around the minimum of its potential. In such a way it produces elementary par-
ticles which interact to each other, eventually leading to a state of thermal equilibrium.
The first stage of this process, in which the inflaton field oscillates was initially described
by perturbation theory techniques, considering the oscillating field as a decaying collec-
tion of particles [40, 163]. However, if oscillations are large and coherent they lead to a
non-perturbative process, in which the inflaton energy is explosively moved to a coupled-
energy sector. This rapid mechanism is called parametric resonance [164, 55, 142]. In
this case a perturbative description does not work, being the process violent and rapidly
efficient. To distinguish such a rapid stage from the whole mechanism, people call it
preheating. After such an explosive stage the produced particles are not in thermal equi-
librium, contrary to the case of the perturbative mechanism; so, another phase is needed
to get thermalized radiation. The preheating is the period we are mainly interest in here,
being a scenario of gravitational-radiation production.

The most studied inflationary scenarios in which GW production during the following
preheating phase has been investigated, are chaotic inflation [39, 165, 166], and hybrid
inflation [167]. In the latter model preheating develops in a slightly different way com-
pared to the first, and the mechanism is called tachyonic preheating [167-170]. In both
cases the process of GW production is substantially the same.

4.1. Preheating mechanisms .

4.1.1. Preheating with parametric resonance. Parametric resonance typically happens
when the field that drives inflation is coupled to another field whose mass is negligible
during the accelerated expansion [12,164,55,142,171].

Consider a system in which the inflaton ϕ is coupled to another light scalar field χ,
by the following Lagrangian:

(140) L =
1
2
∂μϕ∂μϕ +

1
2
∂μχ∂μχ − V (ϕ, χ) ,
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with

(141) V (ϕ, χ) = V (ϕ) +
1
2
g2ϕ2χ2 − 1

2
m2

χχ2,

with g the coupling between the two scalar fields. During inflation the secondary field is
supposed to be light, so that the inflationary dynamics is governed by ϕ. Following [171],
in the analysis we will neglect the Universe expansion and the mass of the secondary field.
Ignoring the second field, the equation of motion for the background part of the inflaton is
eq. (6), where, contrary to what happens during inflation, the field cannot be considered
homogeneous and the kinetic energy cannot be neglected. The dynamics is determined
by the potential of the inflaton field. Consider the case in which the inflaton potential
reads

(142) V (ϕ) =
1
2
m2

ϕϕ2.

As mentioned before, eq. (6) approximately reduces to a damped harmonic oscillator,
solved by ϕ(t) = Φ(t) sin(mϕt), with Φ the time-dependent amplitude, which varies
slowly over a single cycle [171].

From the action (140), the equation of motion for the secondary field results

(143) χ̈ + 3Hχ̇ − 1
a2

∇2χ + g2ϕ2χ = 0,

so that moving to Fourier space and changing variables to [171]

(144) q =
g2Φ2

4m2
ϕ

, Ak =
k2

m2
ϕ

+
g2Φ2

2m2
ϕ

=
k2

m2
ϕ

+ 2q , z = mϕt,

the equation for a single mode χk becomes the Mathieu equation

(145)
d2χk

dz2
+ [Ak − 2q cos(2z)] χk = 0.

The solutions of the Mathieu equation are given by the following combination:

(146) χk(z) = f+(z)eμkz + f−(z)e−μkz,

where f± are periodic functions and μk is a complex number, which depends on both
the wavenumber and the parameters of the system, included in Ak and q. If μk has an
imaginary part, the solution χk presents an exponential growth. This is the case which
we are interested in, for the production of gravitational radiation to take place. For
each mode k one can calculate Ak and q and then establish the bands corresponding
to stable modes and those for which parametric resonance occurs. The key parameter
in distinguishing the two behaviors is q. In a rough approximation, broad bands of
exponentially growing modes occur for q > 1. The explosion of the amplitude of those
modes can be interpreted as a rapid particle production (at least for bosonic species),
being the number density of particles per mode proportional to the mode energy.
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Preheating ends when the exponential grow becomes energetically disadvantageous,
in particular when the energy-density of the created particles becomes comparable with
the energy-density of the oscillating field. This could happen after a few oscillations of
the inflaton field. The energy distribution resulting from the parametric resonance is
clearly highly non-thermal; the pumped modes then dissipate their energy by interaction
with other modes, leading to the thermalization of the Universe.

If instead the inflationary potential is given by

(147) V (ϕ) =
λc

4
ϕ4,

with ϕ massless, the inflaton at the end of the accelerated expansion does not undergo
sinusoidal oscillations, but results proportional to the elliptic cosine [172, 173]. The
equation of motion for χk, at first order, takes the form of a Mathieu equation also in
this scenario. The solutions are of the same kind as the previous case, with oscillatory
and exponential behaviors depending on k. The band of k which grow exponentially,
depends on the parameter q = g2/λc. Then the system evolves as before.

For most inflationary models with a secondary field χ the equation of motion for χk

can be rewritten as a Mathieu equation, so that the mode band presents an exponential
growth. However, the details of the excitation depend on the inflaton potential.

Notice that above modeling was performed at the linear level, neglecting the Universe
expansion and the possible non-zero mass of the second field. Furthermore, we have
neglected the effect of the back-reaction of the growing χ modes. If these features are
restored, the situation becomes extremely complicated [172], then the only way to study
the phenomenon involves numerical simulations.

Bubbly stage. Soon after the production of the bumped modes a bubbly stage takes
place [174]; see also [175]. When χ oscillations become non-linear, inflaton modes are
excited too due to the back-reaction of the secondary field, and ϕ oscillations start
growing very fast with different and changing frequencies. The profile of ϕ(x, t) becomes a
superposition of a still oscillating homogeneous part plus inhomogeneities induced by the
coupling with growing modes of the secondary field, with peaks in correspondence with
those of the χ field. These high peaks are called bubbles. When the height of these peaks
becomes comparable with the background value of the field, the bubbles begin to spread,
expanding and colliding with each other. The collisions among such structures lead to a
turbulent phase which eventually brings the system to homogeneization and local thermal
equilibrium. In the short stage of bubble formation and collisions, the main contribution
to the production of GW takes place due to the growing inhomogeneities [174].

In summary preheating after chaotic inflation can be described by four phases [175]:
a linear preheating stage with excitations of χ modes, a non-linear bubbly stage, a period
of turbulence and a final stage where thermal equilibrium is restored.

4.1.2. Tachyonic preheating. The main condition for a tachyonic preheating [176, 169,
177,170] to take place is a field φ descending from a maximum of its potential V (φ) and
then oscillating around the minimum. In fact, around the maximum of the potential
there could be a region where the quadratic mass of the field becomes negative and the
field fluctuations grow exponentially.

In this kind of scenario the equation of motion for such field modes assumes the form

(148) φ̈k(t) + E2
k(t)φk(t) = 0 with E2

k(t) ≡ k2 + m2(t),
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where m is the mass of the field, that is m2(t) = Vφφ. When φ is around the maximum of
the potential, the mass squared becomes negative and E2

k could pass through zero. This
non-adiabatic variation leads to an exponential growth of the field fluctuations. The
φ value in correspondence to the inversion of the potential (that is when the squared
mass becomes zero) is called critical point and represents the moment when preheating
switches off. The field, after rolling down from the maximum, reaches the minimum
and then starts oscillating. The whole process of preheating ends when the oscillations
around the minimum become too small for the field to get around the maximum.

This mechanism is what could happen after Hybrid inflation [167]. From our point of
view, the advantage of these models consists in the fact that they can occur for a large
range of energy scales, from the GUT scale to the GeV scales, contrary to large-field
models. Hybrid inflation in fact does not require small couplings to explain the observed
CMB anisotropies. We will see that this leads to the possibility of production of GW at
frequencies and amplitudes more accessible for planned experimental capabilities.

In this case the field that descends from the maximum and starts oscillating is a
secondary field called waterfall field σ. In these kind of scenario the preheating process
is even more violent than in the case of parametric resonance that occurs after chaotic
inflation. Because of the spinodal instability, some σ fluctuations are exponentially am-
plified leading to a spatial distribution of the field characterized by high peaks, the
bubbles [178, 179]. Then, the field can be considered as a collection of classical waves
with a fixed dispersion. When the non-linear regime is reached, collisions and scatterings
between bubbles start and the system is driven into a turbulent stage after which local
thermal equilibrium is achieved [176].

Consider now models described by the following potential:

(149) V (ϕ, σ) =
1
4
λt

(
σ2 − v2

)2
+

1
2
g2ϕ2σ2 + V (ϕ),

where |σ|2 = σ2
1 + σ2

2 with σ1 and σ2 two real scalar fields, is the waterfall field, and
the inflaton ϕ a real field too. The vacuum of the system corresponds to σ = ±v and
ϕ = 0. The critical point at which the curvature changes is given by ϕc ≡ v

√
λt/g. For

ϕ > ϕc the inflaton decreases, slowing down in the valley where σ = 0 and the masses are
positive. Inflation ends when ϕ reaches the ϕc value or until the slow-roll conditions do
not break up if this happens before. When ϕc is reached, the curvature of the effective
potential with respect to σ becomes negative, σ acquires a tachyonic mass and the fields
roll rapidly towards the true minimum, at ϕ = 0, σ = ±v, see fig. 4.

When σ is around the maximum the homogeneous field energy rapidly decays due
to the exponential growth of the field fluctuations. As in the previous model, we can
identify a precise sequence of events [180]: the exponential growth of σ with spinodal
instability, the nucleation and collision of bubble-like structures associated with the peaks
of a Gaussian random field, a turbulent regime and the final thermalization.

As we already mentioned, the bubble stage is not a homogeneous process, during
this phase σ spherically symmetric bubbles arise and the collision among them leads
to short-wavelength inhomogeneities which constitute the source for GW [180]. The
amplitude of GW produced after hybrid inflation was first estimated by [181], employing
the formalism of parametric resonance. Then, in [178, 179] a more accurate calculations
have been performed.
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Fig. 4. – Hybrid inflation potential. The field rolls down the potential up to the critical point
ϕc, and then reaches the true minimum of the potential ϕ = 0, σ = v.

4.2. Gravitational-wave production. – We consider here the most investigated models
in the literature, namely preheating after chaotic and hybrid inflation.

4.2.1. Mechanism of production. The amplification of a band of field modes makes the
Universe inhomogeneous. In particular, highly pumped modes lead to large and time-
dependent inhomogeneities in the energy-density of the Universe, generating a non-trivial
quadrupole moment. On the other hand also asymmetric collisions of the bubbles lead to
quadrupolar inhomogeneities. In both situations, when the quadrupolar moment changes
significantly fast, GW are produced. The GW production has been analyzed in several
works [174,171,182,175,178,180,172,179,176,183].

Notice the difference between the production mechanism during inflation and this
one: here the production is classical, GW are sourced by inhomogeneities which cannot
be neglected and leads to a source term in the GW equation of motion. On the contrary,
during inflation the production occurs due to a quantum mechanism, the inhomogeneities
of the fields correspond to small perturbations which can be neglected and lead to a
vanishing source term in the equation of motion, then quantum fluctuations are amplified
and stretched giving rise to super-horizon tensor modes.

At first order in the perturbations the equation of motion for hij results:

(150) ḧij + 3Hḣij − 1
a2

∇2hij =
16π

M2
pl

Πij (ϕ, χ) ,

where by Πij is the transverse and traceless part (TT ) of the total stress-energy ten-
sor [180]

(151) Tμν =
1
a2

[∂μχ∂νχ + ∂μϕ∂νϕ + gμν (L − 〈p〉)] ,

with 〈p〉 the background homogeneous pressure. Let us now quantify Πij : being the
second term of eq. (151) proportional to gij = δij + hij , the operation of TT projection
drops out the terms proportional to δij , the other part of the second term is of second
order in the tensor perturbations and so negligible. Then, the operation of projection
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can be performed on the remaining part of the stress-energy tensor, so that

(152) Πij (ϕ, χ) =
1
a2

[∂iχ∂jχ + ∂iϕ∂jϕ]TT
.

In order to make numerical calculations on a lattice, we write the stress-energy tensor
for the GW as in eq. (75) where the average is to be considered on a sufficiently large
volume V = L3 in lattice space [184]. Then the GW energy-density in Fourier space is
written as

(153) ρgw =
M2

pl

32πa2

1
L3

∫
d3k

(2π)3
h′

ij (k, τ) h′∗
ij (k, τ) ,

where ∗ stands for the complex conjugate. Unlike the case in which GW are produced
in the inflationary stage and then re-enter the horizon in the subsequent eras, here GW
are sub-horizon at the time of production and remain sub-horizon until the present time.
Then, what we need is the solution of the equation of motion in the presence of the
source (152). We then have to take into account the modulation of the GW amplitude
that takes place at later times. As seen in eq. (72), during radiation dominance the GW
amplitude scales as 1/a, so that the integral in eq. (153) evolves with time as ∝ 1/a2.
Then we have

(154)
(

dρgw

d ln k

)
(k, τ) =

k3M2
pl

a2 (4πL)3

∫
dΩk

4π
h′

ij (k, τ) h′∗
ij (k, τ) ,

so that it is clear that the quantity which directly contributes to the total spectral
energy-density is h′

ij . Then the spectrum at late times can be expressed as

(155)
(

dρgw

d ln k

)
τ>τf

=
Sk(τf)
a4(τ)

,

where τf is the time when the GW source becomes negligible, and Sk is referred to
h̄ij = ahij (which gives a new factor 1/a2) and encodes the amount of GW produced at
the time the source was present.

4.2.2. Analytical estimation of the gravitational-wave spectral energy-density features.
For each of the two cases analyzed before, we estimate the amplitude and the shape of
the GW spectral energy-density that could be measured today, in order to understand
their rough dependence on the parameters of the system; see table I for a summary of
the results.

To estimate the present spectrum one needs to take into account the evolution of
the expansion rate of the Universe, between the time of emission of the GW and the
present time. At the end of inflation the equation of state moves from w = 0 to a
value w � 1/3 during the preheating stage [185, 186], and then to w = 1/3 during the
radiation dominance. We define ti as the time corresponding to the end of inflation, tj a
moment after the jump of the equation of state, where we assume a mean value w, t∗ the
time when thermal equilibrium is established, and t0 the present time. Then the relation
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between the present value of the scale-factor and that corresponding to the moment when
GW are produced is given by

(156)
ai

a0
� ai

ajρ
1/4
j

(
aj

a∗

)1− 3
4 (1+w) (

g∗
g0

)−1/12

ρ
1/4
rad0,

where ρj is the total energy-density at t = tj, ρrad0 is the present energy-density of
radiation, and g is the number of effectively massless degrees of freedom. From this
relation, the following connection between the present value of a frequency f and the
value at the emission time of the GW, is obtained

(157) f ≡ k0

2π
� k

ajρ
1/4
j

(
aj

a∗

)1− 3
4 (1+w)

4 × 1010 Hz,

where f is the frequency evaluated today. We took Ωradh2 = h2ρrad0/ρc = 4.3 × 10−5

as the abundance of radiation today, where h is defined via the Hubble parameter as
H0 ≡ 100h km s−1 Mpc−1, and g∗/g0 = 100 [175]. Analogously, we can obtain the
relation between the GW spectral energy-density evaluated at the time of production
and at the present time. From eq. (155) we have [175]

(158) h2ΩGW =
Sk(τf )
a4
j ρj

(
aj

a∗

)1−3w (
g∗
g0

)−1/3

Ωradh2,

at the present time. For preheating following chaotic inflation or hybrid inflation, the
mean value of w in the intermediate stage reaches w = 1/3 soon after the end of infla-
tion [175,176], so that the factor (aj/a∗)1−3w can be neglected. In this case the previous
relations read

(159) f =
k

ajρ
1/4
j

4 × 1010 Hz and ΩGWh2 =
Sk(τf)
a4
j ρj

9.3 × 10−6.

Note that if the transition from the end of inflation to radiation dominance is sufficiently
fast and the scale-factor is normalized to one at t = ti, the quantity a4

j ρj represents the
energy-density at the end of inflation. From eq. (159) we can conclude that if inflation
ends at lower energies, the GW produced after that time will be less diluted by the
expansion till the present time. At the same time, lowering the energy scale of inflation
means having less efficient GW sources during the preheating stage. These two effects
roughly cancel each other and in conclusion the present time GW spectral energy-density
does not strongly depend on the energy scale at the end of inflation [171].

It is easy to guess that the spectrum will present a peak strictly related to the k∗ values
of the excited fluctuations. The translation from the peak of the excited inhomogeneities
to that of the GW, is well understood looking at the relations (154). Roughly the peak
wavelength is estimated to be 1–2 orders of magnitude smaller than the Hubble radius
at the time of GW production Hi [187, 173, 142]. Clearly, the actual value of the peak
wavelength will depend on the model parameters, through the value of q [171, 188].
The connection between the resonant mode k∗ and the present frequency, is given by
eq. (159), where the denominator ajρ

1/4
j � √

Hj can be approximated with
√

Hi, so
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that roughly the peak frequency results f∗ ∼ √
Hi. Then, on one hand, lowering the

energy scale of inflation corresponds to reduce the power of the GW produced by the
quantum mechanism during inflation, making them harder to detect. On the other
hand, lowering the energy scale means reddening the peak power of the GW produced
during the preheating stage, which makes their detection easier. This is because the
strain sensitivity of GW detectors scales as ∝ 1/f3 [189]. In any case, being the excited
χk corresponding to sub-horizon modes at the time of preheating, the frequency of the
peak would give also an upper bound on the horizon size at that time. Moreover, in
general, the peak wavelength is expected to be constrained by the upper bound on the
inflation energy scale provided by CMB and the lower bound required by baryogenesis
and nucleosynthesis [171].

Considering that the main power in GW is emitted during the bubbly stage [180], an
estimate of the fraction of energy which is converted into gravitational radiation can be
made. The typical size R∗ of the bubble inhomogeneities depends on the resonant modes
k∗, more precisely R∗ ∼ a/k∗ [175]. The gravitational energy-density with respect to the
total, results [180]

(160)
(

ρgw

ρtot

)
p

∝ (R∗H)2p ,

where p means that the time of production and the coefficient of proportionality can
be calculated numerically. This estimate will be valid also for the bubbly period of the
tachyonic preheating.

Analytical estimate for gravitational waves produced during parametric resonance after
chaotic inflation. In the case of chaotic inflation (147), where the energy-density can be
approximated by a4

jρj � 1.15λcϕ
4
0/4 [175], from eq. (159) the present frequency of the

peak reads

(161) f∗ � k∗
ajρ

1/4
j

4 × 1010 Hz � k∗
ϕ0

λ−1/4
c 5 × 1010 Hz,

where ϕ0 � 0.342Mpl is the amplitude of the inflaton at the end of inflation and the
scale-factor a is normalized to unity at the end of inflation. From eq. (160), the amplitude
of the spectral energy-density in correspondence to the peak at the time of production
goes like

(162) (Ω∗
GW)p ∼

(
aH

k∗

)2

p

,

where R∗ = a/k∗ and ap is the value of the scale-factor referred to the time of production,
and, as before, the dependence on the particular model is included in k∗.

Analytical estimate for gravitational waves produced during tachyonic preheating after
hybrid inflation. To get to analogous estimate in the case of tachyonic preheating, it is
useful to write (159) in terms of the size of the bubbles R∗, that is

(163) f∗ ∼ 4 × 1010

R∗ρ
1/4
p

Hz, h2Ω∗
GW ∼ 10−6 (R∗Hp)2 ,
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where ρp = λtv
4/4 and H2

p = 8πρp/(3M2
pl). From the potential (149), the Hubble

parameter and the energy-density at the time of GW production can be estimated, so
that, neglecting the expansion rate of the Universe, the previous relations read [176]

(164) f∗ ∼ k∗
λ

1/4
t v

6 × 1010 Hz, h2Ω∗
GW ∼ 2 × 10−6 λtv

4

k∗M2
pl

.

In order to be able to write k∗ as a function of the model parameters v and λt, one needs
to consider different cases depending on the field that dominates the dynamics around
the critical point. See [176].

4.3. Computational strategies for numerical simulations and current results. – The
classical equations of motions which describe the evolution of the fields obtained from
the Lagrangian are the starting point. For a system described by (140) and a FRW
metric the equations for the fields result

(165) χ̈ + 3Hχ̇ − 1
a2

∇2χ +
∂V
∂χ

= 0, ϕ̈ + 3Hϕ̇ − 1
a2

∇2ϕ +
∂V
∂ϕ

= 0.

Via the FRW metric and the stress-energy tensor obtained from the Lagrangian, the
equations for the background are obtained from Einstein equations [180]

− Ḣ

4πG
= χ̇2 +

1
3a2

(∇χ)2 + ϕ̇2 +
1

33a2
(∇ϕ)2 ,(166)

3H2

4πG
= χ̇2 +

1
a2

(∇χ)2 + ϕ̇2 +
1
a2

(∇ϕ)2 + 2V (χ,ϕ) .(167)

The equation of motion for GW is (150). Considering that the production of GW starts
at a specific time te, the solution of the above equation can be written as

(168) hij (k, t) =
16π

M2
pl

∫ t

te

dt′ G (t, t′) Πij (k, t) ,

so that

(169) ḣij (k, t) =
16πk

M2
pl

∫ t

te

dt′ G (k (t − t′)) Πij (k, t′) ,

where G(t, t′) is the Green function relative to the differential equation (150). In order
to follow the dynamics of reheating relative of a given inflationary model, one has to
evolve in a lattice eq. (165) simultaneously to eqs. (166)-(167), while GW are obtained
from eq. (150), which clearly is coupled to the previous ones.

In the last decade several methods have been developed to solve the previous system
of equations. The evolution of the fields on a space-time lattice is commonly analyzed
by the publicly available code LatticeEasy [190]. The issue of lattice simulations has
been addressed and discussed specifically by [191] and [192].

For a detailed comparison of the results of different methods and strategies see [175,
172,179].
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Fig. 5. – Gravitational waves spectral energy density from numerical simulations generated after
hybrid inflation. On the left λt = 10−14, on the right λt = 10−5. The spectra for λt = 10−5

are, from top to bottom, for λt/g2 = 20000, 5000, 500, 50, 0.5, 0.005, 0.0005, respectively.
The spectra for λt = 10−14 are for λt/g2 = 5000, 500 respectively. All the spectra are for
v = 10−3Mpl, although for g2 � λt a lower value of v may be necessary to consistently neglect
expansion of the Universe. The figure is taken from [176] ( c© IOP Publishing. Reproduced with
permission. All rights reserved.).

4.3.1. Current results for preheating after chaotic inflation. Numerical simulations per-
formed by [179, 172] and [175] are in good agreement for the case of a massless pre-
heating [179], while the first simulations performed by [171] present slightly different
behaviors. This agreement constitutes a strong check on the reliability of numerical
simulations. Moreover the behavior shown by eqs. (160)-(161) and eq. (162) results
confirmed. Let us present here the main results about chaotic inflation, following the
analysis of [175], which chooses as reference model q = g2/λc = 2, fixing then k∗, and λc

is taken to be λc = 10−14. The exponential rate of GW production is maximal during
parametric resonance but most of final amount of GW is produced during the bubbly
stage [175]. Assuming the previous parameters the peak amplitude at present results of
h2Ω∗

GW ∼ 3 × 10−11 and the frequency of f∗ ∼ 7 × 107 Hz. Running simulations with
different values of the coupling constant g, that is changing the resonance band, it is
found that the peak amplitude mildly depends on q, roughly it decrease with its value
but not in a perfect monotonic way, while its frequency depends on the value of k∗. For
example, for the case q = 1.2, the amplitude peak at present time is h2Ω∗

GW ∼ 5×10−10,
at a frequency of order 5 × 106 Hz. The peak frequency results in any case higher than
the accessible band of current and planned experiments, being not lower than 106 Hz,
even though with an amplitude of about 10−9–10−11; see sect. 11.

4.3.2. Current results for preheating after hybrid inflation. Testing the estimations (164)
with numerical simulations, the peak frequency and amplitude may cover a wide range of
values, depending on the parameters of the model λt, g2, v and on the potential evaluated
at the critical point [176]. Compared with the parametric resonance mechanism, in this
case the GW can cover a larger range of frequencies. The peak wavelength depends
essentially on the coupling constant λt and is independent of the σ vev v. In particular to
lower the peak frequency a small coupling constant λt is needed. More precisely, imposing
the maximum value v compatible with the success of the model, a peak frequency f∗ <
103 Hz can be obtained varying λt [176]. The amplitude of the peak results h2Ω∗

GW ∝ v2,
so that to obtain a higher peak only increasing the value of the vacuum v is necessary.
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This is true up to h2Ω∗
GW < 10−6, a bound which mainly follows from requiring that

the GW production takes place on sub-horizon scales (for further details, see [176]). For
several examples of numerical simulations see fig. 5. In principle, for some extreme range
of values of the model parameters, hybrid inflation leads to a GW spectrum with a peak
accessible to future detection experiments [176], such as Big Bang Observer (BBO) [193].

Modifications to the basic models of preheating. Besides chaotic and hybrid inflation,
the GW produced can be considered also in slightly different models of preheating. In
particular, the number of fields involved in the system [194], their nature (bosonic or
fermionic) [195] and the possible presence of self-interaction of the light field coupled
to the inflaton [162, 196], influence the GW production. The gravitational signal due
to the Higgs field decay [197], considering such a field negligible during the inflationary
dynamics, could be another interesting phenomenon, representing a source of information
on high-energy particle physics. However, planned experiments will not be able to detect
such a high-frequency spectrum. GW production on scales which are super-horizon at the
time of formation during the preheating stage were studied too [198]. Such gravitational
radiation is expected from the self-ordering of randomly oriented scalar fields which can
be present during preheating after hybrid inflation.

4.4. Anisotropies in the gravitational wave background . – All the previous modeling
considers the role of the secondary light scalar field χ, only starting from the end of
inflation. Actually this assumption is an approximation, being the field χ acting also
during the inflationary dynamics. As a consequence, at the end of the accelerated ex-
pansion, also χ is left with amplified perturbations frozen on super-horizon scales, just
like the inflaton. Then, at the beginning of preheating each Hubble region is character-
ized by a homogeneous background value of the field χi, superimposed with sub-horizon
vacuum fluctuations. If the GW spectral energy-density depends on the value χi, then a
different amount of GW is expected for different regions of the sky we observe today, in
correspondence with the Hubble regions of the reheating stage [188,199,200].

A crucial point in order to get anisotropies is the growth of long-wavelengths modes.
The value χi corresponds to the mode k = 0 in each horizon volume; if it is amplified
at the beginning of the preheating then it influences the whole dynamics of that region.
When non linearities become important, long-wavelengths modes transfer energy to the
short ones, so that the dynamics of the latter is eventually influenced by χi, via the
long-wavelength modes. In such a way the spatial distribution of the field χ, and so the
amount of produced GW, is affected by χi. Therefore, if the mode k = 0 belongs to the
resonant band, a different amount of produced GW could be expected in correspondence
with different values of χi. The homogeneous mode k = 0 lies in the resonant band for
quite a narrow region of parameter space for the massless case, while for the other cases
k = 0 is often amplified for a wider range of the coupling constant [199]. Clearly, in order
to have anisotropies, a further fundamental requirement is the presence of a light scalar
field, in addition to the inflaton during the accelerated expansion.

The case in which the inflationary field is massless is usually considered to simplify
calculations, providing a useful starting point to understand the phenomenon. Consider
a scenario of parametric resonance due to the potential

(170) V (ϕ, χ) =
λ

4
ϕ4 +

1
2
g2ϕ2χ2,

where χ is light during inflation, that is mχ = gϕ is less than the Hubble rate H. To
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guarantee the lightness of χ during inflation, the coupling constant is taken to be g2/λ =
2, fixing at the same time the resonant band [188]. With this choice a large amplification
of long wavelengths during the non-linear evolution is ensured. As for the inflaton,
perturbations of the χ field at the end of inflation are described by a nearly scale-invariant
power spectrum Pχ � H2/4π2, because of its lightness. The differential equations for
describing the reheating phase are the same as those considered in sect. 4.3, but the
initial conditions at the end of inflation now are different for each horizon volume, in
correspondence with the value χi (usually this value is set to zero). For a reasonable range
of χi values [188], and employing the “separate Universe” approach, the peaks of the GW
spectral energy-density of two different simulations result located at the same frequency
determined by the scale at which fluctuations are amplified, while the amplitudes of the
peaks result not comparable [188]. This means that actually χi influences the gradient
of χ and then the efficiency of GW production [188]. More precisely ΩGW varies by
as much as a factor of five between nearby values of χi [199]. The level of anisotropy
of the produced GW is estimated by the angular spectrum of the relative GW spectral
energy-density fluctuations as a function of the χi value. A general formula applicable
to all the scenarios characterized by a light spectator field during inflation is [188]

(171) l (l + 1)Cl =
H2

∗
8π

〈δχiΩGW (χi)〉2
σ4

χ〈ΩGW〉2 .

For the considered massless case with g2/λ = 2, the relative amplitude of GW power on
large scales relative to different χi values results above the one percent level [188] (to get
a comparison, the relative amplitude of the CMB fluctuations is of the order of 10−5).

Furthermore, we can expect that the anisotropy of the GW spectral energy-density
could be correlated with the non-Gaussianity of CMB anisotropies, being originated by
the presence of a light field during inflation in both cases. The details of this anisotropy,
if observed, could provide a way to distinguish between different microscopic theories
and also help in breaking degeneracies of the inflationary sector [175].

Table I. – Features of the GW spectral energy-density produced during the preheating phase. k∗
are resonant modes, λc and λt are the inflaton couplings in each model (see eqs. (147)-(149)),
and v the vacuum value of the waterfall field; for more details see sects. 4

.
1.1-4

.
2.2. The first two

columns refer to the time of GW production, while the last two refer to the present time. Values
for chaotic inflation are obtained for: ϕ0 = 0.342Mpl, λc = 10−14 and q = g2/λc = 1.2. Values
for hybrid inflation are obtained for: λt = 10−14, vc = 10−3, v = 10−3Mpl and λ/g2 = 5000.
Notice that actually the values of the frequency and amplitude of the peak can vary largely from
those reported here in each case. For comparison, the expected GW spectral energy density for
a standard inflation and r � 0.1, nT = 0, is h2ΩGW � 10−16.

Model
Peak Peak Peak Peak

frequency amplitude frequency amplitude

Preheating: f∗ � k∗
ϕ0

λ
−1/4
c

h2Ω∗
GW ∼

“
aH
k∗

”2
f∗ ∼ 5 · 106 Hz h2Ω∗

gw ∼ 5 · 10−10

Chaotic infl. ×5 · 1010 Hz

Preheating: f∗ ∼ k∗
λ
1/4
t v h2Ω∗

gw ∼ 2 · 10−6 λtv4

k∗M2
pl

f∗ ∼ 105 Hz h2Ω∗
gw ∼ 10−7

Hybrid infl. ×6 · 1010 Hz
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5. – Gravitational waves from inflation in Modified Gravity

5.1. Why Modified Gravity? – The interest in Modified Gravity (MG) theories, as
an alternative to General Relativity (GR), is due to both fundamental physics issues
and cosmological observations. From the point of view of fundamental physics, it is
well known that a full quantum description of the space-time and of the gravitational
interaction is not possible considering General Relativity as the theory of gravity [201].
A quantum theory of gravity lacks. Moreover when attempts to unify fundamental
interactions are made (such as superstrings, supergravity, etc.), effective actions with
non-minimal coupling with the geometry or higher-order terms involving curvature in-
variants appear. From the cosmological point of view, there are at least two main reasons
leading to the introduction of MG [202]: on one side GR combined with the Standard
Model of particle physics cannot solve some internal inconsistencies of the Standard
Big Bang cosmology, such as the horizon and flatness problems. To get the primordial
accelerated expansion of the Universe, while remaining in GR, one needs to introduce
at least a scalar field beyond the known Standard Model of elementary particles. On
the other hand, recent cosmological observations tell us that the Universe is presently
undergoing a period of accelerated expansion. The most hasty way to explain such a
dynamics is that of introducing the well-know cosmological constant, representing the
dark energy content of the Universe. However this way of proceeding, actually does not
give a motivation for the current comparable amounts of matter and dark energy density
(the so-called “coincidence problem”). In a rough summary, it seems then that GR is
not able to explain successfully the gravitational accelerated dynamics in its extreme
regimes.

Motivated by these considerations in recent years several attempts to face these issues
have been made. The most natural way to proceed consists in extending Einstein theory
with corrections and extensions, which are required to reproduce GR in the regimes in
which it is well tested. The most immediate modification consists in adding higher-
order curvature invariants and minimally, or non-minimally, coupled scalar fields. On
the other hand, MG scenarios seem to have the chance to address the early Universe
issues, since they may naturally provide a period of accelerated expansion in the early
Universe, originating from the gravity sector only.

In scenarios of MG, GW are produced by the same quantum mechanism we have
presented in sect. 2.3 for the model single-field slow-roll inflation in GR, that is by
vacuum fluctuations of the gravitational field. Then the significant point here, is to
investigate how features of the produced GW changes, building the inflationary models
on theory of gravity different from GR.

5.2. Signatures of primordial tensor modes generated in modified gravity theories. –
When inflation is built on a theory of MG, usually primordial GW are expected to be
produced by the same quantum mechanism of the models related to GR, but in general
it is possible that they get new features, such as a speed of sound cT �= c and a non
vanishing mass mT, and a modified equation of motion with respect to eq. (54). Then
in general a tensor power spectrum different from (65) is expected.

Considering this fact, several works have considered the effects on the CMB of tensor
modes with non-standard features, such as with a generic speed of graviton propagation,
cT [203-208] (see also [107], not for CMB), a non-vanishing mass [209-211] or a non-
standard friction term [204, 206] in their equations of motion. [212] studied the relation
between cT and the non-Gaussianity of primordial tensor perturbations in the Effective
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Field Theory (EFT) approach to inflation. For a recent discussion about the propagation
speed of GW during inflation, see [213,214].

Exploiting the detection of the GW signal by the aLIGO observatory [32], new con-
straints, for such a kind of GW, have been obtained for cT [215-218] and mT [219].

5.3. Overview of the main models. – There is a great variety of MG models which
work well with respect to our request of an inflationary period. We can organize them
into three main categories: theories in which extra-fields are involved, theories in which
higher-order derivatives are introduced and theories built on higher-dimensional spaces.
In particular, the first and the second categories actually intertwine and are not clearly
separated. For a review see [220,221,202].

5.3.1. Gravity with extra fields. In GR the gravitational degrees of freedom are described
by the metric field, that is by a rank-2 tensor. There are no strong reasons to suppose that
there could not be in addition other fields to describe the coupling between the matter
fields and the gravity sector. The simplest way to implement such an idea consists in
adding a scalar field to the usual metric tensor, whose effects clearly have to disappear
on scales where GR is well tested. In alternative, one can add also vector or tensor fields.
Among these theories the most significant ones, being the most natural and essential,
are the scalar-tensor theories, which we will consider in more detail later.

5.3.2. Gravity with higher-order derivatives. GR is the most general theory based on
a metric tensor which provides field equations of at most second order. A way to ex-
tend Einstein theory consists in admitting higher-order derivative in the field equations.
Clearly this way of proceeding is not guaranteed to be preserved from the appearance
of instabilities. Anyhow, starting from a Lagrangian with higher-order derivative terms,
there are several theories which actually lead to field equations of second order, provid-
ing only stable dynamics. The simplest and most immediate way to implement such an
idea consists in replacing the usual curvature invariants with a function of them. This
operation characterizes the so-called f(R)-theories [222]. For example, considering an R2

term generally leads to field equations of fourth order. Actually, what happens is that
putting corrections to the curvature term coincides with adding new degrees of freedom
to the system. In particular, theories in which R is replaced by R + R2 coincide with
scalar-tensor theories.

For the primordial GW power spectrum estimated in higher-order spatial derivatives
theories, see, for example, [223,224].

5.4. Primordial gravitational waves in Scalar-Tensor theories of gravity. – In these
theories the basic idea consists in adding a scalar degree of freedom to the gravitational
sector. The simplest and most generic Lagrangian which includes such an extra degree
of freedom reads [225-227]

(172) L =
1

16πG

√−g [f(Φ)R − g(Φ)∇μΦ∇μΦ − 2Λ(Φ)] ,

where f , g, h and Λ are arbitrary functions of the scalar field Φ. Clearly, this Lagrangian
includes a large number of models, such as the Brans-Dicke theories [228], which consti-
tutes the first MG theory of the gravitational interaction alternative to GR.

In the last few years more general models have been considered starting from consider-
ations about the symmetries of the system: [229] built a Lagrangian with higher-derivative
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terms but leding to equations of motion of second order. Their model was based on the
so-called Galilean symmetry, that is the invariance on the Minkowski spacetime under
the Galilean field transformation Φ → Φ + bμxμ + c, where c is a constant and bμ is a
constant vector. In [229] the theory is built on a flat and non-dynamical background;
then later works [230-232] extended the theory on a dynamical background, obtaining to
the so-called Covariant Galileon Inflationary model [231]. To do so, new terms to the La-
grangian are added which lead to the breakdown of the Galilean symmetry [230,231,233].
Then [234] generalized such a theory to the most general scalar-tensor theory which leads
to second-order field equations on flat and curved space-time, calling it Generalized G-
inflation. Such a model turns out to be equivalent to a Lagrangian proposed by Horn-
deski [235] as the most general scalar-tensor theory leading to second-order equations of
motion starting from higher-derivative terms in the Lagrangian.

In the following subsections we will consider some of these models [236-239, 234],
representing a natural way to extend GR and providing the possibility to get accurate
predictions about GW.

5.4.1. Generalized G-inflation. In 1974 Horndeski presented a work [235] in which he
calculated the most general Lagrangian of a scalar-tensor theory in a four-dimensional
space-time, which leads to second-order field equations, albeit starting from higher-order
derivative terms. The latter generally lead to equations of motion at least of the fourth
order, which can introduce gradient and ghost instabilities. Horndeski Lagrangians are
built in order to avoid these problems. The Horndeski action reads [235,240,238,232]:

S =
5∑

i=2

∫
d4x

√−gLi, with(173)

L2 = K(Φ, X),

L3 = −G3(Φ, X)�Φ,

L4 = G4(Φ, X)R + G4X

[
(�Φ)2 − (∇μ∇νΦ)2

]
,

L5 = G5(Φ, X)Gμν∇μ∇νΦ − G5X

6

[
(�Φ)3 − 3(�Φ) (∇μ∇νΦ)2 + 2 (∇μ∇νΦ)3

]
,

where Gμν is the Einstein tensor, GiX = ∂Gi/∂X, and K,Gi are generic functions of Φ
and X ≡ −∂μΦ∂μΦ/2. The system is described by four independent arbitrary functions
of Φ and X. Adding separately the Hilbert Einstein action is not required. Notice that
we are describing the system only as a gravitational one, since we are not introducing
any matter fields. The action (173) includes a large class of models, such as single-field
slow-roll inflation, the k-inflation [241], Higgs G-inflation [242] and Galileon inflation [236]
(the parameters of the latter model entering into the modified consistency relation for the
tensor-to-scalar ratio have been constrained in the Planck analysis [71,52], by combining
the constraints from the power spectrum and those on primordial non-Gaussianity). It
can be seen [234] that (173) may lead to the sought stage of accelerated expansion in the
early Universe and it offers reasonable ways to end such a period to get the usual hot
Big Bang.
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Background evolution. To find the background equations of motion we can use the so-
called unitary gauge, substituting Φ = Φ(t) and the metric ds2 = −dt2 + a2(t)dx2 into
the action. There are several possibilities to get an accelerated expansion depending
on the form of the functions K and Gi. [234] considers the case of a kinetically driven
G-inflation and a potential-driven slow-roll inflation.

Gravitational-wave power spectrum. Let us consider the perturbed metric in the unitary
gauge Φ = Φ(t):

(174) ds2 = −N2dt2 + γij

(
dxi + N idt

) (
dxj + N jdt

)
,

where

(175) N = 1 + α, Ni = ∂iβ, γij = a2(t)e2ζ

(
δij + hij +

1
2
hikhkj

)
,

so that α, β and ζ are the scalar perturbations, while hij are the tensor ones, which are
traceless and divergence-free.

Perturbing the action (173) at second order, two terms describing tensor perturbations
are found [234]:

(176) S
(2)
T =

M2
pl

8

∫
dtd3x a3(t)

[
GTḣij ḣij − FT

a2
(∇hij)

2

]
,

with

FT ≡ 2
M2

pl

[
G4 − X

(
Φ̈G5X + G5Φ

)]
,(177)

GT ≡ 2
M2

pl

[
G4 − 2XG4X − X

(
HΦ̇G5X − G5Φ

)]
.(178)

The action (176) shows the same structure of eq. (47): it presents the same terms of an
action describing wave propagation, but with unusual coefficients. In particular, these
new factors lead to a propagation speed of GW which generally differs from the speed of
light, c2

T = FT/GT, and modify the GW amplitude with respect to the standard one.
Before calculating the power spectrum, let us introduce some restrictions. To avoid

ghosts and gradients instabilities, we require FT > 0 and GT > 0 [234], while, in order
to simplify calculations, we assume

(179) ε ≡ − Ḣ

H2
� const, fT ≡ ḞT

HFT
� const, gT ≡ ĠT

HGT
� const.

We now move to Fourier space and rescale the functions hij and time t in order to get
an equation of motion completely analogous to eq. (54) [234]

(180) dyT ≡ cT

a
dt, zT ≡ a

2
Mpl (FTGT)1/4

, vij ≡ zThij .
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These operations are analogous to those made in sect. 2.3.1. However, besides the am-
plitude rescaling, here we have to perform also a time rescaling because of the generic
propagation speed, in order to get a frame where cT = c. Performing these transforma-
tions the action (176) becomes

(181) S
(2)
T =

M2
pl

2

∫
dyTd3x

[(
v′

ij

)2 +
z′′T
zT

v2
ij − (∇vij)

2

]
,

where here the prime denotes differentiation w.r.t. yT. This action leads to the standard
equation of motion, so that we can get the solutions, by proceeding as in sect. 2.3.1.
On super-horizon scales there are two independent solutions, one which corresponds to
decaying hij modes and the other which corresponds to constant hij . Requiring the
canonical normalization which determines the behavior on the sub-horizon regime, we
get the exact solution, analogous to (61) [234]

(182) vij =
√

π

2
√−yH(1)

νT
(−kyT) eij , where νT ≡ 3 − ε + gT

2 − 2ε − fT + gT
,

and eij the polarization tensor. The latter is the generalization of ν � 3/2 + ε found
in sect. 2.3. We are interested in the constant modes, being those that are still non-
negligible at the re-entrance into the causal region. Exploiting the asymptotic behavior
of the Hankel functions and moving back from vij to hij , we get the tensor amplitudes
on super-horizon scales,

(183) k3/2hij ≈ 2νT−2 Γ (νT)
Γ(3/2)

(−yT)1/2−νT

zT
k3/2−νTeij .

Replacing our results in eq. (64), we get the sought expression for the GW power spec-
trum [234]

PT =
8γT

M2
pl

G
1/2
T

F
3/2
T

(
H

2π

)2 ∣∣∣∣
kyT=1

,(184)

where γT = 22νT−3

∣∣∣∣ Γ (νT)
Γ(3/2)

∣∣∣∣2 (
1 − ε − fT

2
+

gT

2

)
.

The spectral index reads nT = 3 − 2νT. Let us make a few comments about these
results. First, compare eq. (184) with the power spectrum obtained in the single-field
slow roll-inflation case eq. (65). The power spectrum (184) presents a new factor resulting
from the unusual Lagrangian for the scalar field, so that the GW amplitude is modified
with respect to the standard one. This difference is due to the fact that here GW are
determined not only by the geometrical degrees of freedom alone but also by the coupling
with the scalar one. Even more interesting is the result concerning the spectral index:
Generalized G-inflation admits a blue index, without NEC violation, contrary to what
happens in GR. To get a positive spectral index one only needs to satisfy the condition
4ε + 3fT − gT < 0, so that we can have a blue index, while maintaining ε > 0, which
means Ḣ < 0. See also [243].
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5.4.2. Potential-driven G-inflation. Let us now investigate a particular case of the pre-
vious class of models, where only the first two terms of eq. (173) are considered [238,242].
We are still dealing with higher-derivative terms in the Lagrangian and with second-order
equations of motion, both for the scalar field and the metric. This model is interesting
since it provides the possibility to write a consistency relation between the tensor-to-
scalar ratio and the tensor spectral index that can be compared with that obtained in
the standard model of inflation. Actually GW do not present unusual features in this
case.

The action of the system reads [238]

(185) S =
∫

d4x
√−g

[
1
2
M2

plR + LΦ

]
, with LΦ = K(Φ, X) − G(Φ, X)�Φ,

where K and G are general functions of the scalar field Φ and X = −∇μΦ∇μΦ/2. Notice
that the Einstein-Hilbert Lagrangian is obtained from LΦ, with a particular choice of
the function G4. The second term comes from the generalization of the interaction X�Φ
which satisfies the Galilean symmetry. In particular we are concerned in the model
identified by the following choice

(186) K(Φ, X) = X − V (Φ), G(Φ, X) = −g(Φ)X,

since, besides satisfying the basic requests, it provides the possibility to write the con-
sistency relation. One of the most significant models included in the choice (186) is the
Higgs G-inflation [242] which represents an attempt to explain the inflationary acceler-
ated expansion employing only fields of the Standard Model.

Background evolution. As in the most general case, a slow-roll evolution of the scalar
field leading to a stage of accelerated cosmic expansion can be obtained.

To get the sought dynamics we define the following quantities [238]:

(187) ε ≡ − Ḣ

H2
, η ≡ − Φ̈

HΦ̇
, α ≡ gΦΦ̇

gH
, β ≡ gΦΦX2

VΦ
,

where the subscript Φ means the derivation w.r.t. such a field and we where impose
ε, |η|, |α|, |β| � 1. In particular, the first inequality includes the fundamental requirement
of accelerated expansion, while the third corresponds to asking for the domain of the
potential V (Φ) with respect to X in the expression of K(Φ, X). Choosing the regime in
which the Galileon effect, represented by g(Φ), assumes a relevant role, that is |gHΦ̇| � 1,
the background equation of motion becomes gH2Φ̇2 + VΦ � 0 [238]. Then, the slow-roll
equation of motion is solved by a Φ(t), such that [238]

(188) Φ̇ � − sgn(g)Mpl

(
VΦ

3gV

)1/2

,

requiring that the field slowly rolls down its potential. From this expression, one can
realize that, compared to the standard slow-roll inflation, here the field velocity is sup-
pressed by a factor 1/

√
gVΦ, so that we can have the sought evolution, H � const, even

if the potential is rather steep.
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Gravitational wave power spectrum. Exploiting the results (184) of the general case
investigated above, we can soon conclude that, in this model, GW do not show any
unusual feature

(189) PT(k) =
8

M2
pl

(
H

2π

)2

, nT = −2ε.

This clearly leads to a degeneracy between this inflationary model and the standard one,
so that GW do not seem the best way of getting information on the inflationary period
and the underlying theory of gravity. However, once again this result conceals a relevant
difference with respect to the single-field slow-roll inflation power spectrum: the tensor
spectral index can be blue having the speed sound of scalar perturbations c2

S > 0 at the
same time since, as before, the NEC violation Ḣ > 0 does not imply c2

S < 0.

Scalar perturbations. In order to get the tensor-to-scalar ratio we give also the scalar
power spectrum. Proceeding as in sect. 2.2.3 and adding assumptions needed to avoid
ghosts [238], the scalar power spectrum at horizon crossing results [242]

(190) Pζ =

(
3
√

6
64π2

)
H2

M2
plε

∣∣∣∣
τ=1/cSk

.

We obtained that the amplitude presents a different numerical factor with respect to that
obtained in the single-field slow-roll inflation. As we will see, in a subsequent dedicated
section, that this fact leads to a violation of the standard consistency relation (71),
and so to the possibility of distinguishing these inflationary models from the standard
one.

6. – Summary

In table II we provide an overview of the main mechanisms of GW production which
have been investigated in the previous sections, that can take place during inflation
and the preheating period. In the first three columns we highlight the different physical
origins of such mechanisms. As illustrated so far, the two ways for generating inflationary
GW are vacuum oscillations of the gravitational field and the presence of a source term
in the GW equation of motion that leads to a classical mechanism of GW production.
In the first case the assumption that leads to different predictions for the features of the
GW power spectrum is the theory of gravity underlying the inflationary model. In the
second case, the form and the efficiency of the source terms are the discriminants for the
generated tensor modes. In the last two columns, following such a scheme, we organize
the main models we have investigated in the previous sections.

7. – The issue of the quantum to classical transition for inflationary
perturbations

According to the inflationary model, the seeds of perturbations present at last scatter-
ing are quantum fluctuations of the scalar field that has driven the accelerated expansion
and of the gravitational field. Up to now, this is the only physical model where theo-
retical predictions coming from a simultaneous use of General Relativity and quantum



GRAVITATIONAL WAVES FROM INFLATION 459

Table II. – Summary of the main mechanisms of GW production during inflation and the pre-
heating phase. In the fourth column, the scenarios mainly investigated in the present work are
reported as examples for each mentioned case. They are discussed in the following sections
respectively: “single-field slow-roll” sect. 2

.
3, “G-Inflation” sect. 5

.
4.1, “Potential-driven G-

Inflation” sect. 5
.
4.2, “EFT approach” sect. 2

.
4.2, “all models” sect. 3

.
1.1, “spectator fields”

sect. 3
.
2.2, “curvaton” sect. 3

.
2.1, “pseudoscalar inflaton+gauge field” sect. 3

.
3.2, “scalar

infl.+pseudoscalar+gauge” sect. 3
.
3.3, “scalar inflaton+scalar field” sect. 3

.
3.1, “chaotic in-

flation” sect. 4
.
1.1, “hybrid inflation” sect. 4

.
1.2. To clarify the notation: “EFT approach”

refers to all models encoded in the generic action used in the EFT approach to inflation. “Broad
spectrum” means that a power spectrum, broad on a large range of scales is expected, while
“peaked” indicates a signal peaked on a narrow range of frequencies.

GW Production Discriminant
Specific Examples of

Produced GW
discriminant specific models

Vacuum oscillations

theory of

General

single-field broad

quantum fluctuations

gravity

Relativity

slow-roll spectrum

of the gravitational

all other broad

field stretched by

models in GR spectrum

the accelerated
MG/EFT

G-Inflation
broad

expansion
approach

spectrum

Potential-driven broad

G-Inflation spectrum

EFT approach
broad

spectrum

Classical production

source term

vacuum inflaton
all models

broad

fluctuations spectrum

second-order

fluctuations
inflaton+spectator broad

GW generated by

of extra
fields spectrum

the presence of

scalar fields
curvaton broad

a source term

spectrum

in GW equation

gauge particle

pseudoscalar inflaton broad

of motion

production

+gauge field spectrum

scalar infl.+ broad

pseudoscalar+gauge spectrum

scalar particle scalar inflaton
peaked

production +scalar field

particle production chaotic inflation peaked

during preheating hybrid inflation peaked

mechanics, are testable, in principle, by observations. Therefore inflationary physics re-
veals itself as a framework where fundamental questions about quantum mechanics and
cosmology arise too. In facing such basic issues, inflationary GW play a significant role.

Up to now the most prominent and unsolved issue, in this framework, is the follow-
ing: the CMB radiation is an observable and then, according to quantum mechanics, it
corresponds to a quantum operator. Thus when we look at a CMB map we are con-
sidering the results of a measurement corresponding to a specific observable. Following
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the Copenhagen interpretation, in obtaining CMB maps we are making a measurement
which leads the quantum state of the CMB radiation falling into an eigenvalue of the
related observable. The issue is that, in light of this interpretation, CMB perturbations
get the value of the eigenvalue only at the present time when we are making the mea-
surements, since no observers existed before us. Moreover, perturbations which lead to
the CMB anisotropies are the same that give rise to the large-scale structures of the Uni-
verse. Then the fact that these perturbations get their determined value only today is in
contrast with our understanding of the evolution of structures, in particular with the fact
that they started growing at early times. Then, in a more impressive way with respect
to laboratory systems, in cosmology we have to face with the single outcome problem.

Several steps have been made in order to face this issue. In [244], firstly, it has
been pointed out that inflationary perturbations evolve into highly squeezed quantum
states on super-horizon scales because of the accelerated expansion, resulting into highly
non-classical states. On the other hand such a kind of quantum perturbations can be
described as a realization of a classical stochastic process in virtue of their large occupa-
tion number [244], so that the usual approach of considering these quantities as classical
is justified.

A further step in understanding this issue has been made introducing the phenomenon
of “decoherence”, which selects the amplitude basis as the pointer basis of the system.
At the same time this opens a discussion about the possibility of considering the Universe
as a closed system [244].

Nevertheless, this new approach does not solve the problem of the single outcome,
that still remains, not only in cosmology, but also for laboratory systems. How a single
outcome is produced still continues to be an open question, that in cosmology takes the
name of macro-objectivation problem. CMB maps bring information about a measure-
ment that had to take place in the early Universe, but at that time no conscious observers
were there. So, how does the realization we measure today is obtained?

Different solutions have been proposed to the issue. In particular, a way of solving
the problem which presents discriminatory predictions comparable, in principle, with
experimental data, has been proposed: the collapse models [245, 246]. The latter were
employed for the first time in the framework of the early Universe by [247-249], and later
they have been developed exploiting the Continuous Spontaneous Localization (CSL)
approach [250, 251]. More recently, the CSL model was used also with a novel concep-
tual approach [252], which consists in facing the quantum-to-classical transition and the
production of primordial perturbations at the same time.

7.1. Observational predictions for CSL single field dynamics. – In the collapse
model presented in [251], the dynamics of the inflationary fields is investigated in the
Schrödinger picture and the standard scalar and tensor perturbations are described by
wave-functional [253]. Then the corresponding Schrödinger equations are parametrized
by several quantities which lead to non-standard scalar and tensor power spectra. In
particular, both scalar and tensor perturbations present the same modification to the
amplitude of the power spectrum so that the tensor-to-scalar ratio is the same as the
standard approach, that is r = 16ε. On the other hand, both scalar and tensor spectral
index present a deviation with respect to eqs. (45)-(67)

nS − 1 = δ + 2η − 4ε,(191)
nT = δ − 2ε,(192)
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where δ is a number collecting the parametrization of the Schrödinger equation. More-
over, the fact that the tensor amplitude depends, besides the Hubble parameter, on the
new parameters of the model, implies that the GW amplitude is no longer a direct indi-
cation of the energy scale of inflation. Finally, the most interesting fact is the violation of
the consistency relation between the tensor-to-scalar ratio and the tensor spectral index:
r = −8nT + 8δ. Clearly, in order to test these relations, the detection of tensor modes is
a fundamental prerequisite.

In this framework, recently, interesting investigations have been made in order to find
out if there are any signatures of the quantum origin of primordial perturbations in CMB
anisotropies; see [254,255] and references therein.

In summary, inflationary perturbations represent a very interesting and particular
area where fundamental questions about quantum mechanics and cosmology come into
play, in particular for what concerns the single outcome problem. In this respect primor-
dial GW play an important role in order to discriminate among different ways of solving
this puzzle.

8. – Consistency relations and possible violations

A detection of primordial GW would open the possibility of testing a powerful in-
flationary consistency relation, thus improving our understanding of the physics of the
Early Universe.

In sect. 2.3.2 we have shown that for single-field slow-roll inflation a strict consistency
relation holds between the tensor-to-scalar ratio r and the GW spectral index nT, at first
order in the slow-roll parameters, for each perturbation scale k

(193) r = −8nT,

where, in general, r and nT are scale-dependent. An analogous relation which connects
tensor features to the scalar ones, exists also for the running of the spectral index (67) [49]:

(194)
dnT

d ln k
� r

8

[r

8
+ (nS − 1)

]
.

However, the running is slow-roll-suppressed and then the tensor power spectrum is usu-
ally described only by the spectral index nT. For higher-order extensions of the previous
relations, see [49]. Relation (193) is a particular prediction of single-field slow-roll in-
flation, which is violated in several other inflationary scenarios. Therefore, verifying
this equality would constitute a powerful test of single-field slow-roll inflationary mod-
els [256-260]. Remember that relation (193) comes from the possibility of expressing
both sides in terms only of the slow-roll parameter ε. In particular, this means that
r and nT are two quantities directly related to the energy scale of inflation, therefore
violating the relation (193) would imply loosing also the direct connection between r
and/or nT and the energy scale of inflation. A violation of the consistency relation, in
the form of non-standard scalar power spectrum amplitude, and/or non-standard GW
power spectrum, can arise for different reasons. The most explicit cause of a violation
is represented by a blue tensor power spectrum, that is by nT > 0, which is obviously
incompatible with eq. (193). In general, inflationary models predict a red tilt of the
GW power spectrum, whose value depends on the model details. Notice that this fact,
for most standard scenarios, is a direct consequence of the connection between nT and
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ε, which holds only for GW generated by vacuum fluctuations of the field that drives
inflation. Then a blue tensor spectral index can arise when an extra amount of GW
generated not from vacuum fluctuations is present and moreover when modifications in
fundamental physics are assumed or in models built in the framework of modified gravity
theories(8). In the first case the direct link between GW amplitude and energy scale of
inflation is broken. However we will show that a violation of the standard consistency
relation could come from a non-standard red GW spectral index too. Finally, the vio-
lation can be due to an unusual value of the scalar power spectrum amplitude, which
would lead to an anomalous expression for the tensor-to-scalar ratio.

Let us list here the main inflationary models in which, for different reasons, a vi-
olation of eq. (193) arises; the most significant, with respect to the role of GW, are
collected in table III. Let us also mention some alternative scenarios where a violation
of the relation (193) happens, but which are far from the goals of this review: string gas
cosmology [108] and matter bounce cosmology [262,263].

8.1. Inflationary models deviating from the single-field slow-roll scenario. – The vi-
olation of the standard consistency relation can be the signature of a departure from
the standard single-field slow-roll inflation scenario. The simplest situation leading to
scalar perturbations or tensor power spectra different from the usual ones, is the presence
of extra sources for scalar or tensor perturbations, which enhance the amplitude of the
respective power spectra. Another reason could be a modification of some aspects in the
physics of the inflaton, for example its speed of sound, which it imprints features in the
power spectrum. Also the case of General slow-roll Inflation [264] has been examined,
where the slow-roll conditions are relaxed and in principle a blue tensor spectral index
can be obtained, but leaving open the problem of how to get the end of inflation.

8.1.1. Inflationary models with extra-sources of gravitational waves. In several inflation-
ary models extra mechanisms of GW production (w.r.t. the standard mechanism) can
be implemented in several ways (see sect. 3). In the presence of additional contribu-
tions of tensor modes, the tensor-to-scalar ratio r deviates from the standard relation
r = 16ε and also the tensor spectral index can be different from the standard value
nT = −2ε. We have shown that second-order GW are generated in the presence of a
transverse and traceless anisotropic stress tensor. The crucial point is in which cases and
on which scales, the additional contribution so generated is significant, with respect to
the standard one, providing a deviation from r = 16ε. Therefore the modifications to the
consistency relation in these cases is quite model dependent, and we refer the reader to
the previous sections for more details about the expression of the tensor-to-scalar ratio
r. However an interesting point is that the consistency relation might receive very small
(unmeasurable) corrections on CMB scales, while being very different on much smaller
scales.

For example, in the case we have discussed in sect. 3.1, where a spectator scalar field,
characterized by a small speed of sound is present during inflation, scalar perturbations of
the inflaton act as a source of tensor modes, thus yielding an extra amount of GW. In this
situation, the tensor spectral index related to the sourced GW can also be blue [11]. As
explained in sect. 3.3, also inflationary scenarios where particle production takes place,
predict an extra amount of GW, due to the anisotropic stress tensor introduced by the

(8) See [261] for an investigation on how the trans-Planckian physics can modify the consistency
relation too.
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produced particles. A large amount of extra GW can be generated on some ranges of
scales, with non-standard scale-dependence. This additional contribution clearly leads
to a violation of the standard consistency relation on the related scales, as it provides an
additional contribution to the GW power spectrum, which is not directly related to the
energy scale of inflation.

8.1.2. Inflation driven by multi-fields. If Inflation is driven by more than one degree
of freedom, for example by two scalar fields, not only adiabatic scalar perturbations are
generated but also isocurvature perturbations. Conversely, GW still depend only on the
energy scale of inflation. Notice the difference with the case of a spectator scalar field in
which the secondary field does not drive the accelerated expansion and then no significant
isocurvature perturbations are produced. Non-adiabatic perturbations lead to an extra
contribution in the denominator of the tensor-to-scalar ratio r, and then a deviation
from r = 16ε is expected [265], being ε related only to the adiabatic contribution of
scalar perturbations. An analogous situation arises in the case of more than two scalar
fields driving the inflationary dynamics [265] (in [266] the issue is faced with a statistical
approach by the calculation of the probability distribution function of nT/r). In the
former scenario, the standard consistency relation involves a new factor [265]:

(195) r = −8nT sin2 Δ,

where cos Δ parametrizes the correlation between adiabatic and isocurvature perturba-
tions at horizon exit. In the case in which inflation is driven by more than two scalar
fields, an additional uncorrelated isocurvature mode could contribute to the non-adiabatic
perturbations, giving an additional contribution to the primordial scalar curvature. The
relation (193) then becomes [265]

(196) r ≤ −8nT sin2 Δ.

8.1.3. General single field inflation. By “general single field inflation” we denote those
scenarios in which the accelerated expansion is driven by scalar fields with a Lagrangian
of the form P (X,ϕ) where X is the canonical kinetic term, and P a generic function. This
model includes, for instance, DBI inflation and k-inflation [241, 267]. In these scenarios
the violation of the standard consistency relation is due to the non-canonical dynamics
of scalar perturbations. In those models, the inflaton sound speed reads c2

S = dP/dρ =
P,X /(P,X +2XP,XX ), where ρ is the energy-density of the inflaton; cS generally differs
from the standard unitary value [241]. The scalar power spectrum at leading order in
the slow-roll parameters results enhanced by a factor 1/cS. On the other hand, tensor
perturbations have the usual behavior. In this case eq. (193) becomes

(197) r = −8cSnT.

The Planck Collaboration obtained constraints on cS, for several specific scenarios belong-
ing to this class of models [52], exploiting the scalar power spectrum and non-Gaussianity
estimations (since, in general, small sound speed of the scalar field means large non-
Gaussianity of scalar perturbations [267]).



464 M. C. GUZZETTI, N. BARTOLO, M. LIGUORI and S. MATARRESE

8.1.4. Inflationary models with spatial and time variation of the inflaton decay rate. A
deviation from the standard consistency relation can be provided also by the reheating
physics, when the inflaton decays into ordinary particles χ to which it can be cou-
pled [268]. The inflaton decay rate Γ depends on the vacuum expectation value of the
field to which it is coupled. Usually Γ is supposed to be constant, but χ can fluctuate
during inflation and leave imprinted these variations on super-horizon scales, so that the
inflaton decay rate Γ cannot be considered constant. When this happens, the variation
of Γ leads to a shift of the curvature perturbations ζ on super-horizon scales, that can
be parametrized by Δ ≡ (ζf − ζi)/ζi, where i and f indicated the initial and final times
of the reheating period. This variation introduces a new factor in the denominator of r
and then a deviation of the standard consistency relation of the form [268]:

(198) r = −8(1 − 2Δ)nT.

8.2. Inflationary models with modifications in fundamental physics. – Also modifica-
tion of specific features related to more fundamental physics can lead to a violation of
the consistency relation.

8.2.1. Inflation with collapse model for quantum fluctuations. As seen in sect. 7, intro-
ducing modifications to the Schrödinger equation which governs the evolution of primor-
dial perturbations, in order to solve the quantum to classical transition issue, leads to
non-standard scalar and tensor power spectra and then to a violation of the consistency
relation of the form [269]

(199) r = −8nT + 8δ,

where δ includes the parameters which modify the Schrödinger equation.

8.2.2. Inflation with general initial conditions. There are several motivations to question
about the initial vacuum conditions from which quantum fluctuations grow up. One of
these is the Trans-Planckian problem. Inflationary perturbations arise in UV-completion
scales, where we are not sure that quantum fluctuations of the fields were in their lowest
energy state, that is we are not sure we can impose Bunch-Davies initial conditions.
If general initial conditions are imposed, additional factors appear in the field power
spectrum [270, 271]. In particular if non-Bunch-Davies initial conditions are applied to
the gravitational field, in general the analog of eq. (61) becomes [270]

(200) vk = C+(k)
H√
2k3

(1 + ikτ)e−ikτ + C−(k)
H√
2k3

(1 − ikτ)eikτ ,

where |C+(k)|2 − |C−(k)|2 = 1. These new factors introduce arbitrary quantities in
the tensor power amplitude and then, in general, a deviation from the standard consis-
tency relation [270]. Moreover, the k dependence of C±(k) can lead to a blue tensor
spectrum [270,271].
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8.2.3. Inflation with non-commutative phase space. In the context of quantum grav-
ity, and in the framework of FRW Universe models, the case of a single-field inflationary
model with non-commutative phase-space, that is with a non-standard commutative rela-
tions for quantum fields has been considered [272]. Modifying the canonical commutation
relation for the conjugate momenta leads to a non-standard equation of motion for tensor
modes. In particular, the tensor spectral index vanishes for small scales and becomes
blue at large scales. Scalar perturbations are not influenced by the new physics. The
whole behavior is a deviation form the standard consistency relation at least on large
scales, due to the blue tensor spectral index.

8.3. Inflation in EFT approach. – As seen in sect. 2.4.2, in the particular case of
admitting the breaking of spatial diffeomorphisms by adding effective mass terms and
derivative operators, it is found that tensor perturbations can get an effective mass and
a speed of sound cT different from unity [101]. The sound speed influences the amplitude
of the tensor power spectrum by a factor 1/cT, while the mass leads to a deviation of the
tensor spectral index from the standard value nT � −2ε. Moreover a blue spectral index
is possible, when preserving the NEC [101]. Then, in general, the standard consistency
condition is violated. See also the case presented in [107]. In [103] the conditions are
found under which a blue GW spectral index appears, while the scalar spectral index
keeps red, as required by CMB observations.

8.4. Inflationary models in Modified Gravity. – Another framework in which violations
of the consistency relation arise are models built on modified gravity theories; see sect. 5.
Here the deviation of the scalar and tensor power spectra from the standard form has
a simple reason: we are modifying the canonical dynamics of perturbations. One of
the most interesting scenarios considered in this context so far appear those related to
Galileon Inflation [236] (see [52] for observational constraints on these models).

8.4.1. G-Inflation and Generalized G-Inflation. In G-Inflation model [238] (see
sect. 5.4.2), the inflationary dynamics is described by a Lagrangian of the form (185).
The GW dynamics is not altered by the new terms of the Lagrangian and then tensor per-
turbations present the same power spectrum as the standard case. Moreover, in general
the NEC is not guaranteed to be satisfied [238] also in the case when ghost are avoided
and c2

s > 0, so that the tensor spectral index reads nT � −2ε, but it can be blue due to
the possible negative values of the slow-roll parameter. However, in the general case of G-
Inflation, due to the non-standard scalar power spectrum produced, neither the standard
consistency relation nor a simple expression between the tensor-to-scalar ratio and the
tensor spectral index can be obtained [238], but in the particular case of potential-driven
G-Inflation, a consistency relation holds [242]. In fact, from (189)-(190), we have

(201) r � −32
√

6
9

nT .

As seen in sect. 5.4.1, the G-inflation model can be generalized by adding new terms
in the Lagrangian, eq. (173), in order to get the most general equation of motion of
second order [234]. In this case the GW dynamics is influenced by the new terms and a
deviation from the usual tensor power spectrum is obtained, both in terms of amplitude
and spectral index, and then in general a violation of the consistency relation can be
expected. Scenarios of Generalized G-Inflation are investigated in connection with the
consistency relation in [273].
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Table III. – GW features for selected inflationary models. We show the prediction for the
amplitude of the tensor power spectrum at the horizon crossing and the related spectral index, as
functions of the model parameters. In the next column we indicate if the tensor spectral index is
expected to be red, nT < 0, or blue nT > 0, or if both possibilities are admitted r/b. In last column
we point out the consistency relation, where it is significant, and denote violation the cases in
which, due to an extra background of GW, a violation of the standard consistency relation can be
expected on some ranges of scales (see discussion in sect. 8

.
1). Standard Inflation: Lagrangian

of eq. (25); see sect. 2
.
3. EFT inflation(a): Lagrangian of eq. (86), cT GW propagation speed,

mT graviton mass; see sect. 2
.
4.2. EFT inflation(b): Lagrangian of the same form of eq. (86)

with α = c−2
T /2, m = 0, cT a time-dependent parameter and p ≡ −ċT/cTH∗ a positive quantity;

for more details, see [107]. Generalized G-Inflation: Lagrangian of eq. (173), γT, GT, GT and
νT defined in (177), (184) and (182) respectively; see sect. 5

.
4.1. Potential-driven G-Inflation:

Lagrangian of eq. (185); see sect. 5
.
4.2. Particle production: Lagrangian of eq. (124), ξ defined

in (127), and δξ defined in sect. 3
.
3.2; see sect. 3

.
3.2. Spectator field: Lagrangian of eq. (110),

cS and m the speed of sound and the mass of the spectator field; see sect. 3
.
2.2.

Model Tensor power spectrum Tensor spectral index
Consistency

relation

Background

Standard infl. PT = 8
M2

pl

`
H
2π

´2
nT = −2ε red r = −8nT

EFT inflation(a) PT = 8
cTM2

pl

`
H
2π

´2 nT = −2ε + 2
3

m2
T

αH2
r/b –

× `
1 + 4

3
ε
´

EFT inflation(b)
PT = 8

cTM2
pl

2
−p
1+p

π
Γ2

nT = p
1+p blue violation

×
“

1
2(1+p)

” `
H
2π

´2

Gen. G-Infl.
PT = 8

M2
pl

γT
G

1/2
T

F
3/2
T nT = 3 − 2νT r/b –

× `
H
2π

´2

Pot.-driv. G-Infl. PT = 8
M2

pl

`
H
2π

´2
nT = −2ε r/b r � − 32

√
6

9
nT

Extra Particle prod.
P+

T = 8.6 · 10−7

– blue violation

background
× 4H2

M2
pl

`
H
2π

´2 e4πξ

ξ6

Spectator field PT � 3 H4

c
18/5
S M4

pl

nT � 2
“

2m2

3H2 − 2ε
”

r/b violation
− 18

5
ċS

HcS

8.5. Observational prospects. – In light of the power of the consistency relation (193),
constraining the tensor amplitude and spectral index would represent a powerful test for
the single-field inflationary model or it would provide hints for a departure from that
physics. In order to test the validity of the consistency relation, one has to obtain an
estimate of the scalar and tensor perturbation amplitudes and of the spectral index of
tensor perturbations. Clearly the most difficult task is that of observing features con-
cerning the tensor sector. The largest difficulty is, of course, estimating the GW spectral
index, which requires a measurement of the GW amplitudes on different scales. CMB
data alone cannot provide strong constraints on nT, but the advantage of those mea-
surements is that they provide data directly on the tensor power spectrum. It is clear
that measurements of GW on smaller scales, such as those related to the direct detec-
tion by laser interferometer experiments, could provide stronger constraints on tensor
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features [274-276]. GW direct detection experiments are planned to work on range of
scales 18–20 orders of magnitudes smaller that those of the CMB. Up to now, on these
small scales we have only upper bounds on the cosmological GW energy-density due to
a non-detection of the primordial signal. Of course, a remarkable help in this direction,
would come in the case of blue-tilted tensor spectra.

Note that measurements on small scales provide a GW energy-density affected by
all the history of the Universe, see [277] and references therein. Therefore in order to
extract the primordial parameters AT and nT one has to clean the signal from all late-
time effects. Moreover it has been found that also the choice of the pivot scale influences
the parameters estimation.

Up to now, the data leave open the possibility of a violation of the consistency relation,
as arising from a blue tensor power spectrum [256]. Available data provide only an upper
bound on the tensor-to-scalar ratio of r0.05 < 0.09 at 95% C.L. [6] and an estimate of the
tensor spectral index of nT = 0.06±+0.63

−0.89 at 95% C.L. [274] (for more details and further
estimations, see sect. 11).

It is also interesting to consider that, usually, the consistency relation is assumed
by default in data analysis. A few papers [256, 270] showed how admitting a prior for
the tensor spectral index that also allows negative values, leads to deviations in the
cosmological parameter estimation, in particular for the scalar spectral index, but also
for the baryonic and cold dark matter energy-densities [256].

Forecasts on the possibility of testing the consistency relation, both from CMB ob-
servations and direct detection experiments are presented in [278,279].

9. – Gravitational waves as a source of information for the thermal history of
the Universe

When primordial tensor modes enter the horizon after the accelerated expansion phase
they start evolving, more precisely their amplitude is damped by a factor inversely pro-
portional to the scale factor, so that the present GW spectrum reflects the expansion
history of the Universe [84]. If we could detect inflationary GW, knowing with a certain
accuracy their primordial properties and being able to disentangle them from overlapping
later effects, such GW would represent a possibility to trace the thermal evolution of the
Universe, including the reheating phase; see [84,280-289].

9.1. Gravitational-wave transfer function. – In a FRW spacetime, tensor modes obey
eq. (54) if there are no sources. During inflation, GW wavelengths are stretched and
moved to super-horizon scales. Solving the mentioned equation one finds that the GW
amplitude hk,prim remains constant on super-horizon scales. Therefore, the general solu-
tion of eq. (54) can be written as

(202) hk(τ) ≡ hk,primTh(τ, k),

where the transfer function Th(τ, k) describes the evolution of the GW mode when they
enter the horizon during later stages after inflation. The transfer function is normalized
such that Th(τ, k) → 1 as k → 0. Defining

(203) Δ2
h,prim(k) ≡ d〈hijh

ij〉
d ln k

,
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from eq. (77) and eq. (202), we have

(204) ΩGW(k, τ) =
1
12

(
1

aH

)2

Δ2
h,prim(k)T ′2

h (k, τ).

For modes well inside the horizon, the previous formula can be approximated as [84]

(205) ΩGW(k, τ) =
1
12

(
k

aH

)2

Δ2
h,prim(k)T 2

h (k, τ).

In single-field slow-roll inflation, the primordial power spectrum is usually written in
terms of the slow-roll parameters and of the Hubble scale during inflation [65]

(206) Δ2
h,prim(k) = 64πG

(
H

2π

)2
[
1 − 2ε ln

k

k∗
+ 2ε (η − ε)

(
ln

k

k∗

)2
]

.

Solving (54) for radiation or matter dominated eras, one finds that in both cases the am-
plitude depends on the wavenumber and is modulated by the inverse of the scale-factor
with the corresponding time-dependence (while the oscillatory behavior is described by
Bessel functions). This damping factor is what we are interested in. Notice that the
present GW amount is constituted by tensor modes that re-entered the horizon in differ-
ent epochs of the history of the Universe, so that we have to take into account that each
mode k undergoes a different damping, depending on the time it evolves sub horizon and
on the specific time dependence of the scale-factor during such an evolution. Well inside
the matter dominated epoch, the solution of eq. (54) for all modes is

(207) hk(τ) = hk,prim

(
3j1(kτ)

kτ

)
,

with j� the �-th Bessel spherical function, given by j1(kτ0) → 1/(
√

2kτ0) in the limit
kτ0 → 0. The subscript 0 denotes the present time. Averaging over time the previous
solution, to extract the amplitude behavior, one finds the factor 1/a mentioned above.
Then the GW spectrum today attains the following form:

(208) ΩGW (k, τ0) =
1
12

(
k

aH

)2

Δ2
h,prim(k)

(
3j1(kτ0)

kτ0

)2

(. . .),

where the last factor embodies all terms arising from the change of the scale-factor from
the horizon re-entry to the present time, for a given mode k, and it will be specified now.

A first damping factor comes from the change of the relativistic degrees of freedom [84,
290]:

(209)
(

g∗ (Tin)
g∗0

) (
g∗s0

g∗s (Tin)

)4/3

,
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where g∗ are the relativistic degrees of freedom, g∗s its counterpart for the entropy, “in”
denotes the time when a considered mode enters the horizon, and Tin is given by [286]

(210) Tin(k) � 5.8 × 106 GeV
(

g∗s (Tin)
106.75

)−1/6 (
k

1014 Mpc−1

)
.

Another function is needed in order to connect the GW that enter the horizon before
and after matter-radiation equality at t = teq [291]

(211) T 2
1 (xeq) =

(
1 + 1.57xeq + 3.42x2

eq

)
,

where xeq = k/keq and keq ≡ a(teq)H(teq) = 7.1 × 10−2Ωmh2 Mpc−1. Analogously, a
transfer function is needed to describe the change in the expansion rate at the end of
reheating t = tR, when the Universe moves from being inflaton-dominated to radiation-
dominated [286]

(212) T 2
2 (xR) =

(
1 − 0.32xR + 0.99x2

R

)−1
,

where xR = k/kR and kR � 1.7×1014 Mpc−1(g∗s(TR)/106.75)1/6(TR/107 GeV). In terms
of frequency it corresponds to

(213) fR � 0.026Hz
(

g∗s (TR)
106.75

)1/6 (
TR

106 GeV

)
,

which is the frequency for which the change in the frequency dependence of the spectrum
due to the reheating stage appears. In summary, the whole transfer function T 2

h (k) reads

(214) T 2
h (k) = Ω2

m

(
g∗ (Tin)

g∗0

)(
g∗s0

g∗s (Tin)

)4/3
(

3j1 (kτ0)
kτ0

)2

T 2
1 (xeq) T 2

2 (xR) .

This expression tells that, once the values for the degrees of freedom evaluated at various
epochs and Ωm are given, the GW spectrum is a function of the tensor-to-scalar ratio
r and of the reheating temperature TR; see also [283]. The so-obtained GW spectral
energy-density at the present time is shown in fig. 6.

9.1.1. Equation of state of the Universe and spectral tilt. In principle, from a direct
detection of GW it could be also possible to extract information about the equation of
state of the early Universe [286,281,287,292]. Assuming that the primordial GW power
spectrum has no tilt, the frequency dependence of the present power spectrum is fully
included in the transfer function, so that ΩGW ∝ k2T 2

T(k). Since modes start evolving
only when they enter the horizon and they are damped only by the factor 1/a, the transfer
function can be written as TT(k) = |hk,0|/|hk,prim| = (a0/ain)−1, that is ΩGW ∝ k2a2

in.
If the equation of state at the time of the horizon crossing is given by w = p/ρ, that is
the Hubble rate H2 ∝ a−3(1+w), and we consider that at the horizon crossing of a mode
k k = aH, we obtain ain ∝ k−2/(1+3w). Then if the Universe evolves adiabatically, for a
mode which enters the horizon when the Universe is described by w, we have

(215) ΩGW(f) = Ωgw,F (f/F )[2(3w−1)]/(1+3w).
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Fig. 6. – GW spectral energy-density at the present time, obtained from eqs. (205)-(214), for
r0.05 = 0.07, g∗s = 106.75, TR = 1015 GeV and Ωm = 0.3089.

Fig. 7. – Change of slope of GW spectral energy-density in correspondence to the end of the
reheating stage. Curves for different values of reheating temperature TR are shown.

Then the spectrum behaves as ∝ f−2 for modes which enters the horizon during matter-
dominance, and as ∝ f0 for the radiation-dominated era. Then, a change in the Universe
content dominance appears in ΩGW as a change in slope, in correspondence to the scale
of Hubble horizon crossing at that time. Therefore, extrapolating the tilt, in princi-
ple, one can find the equation of state that was governing the Universe at the time
when the corresponding modes enter the horizon and identify the moments when the
equation of state changed. Assuming that the reheating stage is a matter dominated
stage, the transition towards the radiation-dominated epoch, can be traced in the ΩGW

change of slope. Exploiting the correspondence between cosmic time and temperature,
for 106 GeV � TR � 109 GeV the frequency of the knee varies respectively between 10−1

and 102 Hz; see fig. 7 and table IV. For the possibility of constraining the reheating
temperature assuming a GW detection, see [281,280].

9.1.2. Late-time entropy production. It may happen that after the reheating stage a
field other than the inflaton, dominates the energy-density and starts oscillating. In this
case we have a phase of matter domination before the time of the equality, followed by



GRAVITATIONAL WAVES FROM INFLATION 471

the usual radiation domination when the field has decayed. In such a case another factor
has to be considered in the transfer function [283,286,280,284,287].

9.2. Reheating parameters and gravitational waves. – The mechanism of reheating is
still largely unknown. The difficulties in testing the physics of such a period are due
essentially to the fact that all the features originating from that stage are washed out
by the thermalization process. Moreover, reheating features are produced within the
horizon so that they evolve during the whole history of the Universe without leaving
imprints of their initial values. In light of the this situation GW could represent a unique
and powerful source of information about the reheating stage. At the same time, the
dependence of GW evolution on the reheating process, means that the possibility of
a detection of GW is influenced by the reheating temperature [287, 293-295, 286]. For
example, an interesting aspect is the dependence of the tensor spectral index estimation
on the reheating temperature assumed in the model with which data are fitted [285,280,
296]. Such a dependence can significantly relax the constraints on the tensor tilt nT,
opening the possibility also to a blue-tilted spectrum on CMB scales [287]. On the other
hand, given an inflationary potential, and then an energy scale of inflation, a detection
of GW in a certain frequency band would represent the possibility to put a lower bound
on the reheating temperature [282, 285] and, for example, of breaking the degeneracy
between inflationary models with a massive inflaton and those with a massless one, due
to the different reheating stage that follows each of them [285].

9.2.1. CMB data and reheating parameters. The constraints on the inflationary pa-
rameters r and nS usually extracted from CMB data actually have some dependence on
the assumptions made about the reheating physics [297-302]. On the other hand this
same fact means that CMB data encode information about the physics of the reheating
stage [303-305, 297]. Then it is interesting to study the possibility of extracting infor-
mation on the thermal (reheating) history of the Universe from CMB data in order to
improve the estimate of the inflationary parameters r and nS. The first possibility in
order to extract constraints on inflationary parameters r and nS from CMB data, is to
demand a reasonable number of e-folds between the time when the scale correspond-
ing to the current Hubble radius left the inflationary horizon and the end of inflation
Nk. The upper limit of Nk is imposed by requiring that inflaton oscillations reheat the
Universe instantaneously to a GUT scale-temperature, and the lower limit is obtained
demanding that reheating is closer to the electroweak scale. But actually Nk is related
to the equation of state and the temperature of the reheating stage for each specific in-
flaton potential [289]. On the other hand Nk can be written in terms of the inflationary
parameters nS and r for a given inflationary model. This connection between reheating
physical quantities and inflationary parameters nS and r, means that stronger constraints
on one side would represent an improvement in understanding the physics of the other
side, so that a measurement of r would represents a source of information for the re-
heating physics. This fact provides a way to break the degeneracy between inflationary
models characterized by the same values of nS and r. At the same time, for a given
inflationary model, CMB data could be exploited in order to constrain the equation of
state of reheating, through the estimation of nS and r and, moreover, if only a specific
range of values of wre is assumed as possible, some inflationary models can be excluded.

The other possibility in order to extract constraints on inflationary parameters is
to consider a range for w, instead of a range for Nk [300]. In this way slightly better
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constraints on inflationary parameters are obtained [300]. In particular, a higher lower
limit for the tensor-to-scalar ratio is found and strong constraints in the plane nS-r [299].
Besides the parameter w also the reheating duration Nreh can be considered in order to
model such a stage [301, 302]. In this case for some specific inflationary models, in the
nS-r plane a curve is identified, corresponding to a range of values of the equation of state
of reheating, assuming constant w value during the reheating stage, so that constraints
on nS and r lead to an improvement of the comprehension of reheating physics. The
reheating parameter space reveals that some inflationary models can be saved only for
exotic equations of state of the reheating phase and others can be re-admitted with the
help of the reheating parameters [302].

A constraint on the reheating temperature, as a function of the energy scale of infla-
tion, expressed by the tensor-to-scalar ratio r, stronger than that provided by BBN, can
also be found [306].

9.3. Gravitational waves and neutrino free streaming . – The interaction of GW with
matter and radiation is usually neglected, since it vanishes in the case of perfect flu-
ids. However if a tensor part, that is a traceless and transverse term, is present in the
anisotropic stress tensor, GW result coupled to matter and radiation too. During the
history of the Universe, particle free streaming gives rise to anisotropic stress terms which
modify the GW equation of motion.

Due to their relative energy-density and their relevance also in fundamental physics,
the most studied particles in this context are neutrinos, which decouple from matter
at T � 1 MeV, hence freely streaming afterwards. Calculations about their effects on
GW have been made both at the first [307, 308, 283, 309, 84, 310-314] and the second
order [315, 316] of the anisotropic stress tensor: the effect of the first-order term is a
damping of the primordial GW amplitude, while the second-order contribution, besides
providing a damping counterpart, acts as a source for second-order GW. It is found that
their influence could be non-negligible, so that taking into account their presence could
be relevant for the interpretation of possible data, but also for getting constraints on the
neutrino physics itself.

9.3.1. First-order neutrino anisotropic stress tensor. A calculation of the effects of the
first-order anisotropic stress tensor due to the neutrino free streaming has been done
in [307] and then developed by several later works, e.g. [314] and references therein.

Defining a phase-space distribution function for neutrinos n(x,p, t), its evolution is
found by the Boltzmann equation in a perturbed FRW metric. In the absence of metric
perturbations the solution for n(x,p, t) looks like that of an ideal gas, while metric
perturbations give rise to a deviation δn from such a behavior. The latter leads to a
traceless and transverse contribution to the anisotropic stress tensor πij of the Universe
depending on the metric perturbations themselves, hence providing a source term in the
GW equation of motion. Therefore, in order to find the solution for the equation of
motion of tensor modes taking into account also for neutrino content of the Universe, the
GW equation of motion and the Boltzmann equation have to be solved simultaneously.
The results is an integro-differential equation for hij(t) whose general solution is obtained
numerically.

Of course, the distribution function n, and then the solution for the GW depends on
the features assigned to the neutrinos. In light of recent developments in neutrino physics,
it is interesting to generalize the calculations parameterizing the effects of neutrino masses
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and the possibility of additional degrees of freedom [314, 311]. The effect of massless
neutrino on GW is a damping of the amplitude. In particular, for modes which enter
the horizon during the radiation-dominated epoch, the squared amplitude is reduced by
35.6% [307], independently of any cosmological parameter, while for larger modes, which
enter the horizon during the matter-dominated epoch, the damping of the amplitude
ranges from 10.7% to 9.0% for different values of Ωmh2 [307]. In summary, the damping
effect is most significant for modes with k > keq, where keq is the horizon scale at the
time of matter-radiation equality.

Considering neutrino masses, a further k-dependence of the damping arises [314]:
for modes which enter the horizon before the Universe temperature reaches the neu-
trino mass, the damping is more efficient, while for GW that come into the horizon
when the neutrino mass becomes significant, the damping effect is less strong. Fur-
thermore, the scale dependence of the damping due to neutrino features means that
a detection of a primordial GW signal would provide also constraints on the neutrino
physics itself.

Furthermore, the beginning of the damping, corresponding to the neutrino decoupling
era, affects those scales that correspond to present GW frequencies of f ∼ 10−11 Hz [317],
that is close to the range of frequencies analyzed by pulsar timing array observatories; see
table IV. Nevertheless such a feature is unlikely to be captured by planned experiments
of that kind [317].

9.3.2. Second-order neutrino anisotropic stress tensor. We have shown how the presence
of first-order scalar perturbations lead to a second-order source term in the GW equation
of motion. But such a term could be given also by a pure second-order traceless and
transverse anisotropic stress tensor. Free streaming particles give rise to such a kind of
term. For the first time, [315] calculated such a contribution for cosmic neutrinos and
photons solving the second-order Boltzmann equation for neutrino and photon distribu-
tion functions. Those calculations reveal that the usual approach of completely neglecting
neutrino effects is a poor approximation in particular for studying the GW evolution,
due to the large neutrino velocity dispersion during the radiation-dominated era.

Numerically solving the full system of Einstein and Boltzmann equations at second
order in tensor perturbations, using the tight-coupling approximation and taking into
account both pure second-order terms and second-order terms coming from first-order
scalar perturbations, the second-order GW contribution can be calculated [316]. Taking
into account, besides neutrinos, also the effect of the photon stress-energy tensor, on large
scales, both during the radiation and matter-dominated epochs, the role of the neutrino
and photon second-order anisotropic stress is negligible with respect to the effect of
the source term, due to first-order scalar perturbations. On the other hand, on small
scales, the photon and neutrino free-streaming influence the GW evolution in a more
efficient way with respect to the scalar-scalar source term. More precisely, the photon
distribution function leads to an enhancement of the GW amplitude of about 150%, while
the neutrino stress tensor provides a suppression of the amplitude of about 30%, so that
the final result due to pure second-order sources is an amplification of ∼ 120% of the GW
amplitude with respect to the second-order GW calculated without taking into account
the neutrino and photons anisotropic stress tensors [316]. This effect comes out to be
of fundamental importance mainly for direct detection experiments if r � 10−4 [316], in
which case the second-order GW background would become more important than that
coming from the vacuum fluctuations.
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Table IV. – Thermal history effects on the GW spectral energy-density. For the reheating effect
see sect. 9

.
1.1, for the role of neutrino decoupling see sect. 9

.
3. In the column temperature, we

report the temperature of the Universe at the time of reheating phase and neutrino decoupling,
respectively; next we report the estimation for the frequency at which one expects to have the
feature pointed out.

Phenomenon Feature Temperature Frequency Frequency

Thermal
Reheating

change
TR ∈ `

1011; 1016
´

GeV
f∗ � 0.026 Hz

fR ∈ `
103; 108

´
Hz

history

of slope “
T∗

106 GeV

”
Neutrino

damping TD � 1 MeV fD ∼ 10−11 Hz
decoupling

10. – Imprint of primordial gravitational waves on CMB and LSS

Primordial GW left several imprints on different physical observables along the his-
tory of the Universe. In this section we summarize which signature a primordial GW
background left on the CMB and on LSS.

10.1. Signature of primordial gravitational waves in the CMB . – The CMB forms when
the Universe reaches a temperature of about T � 0.26 eV and photons decouple from
ordinary matter. After this moment photons propagate, nearly unperturbed, up to us.
Therefore, the CMB provides a snapshot of the Universe at the time of recombination,
and its polarization and temperature fluctuations carry a big amount of information
about initial conditions at the end of Inflation, including imprints from primordial GW,
e.g. [318,319,65,320].

The presence of a GW background at the recombination epoch gives rise to both
temperature and polarization anisotropies. However, the most important signature is
clearly a “curl-like” (B-mode) polarization pattern in CMB polarization. CMB radiation
gets linearly polarized via Thomson scattering between photons and electrons at last
scattering, in presence of a quadrupolar anisotropy in the intensity field of photons,
see e.g. [321-323]. Although primordial scalar, vector and tensor perturbations can all
generate CMB polarization via this mechanism [321], the specific signatures turn out to
be different, in a way that we are going to quickly summarize in the following section,
and which allows to single out contributions from tensor modes.

In general, polarization angular power spectra have smaller amplitude than tem-
perature ones, because only a few percent of the CMB photons gets polarized by the
aforementioned mechanism. This is due to the fact that, in the tight coupling regime
between photons and electrons, Thomson scattering isotropizes the radiation field in the
rest frame of the electron, thus erasing any incident quadrupole. Polarization is thus
generated mostly around temperature dissipation scales, and close to recombination, in
a photon-electron mild-coupling regime. The polarization pattern is obtained by solving
the Einstein-Boltzmann equations for the photon distribution, characterized by a generic
polarization tensor, see e.g. [324,325].

10.1.1. Temperature and polarization angular power spectra. CMB temperature and
polarization fluctuations are conveniently expanded in spherical harmonics. The Gaus-
sianity of primordial CMB anisotropies then implies that all information is encoded in
temperature and polarization angular power spectra. The temperature field T (n̂) can be
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expanded on a spherical harmonics basis as

(216) T (n̂) =
∑
�,m

aT
�,mY�m(n̂),

where n̂ denotes a direction on the sky. The polarization field is described by a rank-2
tensor Iij(n̂), where the usual Stokes parameters Q and U are given by Q = 1/4(I11−I22)
and U = I12/2. It is then useful to consider the combination Q ± iU , which has definite
transformation properties under rotations, and expand it on a spin-2 spherical harmonics
±2Y�m basis [326-328]

(217) (Q ± iU) =
∑
�,m

a
(±2)
�m [±2Y�m(n̂)] .

For symmetry reasons, at this point it is convenient not to use directly the a
(±2)
�m , but

two independent combinations of them [328]

(218) aE
�m = −1

2

(
a
(2)
�m + a

(−2)
�m

)
, aB

�m = − 1
2i

(
a
(2)
�m − a

(−2)
�m

)
,

the so-called E- and B-modes. The former are invariant under parity transformation,
while the latter have parity-odd properties. Angular power spectra are then defined as

(219) CXY
� ≡ 1

2� + 1

∑
m

〈aX
�maY

�m〉,

where X,Y = T,E,B.
These spectra contain a large amount of information about cosmological parameters,

and their accurate determination is a major experimental goal. In the following we
briefly recall their most important features, in terms of GW signatures. The tempera-
ture angular power spectrum has been well measured by the Planck satellite [48]. The
main source of temperature anisotropies are scalar perturbations. GW contribute to such
anisotropies only at low multipoles � � 60, where the amount due to scalar perturbation
is much larger and the cosmic variance prevents to extract unequivocally the informa-
tion about tensor modes. More precisely, the amplitude of scalar perturbations is well
constrained by current data but the present freedom on the scalar spectral index allows
the tail of the angular power spectrum to move, introducing then a degeneracy between
nS and r [52]. Moreover, the height and the slope of low-� multipoles could be influenced
also by a possible presence of isocurvature modes. In summary the amount of primordial
GW, expressed by r, cannot be extracted only by temperature measurements. The most
interesting observable in order to obtain information about GW is actually the CMB
polarization.

The most interesting fact is that, since scalar perturbations locally produce only
quadrupolar anisotropies of momentum m = 0, at last scattering, they cannot gener-
ate B-mode patterns [321]. Therefore, since vector perturbations decay after inflation,
a measurement of primordial B-modes in the polarization pattern would provide unique
evidence for the presence of a primordial GW background. Their detection would allow
to break the degeneracy between scalar and tensor perturbations, and provide an estima-
tion for r. The primordial B-mode angular power spectrum is thus the most significant
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one for what concerns primordial GW. At the same time, it is the most difficult to mea-
sure, due to its small amplitude. In general, GW affect low-multipole power spectra,
because they correspond to scales that were super-horizon at the time of recombination
(primordial GW on sub-horizon scales are damped by the expansion of the Universe).
The contribution from primordial GW to the BB power spectrum essentially comes from
multipoles � < 150. A major issue when trying to measure primordial B-modes is that
suitable cleaning of the maps from the contamination due to galactic dust and astrophys-
ical foregrounds is required [329]. In fact, interstellar dust grains cause thermal emission
in the microwave band, so that, where galactic magnetic fields are present, such a radi-
ation can be linearly polarized, generating a foreground contribution in E- and B-mode
angular power spectra. In a similar way, the interaction between cosmic rays and the
galactic magnetic field is the origin of the synchrotron contribution in the polarization
power spectra. Foreground contamination at low-multipoles can give contributions to
the BB spectrum up to two order of magnitude larger than the primordial one, therefore
exquisitely accurate levels of cleaning are required. Besides dust contamination, also
gravitational lensing, due to the presence of clustered matter between the last scattering
surface and the observer, affects the CMB polarization pattern [330-332]. In particular
it can transform E-mode patterns into B-mode ones. Accurate de-lensing of B-modes is
going to be an important task if we want to achieve the high-sensitivities in the mea-
surement of r which are promised by future experiments [331-333]. Besides TT, EE and
BB auto-spectra, discussed above, we also have to consider the temperature-polarization
cross-spectra. In a standard scenario, the only non-vanishing cross-spectrum is TE,
since the other combination are parity breaking. The measurement of TE correlations
confirms an important prediction of standard Cosmology and inflationary physics [334],
allows tighter determination of cosmological parameters [335,48], and carries additional
GW information at low-� [336, 52]. The study of TB and EB spectra is also interesting,
since those can be generated, for example, in scenarios with primordial magnetic fields
(see, e.g. [337] and references therein), or in presence of parity-breaking Physics in the
Early Universe (see, e.g. [148,338,339,7], and [151] with references therein).

10.1.2. Current constraints on tensor modes from the CMB. Up to now, temperature
and E-mode angular power spectra have been measured with very high accuracy [48] on
a wide range of multipoles. A certain amount of B-modes polarization has been detected
too [340] for 30 < � < 150, but its amplitude is compatible with foreground contamination
and lensing of E-modes [341]. Current data actually provide only an upper bound on
r. The most strict constraint, that does not assume the consistency relation (71) but a
scale-invariant GW power spectrum, comes from the joint analysis of BICEP2 and Keck
Array data, Planck polarization and WMAP9 23 GHZ and 33 GHZ maps: r0.05 < 0.09 at
95% C.L. [6]. The Background Imaging of Cosmic Extragalactic Polarization 2 (BICEP2)
and Keck Array are ground-based experiments for the detection of CMB polarization in
a limited region of the sky, with high sensitivity. On the other hand their disadvantage
is that they work on 150 GHZ and 95 GHz photon frequency channels. High frequencies,
which are crucial to assess dust contributions, are not accessible from the ground. For
this reason, data collected by the Planck satellite are essential to allow proper component
separation in the current analysis. The joint analysis of Planck, BICEP2 and Keck Array
data has also produced a high-significance detection of gravitational lensing from LSS in
B-mode polarization. Allowing the lensing amplitude AL to vary in the data analysis,
they found AL = 1.13 ± 0.18 at 7.0σ of significance [341].

For what concerns the tensor spectral index, CMB data alone do not have the possi-
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bility to provide strong bounds on it, also in the case of a B-mode detection, since they
target only a narrow range of GW frequencies around f � 10−17 Hz. On the other hand,
a measurement in the range of frequencies accessible via direct detection experiments,
combined with CMB data, would provide very strict constraints on the tensor spectral
index, and then on the consistency relation (71); see sect. 8.

10.1.3. Further possible signatures of primordial gravitational waves. The generation
of non-standard GW during inflation or the production of primordial GW due to the
presence of extra fields, would introduce additional characteristic signatures in the statis-
tic of CMB anisotropies [342-345,134,137,151,146,346]. In particular, if primordial GW
are chiral or non-Gaussian, these features are expected to be encoded in temperature and
polarization angular power spectra and bispectra. A bound on tensor non-Gaussianity
has been provided by the Planck Collaboration [71]. For example, in the model de-
scribed by eq. (139), an extra production of chiral and non-Gaussian GW is expected.
These specific features lead to non-vanishing temperature and polarization bispectra with
parity-violation and non-vanishing TB and EB angular cross-spectra [150,151]. The lat-
ter, in general, would be a clear signature of parity-violation. Then the search for features
beyond CMB angular power spectra, could show up interesting new insights in the infla-
tionary mechanism by which GW have been produced.

10.2. Imprint of long-wavelength tensors on cosmic structures. – Besides the imprints
in CMB, GW affect the cosmic mass distribution too. Early and late time effects can
be identified. The presence of tensor modes during the early epochs of the Universe
is found to modify the power spectrum of primordial scalar perturbations [347]. At
late times the presence of a GW background leads to several effects: a tidal effect during
structure formation due to the presence of long-wavelength tensor modes [23,24,348,349],
a correlation of galaxy ellipticities (the shear) [350,351], and projection effects due to the
perturbation of the space-time by the GW on the galaxy distribution [22, 24, 352, 350],
the CMB [353, 354, 22, 355] and the 21 cm background [356-358]. Here we consider the
imprint of long-wavelength tensor modes on the primordial power spectrum of scalar
perturbations and consequently on the late time matter power spectrum [349,359].

The basic idea is to indirectly trace the presence of degrees of freedom coupled to
the source of curvature perturbations during the primordial stages of the Universe and
uncoupled, or weakly coupled, during late-times cosmic evolution [347]. The coupling
between curvature perturbations and other degrees of freedom leaves specific imprints in
the primordial curvature power spectrum. The interesting fact is that the information
related to the primordial coupling contained in such features is left imprinted in the late-
time matter perturbation power spectrum, and then, in principle, it could be captured
by galaxy surveys [360] and CMB experiments [361]. The presence of such features in
power spectra of quantities evaluated at epochs when the coupling is off, suggests to
refer to this extra degree of freedom as fossil field. Primordial GW produced during
inflation can be understood as a fossil field [362-366]. In view of these considerations,
it is interesting to identify which is the imprint in the scalar power spectrum of GW
produced during the inflationary stage. In general, assuming statistically isotropic and
Gaussian primordial curvature perturbations Φp, the coupling with GW implies that
the scalar power spectrum violates these properties [347]. There are two main effects
due to the presence of GW. The first is the presence of non-vanishing off-diagonal terms
in the correlation function 〈ΦpΦp〉h, which means that measurements related to two
wavelengths k1 and k2 provide information also about a tensor mode K. [347] estimates
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the volume V of a galaxy survey needed to detect such a departure from the Gaussianity
of curvature perturbations, and finds that for AT � 10−9 a survey with kmax/kmin � 5000
is required, where kmax and kmin are the modes related to the detection capability of the
survey. Surveys of this size are unfortunately far form planned capabilities.

A second imprint left by fossil fields is a quadrupolar anisotropy in the local galaxy
power spectrum. Here we deepen this second aspect.

10.2.1. Gravitational-wave imprints on the primordial curvature power spectrum. Requir-
ing global statistical isotropy, the primordial correlation function 〈ΦpΦp〉h evaluated in
the presence of a mode hij(K), is modulated by the bispectrum 〈ΦpΦphp〉, as a di-
rect consequence of the coupling between the two fields, and by the isotropic power
spectra PΦ(k) and Ph(k), where Φp are the primordial scalar perturbations (including
all orders) [347]. The interesting fact is that for several inflationary models, including
single-field slow-roll inflation, a consistency relation holds between the isotropic compo-
nent of the power spectra of the scalar field PΦ(k), and of the tensor field Ph(K) and the
bispectrum 〈Φp(k1)Φp(k2)hp,λ(K)〉, evaluated in the squeezed limit K → 0 [362,367]:

〈Φp(k)Φp(k)hp,λ(K)〉 → (2π)3δD (k1 + k2 + K)(220)

×1
2

d ln PΦ

d ln k
εij
s (K)k̂1ik̂2jPh(K)PΦ(k),

where λ indicates the polarization state of the GW and p stands for primordial. Notice
that this relation is valid up to corrections of order O(K2/k2), and that we are indicating
the wave-numbers of scalar perturbations with k and those of tensors with K. For more
details about the origin and the meaning of this relation, see [368]. The limit (220) gives
the possibility of specifying the power spectrum 〈ΦpΦp〉h in terms of the power spectra
of the scalar and of the tensor perturbation fields themselves. In the presence of the
squeezed modes K the scalar power spectrum then reads

〈Φp (k1) Φp (k2)〉h = (2π)3δD (k1 + k2) PΦ(k)(221)

+
∫

d3K
(2π)3

∑
λ

(2π)3δD (k1 + k2 + K)

×1
2

d lnPΦ

d ln k
PΦ(k)hp,λ (K) εij

λ (K) k̂1ik̂2j + O
(
K2/k2

)
.

Notice that the correction to the statistically isotropic power spectrum is of first order
in the perturbation hij . Transforming to configuration space and considering a local
region, that is associated to a Universe patch smaller than the tensor modes wavelength,
a quadrupolar modulation asymmetry in the observed local power spectrum for matter
and galaxies is found.

10.2.2. Local matter power spectrum. In order to get a physical quantity that can be
compared with the data, we need to consider the post-inflationary evolution and the
projection effects due to the observation. Let us indicate the observable matter power
spectrum including the signature of the fossil GW by Pδg(k;xc), where xc = (x1 +x2)/2
is the mean of the two points considered in the space where δg is evaluated. With the xc

dependence, we mean that the power spectrum is to be understood as a local quantity
referred to a neighbourhood of xc.
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First, one has to consider that second-order matter perturbations are coupled to scalar
and tensor perturbations of the first order. This effect is negligible at early times but
becomes significant at late times during the matter dominated epoch [111, 60]. Actu-
ally, GW perturb the space-time during matter clustering leading to overdensity modes
growing with a quadrupolar dependence. The most efficient modulation is due to long-
wavelength tensor modes, in particular to those which are entering the horizon at the
considered time. Furthermore, in order to get to the observed quadrupole of the δg

power spectrum, the space-time distortion due to metric perturbations has to be taken
into account. More precisely, scalar and tensor perturbations modify the geodesic curves
leading to a gap between the observed space-time position and that in the comoving
coordinates of the Universe. Considering all these effects, for K � k, leads to an ex-
pression of Pδg(k;xc), which is a function of the primordial metric perturbations, of the
primordial power spectrum of Φ modulated by the fossil field, and of the isotropic power
spectrum PΦ(k). Specifying 〈ΦpΦp〉h by the consistency condition eq. (220), Pδg(k;xc)
in the squeezed limit is obtained in terms of PΦ and Ph.

10.2.3. Quadrupole anisotropy. The obtained local matter power spectrum presents a
quadrupolar anisotropy [361,369]. As anticipated, this fact is interesting in order to look
for observable quantities that can probe the presence of a GW background originated
during the primordial phases of the Universe evolution. Quadrupole moments are given
by

(222) Q2m (xc) ≡
∫

d2k̂Pg (k;xc) Y ∗
(2m)(k̂)∫

d2k̂Pg (k;xc) Y ∗
(00)(k̂)

,

for m = ±2,±1, 0, with Y(�m)(k̂), defined with respect to some chosen coordinate axes.
It is useful to define a symmetric and traceless tensor Qij that encodes the contribution
due to a single large mode K

(223) Q2m (xc) =
∫

d2k̂Qij (xc)
(

k̂ik̂j − 1
3
δij

)
Y ∗

(2m)(k̂).

From the expression of Pδg(k;xc), the contribution due to a single tensor mode K is
obtained as a sum of the following terms:

Qij = (terms from primordial stages)(224)
+(terms from late time non linear coupling modes)
+(terms due to the projection effects).

The first term is the quadrupole imprinted at early times by the scalar-scalar-tensor
bispectrum in the squeezed limit. The second term represents the contribution due to
the fact that matter clusters in an anisotropic space-time, because of the long-wavelength
tensor modes. Notice that Qij continues to be a local quantity.

Assuming that the tensor field is a realization of an underlying statistically homo-
geneous and isotropic Gaussian random field, one can find that the average quantity
Q2(z) ≡ (8π/15)〈Qij(xc, z)Q∗ij(xc, z)〉 is a function only of the redshift z [349]. For
K → 0, at the present time, the contribution to the observed quadrupole vanishes, while
for smaller scales there is a residual effect due to modes that are entering the horizon
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now [349]. The consistency condition eq. (220) ensures that super-horizon modes do not
affect sub-horizon observables.

Given the current constraints on tensor modes, the quadrupole amplitude is pre-
dicted to be very small, so that considering forecasts about future galaxies surveys, a
quadrupole power detection is out of their detection capabilities [370]. In summary, the
observation of a power spectrum quadrupole by planned experiments, would rule out all
that inflationary models which satisfy eq. (220). It is then interesting to investigate the
inflationary models which violate that condition; in this case a detection of the quadrupo-
lar asymmetry would represent also the possibility to constrain inflationary parameters.
For example, in an inflationary scenario with a non-attractor phase, eq. (220) is satisfied
but sub-leading terms contain information about the dynamics which are not included
into the isotropic power spectra, such as the time of the switch from the non-attractor
to the attractor phase. The quadrupole term is found to be very small and undetectable
by planned experiments, but an upper bound on its power would lead to an upper limit
on the transition time [368]. Another interesting model in this context is Solid Infla-
tion, in which case eq. (220) is violated and a larger quadrupole in the galaxy clustering,
still compatible with current constraints, is predicted [368,371,372]. Instead for a quasi-
single-field model of inflation, the constraints on the quadrupole induced by super-horizon
tensor modes do not significantly restrict the parameter space of the inflationary theory,
while the departure from the statistical isotropy of the power spectrum could represent
in principle a powerful probe for the amplitude of primordial tensor modes [373]. More-
over in [373] the size of a galaxy survey necessary to probe a given tensor amplitude
is estimated. [374] investigated also inflation with non-Bunch-Davis initial conditions.
More recently, [106] examined the effects of fossil fields within the EFT approach of
inflation, considering scenarios that simultaneously break time re-parameterization and
spatial diffeomorphisms during inflation.

11. – Current constraints and observational prospects

Primordial GW have never been detected directly and not even we have an unequiv-
ocal indirect measurement of them. Several efforts are underway on the two fronts.
Assuming an inflationary period in the early history of the Universe, at the present time
the space-time is expected to be filled with a GW spectral energy-density Ωgw with a spe-
cific amplitude for each frequency f = c2πa/k. On the other hand, during the evolution
of the Universe, GW could have left imprints on different physical observables, providing
the possibility of indirect measurements. Most experiments which try to detect them,
directly or indirectly, have access to a specific range of frequencies, and then has to face
with the GW evolution related to the frequency band in exam.

11.1. Imprints of primordial gravitational waves on physical observables. – Starting
from the early stages, a primordial GW background affects the BBN process: being GW
relativistic degrees of freedom, they constitute a contribution to the radiation energy den-
sity of the Universe [375,25], which results in a faster expansion rate of the background.
In particular the latter means that neutrons have less time to decay before the freeze out
of the weak interactions, and then in presence of a fixed amount of GW, a certain over-
production of Helium during primordial nucleosynthesis is expected [376,377]. An estima-
tion of the Deuterium abundance combined with Planck data and BAO, then provides an
integral upper bound h2ΩGW < 1.7·10−6 at 95% C.L. for f � 10−15 Hz [378]. Phenomena
due to the GW effects on the cosmic expansion have also been considered in [379].
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Recently it has been noted that the current constraints on the abundance of pri-
mordial black holes leads to an upper bound on primordial tensor modes on very small
scales [380, 381]. In fact, bounds on primordial black holes constitute a limit on the
amplitude of scalar perturbation; as a consequence, since tensor modes play the role
of source for second-order scalar perturbations, an upper bound on primordial gravi-
tational waves can be found. It results: ΩGW < 10−5 − 10−5 for the frequency range
10−12–104 Hz [381] (see fig. 5 of [381] to find out the accurate scale-dependence). Go-
ing on along the history of the Universe, the GW background left its imprints on CMB
photons, both on their temperature and polarization distributions. In particular, the
presence of GW at the time of recombination leads to the formation of a B-mode pat-
tern in the polarization [382], which is then modified by late time phenomena; see
sect. 10. The measured CMB power spectra include information about GW at fre-
quencies f ∼ 10−17 Hz. Moreover the CMB energy spectrum too contains information
about GW: the integrated tensor power in the frequency range 10−12–10−9 Hz leads
to μ-distortions of the CMB spectrum [383, 384]. Furthermore, CMB power spectra
are affected by the GW contribution to the radiation energy-density through the time
of matter-radiation equality and the expansion rate of the Universe [385, 25]. As ex-
plained in sect. 10.2, the presence of a GW background also affects the mass distribu-
tion of the Universe, modifying the statistics of primordial curvature perturbations and
perturbing the space-time when matters clusters during the matter-dominated epoch
(by tidal effects) [23, 350, 349, 348]. Another interesting phenomenon that has to be
considered for our purposes is the gravitational lensing effect due to the presence of
GW in the space-time in which light signals propagate. The observed mass distribution
at high redshift is affected by this phenomenon (projection effects) [24], and a distor-
tion of galaxy shapes (shear) [22, 386, 350, 24] is expected to be there too. Clearly,
the presence of a GW background affects also light signals that are propagating to us
from closer objects with respect to galaxies. This effect could be captured by pulsar
timing array observations which, combining the perturbations in the signals coming
form different ultra-stable millisecond pulsars, in principle, will be able to trace the
presence of GW in the space-time in which the signal is propagating [387] (and refer-
ences therein). This kind of observations are particularly sensitive to GW of frequencies
f ∼ 10−9–10−7 Hz [388]. Finally, primordial GW are expected to permeate the present-
time Universe and then a direct detection is in principle possible. For this purpose the
laser interferometer experiments have been constructed and others are planned for the
future. The goal of these experiments is the detection of GW at frequencies spanning
from f ∼ 10−4 Hz for space-based interferometers, to f ∼ 102 Hz for ground-based ob-
servatories [388].

11.2. Current constraints. – Parameterizing the primordial GW power spectrum as in
eq. (66), current data provide bounds on its amplitude and spectral tilt. From CMB data
an upper bound on the GW amplitude at frequencies f ∼ 10−17 Hz is obtained. More
precisely, as previously mentioned, the joint analysis of Planck and external data (named
as Planck TT+lowP+lensing+ext in [341]), BICEP2 and Keck Array data (including the
2014 observing run with the 95 GHz channel), provided an upper bound of r0.05 < 0.07
at 95% C.L. [6], assuming the consistency relation (71). By employing BICEP2 and
Keck Array data, Planck data only for polarization and WMAP9 23 GHZ and 33 GHZ
maps, the bound becomes r0.05 < 0.09 at 95% C.L. [6], assuming a scale-invariant power
spectrum. Notice that the constraints obtained in the first way are more model-dependent
than those obtained in the second one. Other works [274-276,389] extended this analysis
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taking into account a non-vanishing spectral index and the measurements by LIGO [390].
Considering current data, coming from CMB, LIGO and the Parker Pulsar Timing Array
(PPTA) [391], and fitting data allowing the tensor spectral index to vary, in [274] it was
found that a blue power spectrum and r > 0.12 are preferred (this value of r refers to
the previous constraint on such a quantity provided by [341]). It is also shown that
Planck data are those which lead to such a high value of r, rather than BICEP data.
At the same time, the LIGO bound is found to be fundamental in order to obtain
such stringent limits. Constraints on nT have been obtained combining BICEP2/Keck
Array [341], temperature Planck data 2013 [392], WMAP [393] low � polarization, a prior
on H0 from HST [394] data, BAO measurements from SDSS [395] and the upper limit
on the intensity of a stochastic GW background from LIGO: nT,0.01 = 0.06+0.63

−0.89 at 95%
C.L. [274], in correspondence of a best-fit for the tensor-to-scalar ratio of r0.01 = 0.02.
Clearly, admitting the spectral index to vary leads to a weaker bound on the tensor-
to-scalar ratio r. A more recent paper [275] provides a further analysis which takes
into account the latest data release of Keck Array at 95 GHz [6] and one by one the
bounds coming from the Helium abundance, μ-distortions of the CMB and the LIGO-
Virgo [152] experiment. The limits resulting from their analysis with LIGO-Virgo bounds
are nT = 0.04+0.61

−0.85 at 95% C.L. with r < 0.085, found putting a prior lower bound on
the tensor-to-scalar ratio of r > 0.001. In [276] a further analysis is made which takes
into account CMB data form Planck, BICEP and SPTpol, current bounds form PPTA,
LIGO-Virgo and BAO and BBN indirect constraints, providing an upper bound on the
tensor spectral index of nT < 0.36 at 95% C.L. in correspondence of r0.05 = 0.11. In [274]
and [275], the same limits are obtained considering also a possible contribution of the
GW background to the relativistic degrees of freedom Neff .

Notice that in the mentioned works the primordial power spectrum of GW is
always parametrized as a power law. This assumption could be not appropriate for
frequency bands extending over several orders of magnitudes. In particular, at the end
of inflation, the slow-roll conditions are no longer satisfied and then the GW power
spectrum is expected to deviate form a pure power law. Therefore, a more detailed
parametrization could be a significant improvement of the outlined data analysis [277].
In this direction, [274] parametrized the power spectrum also taking into account a
scale-dependence of the tensor spectral index, concluding that with available data no
significant constraints can be obtained. Also, the choice of the scale of the UV cutoff
is still an open issue, which can significantly influence the results of data analysis [274]
and is then worth being explored.

11.3. Observational prospects. – Several future experiments are planned to improve
the mentioned bounds and hopefully detect the cosmological GW background. For what
concerns CMB polarization experiments, several ground-based, balloon and space-borne
experiments are under construction or have been proposed. Ground-based and balloon
experiments, such as the Atacama Cosmology Telescope Polarization Experiment (ACT-
Pol) [13] and Polarbear [14] (which are already underway), the Cosmology Large Angular
Scale Surveyor (CLASS) [15], the Primordial Inflation Polarization ExploreR (Piper) [16]
and Spider [17], are designed to improve the sensitivity over a restricted range of multi-
poles of the polarization power spectra related to one or two frequency channels. On the
other hand space-borne experiments have been proposed in order to span a larger multi-
poles range and to get data related to several frequency channels to improve the control
of systematic errors and the component separation analysis. We mention, for example,
the Cosmic Origins Explorer mission (COrE) [18], the Polarized Radiation Imaging ans
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Fig. 8. – B-mode power spectra obtained from Planck best-fit cosmological parameters [48] for
different values of r, compared with idealized noise for the Planck satellite (blue curve) [397]
and for a COrE-like experiment (red curve) [18]. From the top downwards (black curves):
r0.05 = 0.1, r0.05 = 0.01 and r0.05 = 0.001. Notice that the black curves do not include the
lensing contribution, which contaminates the signal. As visible, the realization of a COrE-like
CMB satellite would enhance considerably the possibilities of B-modes detection.

Spectroscopy Mission (PRISM) [19], LiteBIRD [20], the Primordial Inflation Explorer
(PIXIE) [21] (that are planned to improve the μ-distortions estimation too); see fig. 8.
About detailed B-modes observational prospects, taking into account planned experi-
ments for the next future and also for plausible far future experimental capabilities,
see [278,396].

Also pulsar timing array experiments are underway, such as PPTA [391], the European
Pulsar Timing Array (EPTA) [398], and the North American Nanohertz Observatory for
Gravitational Waves (NANOGrav) [399], and others are planned, such as the Square
Kilometre Array (SKA) [400] (as a secondary aim). The upper limit provided by EPTA
is ΩGW < 1.2 × 10−9 at 95% C.L. and for f = 2.8 × 10−9 Hz [398].

Also for what concerns direct GW detection several efforts are underway. LIGO, Virgo
and GEO600 [401] have already collected data. The joint analysis of LIGO and Virgo
provides an upper limit of ΩGW < 5.6×10−6 at 95% C.L. for f ∈ (41.4, 169.25) Hz [402].
The updated LIGO, that is aLIGO [26], has collected data too for a few months at the
end of 2015. Further upgrades are planned for aLIGO and for Virgo, that might become
adVirgo in summer 2016, and a sequence of observing runs are expected for the more
and more improved configurations of such laser interferometers (see for example [403],
table I). A number of ground-based experiments have also been proposed for the next
future, such as LIGO India (IndIGO) [404] (that will be included in the network aLIGO-
adVirgo), the Kamioka Gravitational Wave Detector (KAGRA) [405] and the Einstein
Telescope (ET) [406]. Moreover, the space-born experiment eLISA [27, 28] has been
planned. However, taking into account current bounds on r related to CMB scales,
if the primordial GW power spectrum is scale-invariant, planned experiments will be
not able to detect them [388]. For next future planned experiments, such as upgraded
aLIGO, a direct detection of primordial GW might be possible only in the case of a blue
inflationary power spectrum, that is, in the case of non-single-field slow-roll inflation;
see fig. 9. For a possible detection of a scale-invariant inflationary power spectrum, bold
experiments, such as the DECI-Hertz Interferometer Gravitational wave Observatory
(DECIGO) [407] and BBO [193], are required. These observatories might be useful also
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Fig. 9. – GW spectral energy-density for different values of nT are shown with solid lines:
nT = −r/8 (brown), nT = 0.18 (red) and nT = 0.36 (orange). The r value is fixed at r0.05 = 0.07.
It is assumed also TR = 1016 GeV. Short-dashed lines are current bounds related to: aLIGO
data, O1:2015-16 observing run (yellow) [403], combined analysis of Planck data, BAO and
BBN measurements which provides an integral bound ΩGW < 3.8×10−6 (black) [378]; see [276]
for the manner of employing this limit. The gray dot corresponds to the bound provided by
EPTA [398], which assumes nT = 0; see [276] for comments about this choice. Long-dashed
lines are expected power-law integrated sensitivity curves for the following experiments: BBO
(violet) [193,409], eLISA configuration L6A5M5N2 (blue) [410], eLISA configuration L4A1M2N1
(green) [410], aLIGO-adVirgo, O5:2020-22 observing run (magenta) [403]. Plotted upper bounds
and expected sensitivity curves are obtained by the method provided by [409] (see also [2]),
assuming a power-law signal. The mentioned eLISA configurations are described in [28].

in order to get information about the reheating temperature after inflation, as shown
in sect. 9. Anyway, also a non-detection of the primordial tensor modes by next future
experiments, combined with other data, would represent a powerful way to put limits
on the tensor spectral index and then to test the consistency relation (71). In fact
experiments of direct detection would provide information about frequencies of more
than 20 orders of magnitude larger than those related to CMB data. A detection of
primordial GW by such a kind of experiments would give evidence for a blue tensor power
spectrum and then rule out the single-field slow-roll inflation. For example, inflationary
models in which particle production takes place, admit the production of GW with
a blue tensor power spectrum, in principle, detectable by future experiments such as
eLISA. On the other hand a non-detection by those experiments would put a bound
on the spectral index and then a limit on the violation of the consistency relation. For
example, a non-detection by an experiment with upgraded aLIGO capabilities would put
a constraint on the tensor spectral index of nT < 0.34 at the 95% C.L. for r = 0.11
on CMB scales [275], and analogously eLISA would put an upper limit of nT � 0.2,
depending on the configuration. Experiments which investigate frequencies in the f ∼
10−2–103 Hz range are then extremely significant in order to put constraints on the tensor
spectral index, exploiting a combined analysis with CMB data [274-276].

To get the comparison between the sensitivity curves of planned experiments for GW
detection and primordial signals parametrized by a power-law, see [408,276]. In [275] are
presented also forecasts for a joint analysis of CMB data from a COrE-like experiment
and a detection from the ground-based laser interferometer aLIGO.
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For the far future, it could be possible to obtain information about the inflationary
physics also from the features of the GW, such as their level of non-Gaussianity and
chirality. The latter would provide interesting bounds on parameters of those inflationary
models which present events of particle production, such as the parameter ξ defined
in (127) [7, 125]. For what concerns non-Gaussianity, from CMB data strict bounds
on the scalar bispectrum have been obtained, but also the tensor three-point function
has been, more weakly, constrained by Planck measurements [71]. Non-Gaussianities
represent a clear example where information coming from features of scalar perturbations
can provide constraints on tensor perturbation properties, and viceversa. As an example,
the Planck Collaboration [71], considering Galileon inflationary models, from the bounds
of the scalar non-Gaussianity parameter f scal

NL , constrained the sound speed cS of the
Galileon scalar field and another parameter c̄s strictly linked to the tensor spectral index
nT in the modified consistency relation, finding that the constraints on f scal

NL leaves open
the possibility of a blue tensor power spectrum for that model [141, 150]. On the other
hand, also the tensor bispectrum could provide constraints on inflationary physics. An
example is given by the inflationary scenario associated with a pseudo-scalar coupling
to a gauge field, where f tens

NL can provide upper bounds for the model parameter ξ,
complementary to those coming from the scalar bispectrum [141,150]. In the context of
primordial non-Gaussianity from tensor modes, it might be interesting to consider also
the most general three-point function for tensor modes obtained by [363], taking into
account the isometries of the inflationary space-time and the cross-bispectra between
scalar and tensor modes introduced in [362].

12. – Conclusions

The inflationary model of the Early Universe predicts the production of a stochastic
GW background by quantum fluctuations of the gravitational field. Such a radiation
encodes a unique probe of the physics of the Early Universe and fundamental physics
theories. In addition, during the primordial inflationary and reheating phases, further
mechanisms of GW production can take place as a consequence of non-basic inflation-
ary scenarios. Interestingly, each of them introduces peculiar contributions and features
in the primordial GW power spectrum. Precisely the shown multiplicity of predictions
makes these GW significant information messengers able to discriminate among the va-
riety of inflationary models. In this direction, testing the validity or the violation of the
so-called consistency relation between the tensor-to-scalar ratio r and the tensor spectral
index nT plays a substantial role. However, there are still some inflationary scenarios for
which it could be significant to examine more deeply of what already done, the aspect
of GW production, especially in light of the forthcoming experimental capabilities of
detection. Not secondarily, the coming up of new ideas about inflationary scenarios in
which a further GW production takes place would be a stimulating progress. Besides the
physics of the Early Universe, we have also shown that the present day inflationary GW
spectral energy-density, would in principle provide the intriguing possibility of tracing
the thermal history of the Universe.

In light of all this crucial information encoded in the primordial GW background,
several efforts are underway and planned, to detect them directly and indirectly. Up to
now, the most promising way to detect primordial GW seems to be the search for B-
modes in CMB polarization anisotropies. In the more distant future, also the imprint of
inflationary GW on the energy distribution of the CMB and on large-scale structure of the
Universe, might provide interesting signatures of these GW. Current data put only upper
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bounds on the tensor-to-scalar ratio r and the tensor spectral index nT, leaving open the
possibility of several inflationary mechanisms of GW production, besides the standard
(single-field, slow-roll) one. The forthcoming experimental capabilities concerning GW
detection then represent a promising direction for improving these constraints and better
understand the physics of the Early Universe.
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[31] Clesse S. and Garćıa-Bellido J., 1603.05234 [astro-ph.CO] preprint (2016).
[32] Abbott B. P. et al., Phys. Rev. Lett., 116 (2016) 061102.
[33] Blair D. et al., Sci. China Phys. Mech. Astron., 58 (2015) 120402.
[34] Brout R., Englert F. and Gunzig E., Ann. Phys., 115 (1978) 78.
[35] Starobinsky A. A., Phys. Lett. B, 91 (1980) 99.
[36] Kazanas D., Astrophys. J., 241 (1980) L59.
[37] Sato K., Mon. Not. R. Astron. Soc., 195 (1981) 467.
[38] Guth A. H., Phys. Rev. D, 23 (1981) 347.
[39] Linde A. D., Phys. Lett. B, 108 (1982) 389.
[40] Albrecht A., Steinhardt P. J., Turner M. S. and Wilczek F., Phys. Rev. Lett.,

48 (1982) 1437.
[41] Abbott L. F., Farhi E. and Wise M. B., Phys. Lett. B, 117 (1982) 29.
[42] Mukhanov V. F. and Chibisov G. V., JETP Lett., 33 (1981) 532 (Pisma Zh. Eksp.

Teor. Fiz., 33 (1981) 549).
[43] Hawking S. W., Phys. Lett. B, 115 (1982) 295.
[44] Guth A. H. and Pi S. Y., Phys. Rev. Lett., 49 (1982) 1110.
[45] Starobinsky A. A., Phys. Lett. B, 117 (1982) 175.
[46] Abbott L. F. and Wise M. B., Nucl. Phys. B, 244 (1984) 541.
[47] Mukhanov V. F., JETP Lett., 41 (1985) 493 (Pisma Zh. Eksp. Teor. Fiz., 41 (1985)

402).
[48] Ade P. A. R. et al., 1502.01589 [astro-ph.CO] preprint (2015).
[49] Lidsey J. E., Liddle A. R., Kolb E. W., Copeland E. J., Barreiro T. and Abney

M., Rev. Mod. Phys., 69 (1997) 373.
[50] Liddle A. R., Parsons P. and Barrow J. D., Phys. Rev. D, 50 (1994) 7222.
[51] Lyth D. H. and Riotto A., Phys. Rep., 314 (1999) 1.
[52] Ade P. A. R. et al., 1502.02114 [astro-ph.CO] preprint (2015).
[53] Lucchin F. and Matarrese S., Phys. Lett. B, 164 (1985) 282.
[54] Dolgov A. D. and Linde A. D., Phys. Lett. B, 116 (1982) 329.
[55] Kofman L., Linde A. D. and Starobinsky A. A., Phys. Rev. Lett., 73 (1994) 3195.
[56] Linde A. D., Phys. Lett. B, 116 (1982) 335.
[57] Ashoorioon A., Bhupal Dev P. S. and Mazumdar A., Mod. Phys. Lett. A, 29 (2014)

1450163.
[58] Krauss L. M. and Wilczek F., Phys. Rev. D, 89 (2014) 047501.
[59] Bruni M., Matarrese S., Mollerach S. and Sonego S., Class. Quantum Grav., 14

(1997) 2585.
[60] Matarrese S., Mollerach S. and Bruni M., Phys. Rev. D, 58 (1998) 043504.
[61] Acquaviva V., Bartolo N., Matarrese S. and Riotto A., Nucl. Phys. B, 667 (2003)

119.
[62] Bardeen J. M., Phys. Rev. D, 22 (1980) 1882.
[63] Kodama H. and Sasaki M., Prog. Theor. Phys. Suppl., 78 (1984) 1.
[64] Mukhanov V. F., Feldman H. A. and Brandenberger R. H., Phys. Rep., 215 (1992)

203.
[65] Liddle A. R. and Lyth D. H., Cosmological inflation and large scale structure

(Cambridge University Press, Cambridge, UK) 2000.
[66] Sasaki M., Prog. Theor. Phys., 76 (1986) 1036.
[67] Taruya A. and Nambu Y., Phys. Lett. B, 428 (1998) 37.
[68] Lukash V. N., Sov. Phys. JETP, 52 (1980) 807 (Zh. Eksp. Teor. Fiz., 79 (1980) 1601).
[69] Lyth D. H., Phys. Rev. D, 31 (1985) 1792.
[70] Liddle A. R. and Turner M. S., Phys. Rev. D, 50 (1994) 758 (Erratum: Phys. Rev.

D, 54 (1996) 2980).
[71] Ade P. A. R. et al., 1502.01592 [astro-ph.CO] preprint (2015).



488 M. C. GUZZETTI, N. BARTOLO, M. LIGUORI and S. MATARRESE

[72] Grishchuk L. P., Sov. Phys. JETP, 40 (1975) 409 (Zh. Eksp. Teor. Fiz., 67 (1974) 825).
[73] Starobinsky A. A., JETP Lett., 30 (1979) 682 (Pisma Zh. Eksp. Teor. Fiz., 30 (1979)

719).
[74] Rubakov V. A., Sazhin M. V. and Veryaskin A. V., Phys. Lett. B, 115 (1982) 189.
[75] Fabbri R. and Pollock M. d., Phys. Lett. B, 125 (1983) 445.
[76] Grishchuk L. P., Zh. Eksp. Teor. Fiz., 66 (1974) 833.
[77] Grishchuk L. P., Annals N. Y. Acad. Sci., 302 (1977) 439.
[78] Misner C. W., Thorne K. S. and Wheeler J. A., Gravitation (W. H. Freeman, San

Francisco) 1973.
[79] Bunch T. S. and Davies P. C. W., Proc. R. Soc. London A, 360 (1978) 117.
[80] Mollerach S., Matarrese S. and Lucchin F., Phys. Rev. D, 50 (1994) 4835.
[81] Alba V. and Maldacena J., JHEP, 03 (2016) 115.
[82] Adamek J., Durrer R. and Tansella V., JCAP, 1601 (2016) 024.
[83] Maggiore M., Gravitational Waves. Vol. 1: Theory and Experiments, Oxford Master

Series in Physics (Oxford University Press) 2007
http://www.oup.com/uk/catalogue/?ci=9780198570745.

[84] Watanabe Y. and Komatsu E., Phys. Rev. D, 73 (2006) 123515.
[85] Lyth D. H., Phys. Lett. B, 147 (1984) 403 (Erratum: Phys. Lett. B, 150 (1985) 465).
[86] Lyth D. H., Phys. Rev. Lett., 78 (1997) 1861.
[87] Boubekeur L. and Lyth D., JCAP, 0507 (2005) 010.
[88] Baumann D. and McAllister L., Phys. Rev. D, 75 (2007) 123508.
[89] Boubekeur L., Phys. Rev. D, 87 (2013) 061301.
[90] Efstathiou G. and Mack K. J., JCAP, 0505 (2005) 008.
[91] Garcia-Bellido J., Roest D., Scalisi M. and Zavala I., JCAP, 1409 (2014) 006.
[92] Garcia-Bellido J., Roest D., Scalisi M. and Zavala I., Phys. Rev. D, 90 (2014)

123539.
[93] Easther R., Kinney W. H. and Powell B. A., JCAP, 0608 (2006) 004.
[94] Endlich S., Nicolis A. and Wang J., JCAP, 1310 (2013) 011.
[95] Gruzinov A., Phys. Rev. D, 70 (2004) 063518.
[96] Bartrum S., Bastero-Gil M., Berera A., Cerezo R., Ramos R. O. and Rosa

J. G., Phys. Lett. B, 732 (2014) 116.
[97] Bastero-Gil M., Berera A., Moss I. G. and Ramos R. O., JCAP, 1405 (2014) 004.
[98] Bastero-Gil M., Berera A., Ramos R. O. and Rosa J. G., hep-ph/1604.08838

preprint (2016).
[99] Cheung C., Creminelli P., Fitzpatrick A. L., Kaplan J. and Senatore L., JHEP,

03 (2008) 014.
[100] Tsujikawa S., Lect. Notes Phys., 892 (2015) 97.
[101] Cannone D., Tasinato G. and Wands D., JCAP, 1501 (2015) 029.
[102] Cannone D., Gong J.-O. and Tasinato G., JCAP, 1508 (2015) 003.
[103] Graef L. and Brandenberger R., JCAP, 1510 (2015) 009.
[104] Lin C. and Labun L. Z., JHEP, 03 (2016) 128.
[105] Abolhasani A. A., Akhshik M., Emami R. and Firouzjahi H., JCAP, 1603 (2016)

020.
[106] Bartolo N., Cannone D., Ricciardone A. and Tasinato G., JCAP, 1603 (2016)

044.
[107] Cai Y., Wang Y.-T. and Piao Y.-S., 1602.05431 [astro-ph.CO] preprint (2016).
[108] Brandenberger R. H., Nayeri A., Patil S. P. and Vafa C., Phys. Rev. Lett., 98

(2007) 231302.
[109] Gasperini M. and Veneziano G., Phys. Rep., 373 (2003) 1.
[110] Khoury J., Ovrut B. A., Steinhardt P. J. and Turok N., Phys. Rev. D, 64 (2001)

123522.
[111] Tomita K., Prog. Theor. Phys., 37 (1967) 831.
[112] Carrilho P. and Malik K. A., JCAP, 1602 (2016) 021.
[113] Matarrese S., Pantano O. and Saez D., Phys. Rev. D, 47 (1993) 1311.
[114] Matarrese S., Pantano O. and Saez D., Phys. Rev. Lett., 72 (1994) 320.



GRAVITATIONAL WAVES FROM INFLATION 489

[115] Nakamura K., Prog. Theor. Phys., 110 (2003) 723.
[116] Nakamura K., Prog. Theor. Phys., 117 (2007) 17.
[117] Carbone C. and Matarrese S., Phys. Rev. D, 71 (2005) 043508.
[118] Noh H. and Hwang J.-c., astro-ph/0305123 preprint (2003).
[119] Carbone C., Baccigalupi C. and Matarrese S., Phys. Rev. D, 73 (2006) 063503.
[120] Baumann D., Steinhardt P. J., Takahashi K. and Ichiki K., Phys. Rev. D, 76 (2007)

084019.
[121] Ananda K. N., Clarkson C. and Wands D., Phys. Rev. D, 75 (2007) 123518.
[122] Mollerach S., Harari D. and Matarrese S., Phys. Rev. D, 69 (2004) 063002.
[123] Fidler C., Pettinari G. W., Beneke M., Crittenden R., Koyama K. and Wands

D., JCAP, 1407 (2014) 011.
[124] Assadullahi H. and Wands D., Phys. Rev. D, 79 (2009) 083511.
[125] Cook J. L. and Sorbo L., Phys. Rev. D, 85 (2012) 023534 (Erratum: Phys. Rev. D, 86

(2012) 069901).
[126] Enqvist K. and Sloth M. S., Nucl. Phys. B, 626 (2002) 395.
[127] Bartolo N., Matarrese S., Riotto A. and Vaihkonen A., Phys. Rev. D, 76 (2007)

061302.
[128] Enqvist K., Nurmi S. and Rigopoulos G. I., JCAP, 0810 (2008) 013.
[129] Suyama T. and Yokoyama J., Phys. Rev. D, 84 (2011) 083511.
[130] Kawasaki M., Kitajima N. and Yokoyama S., JCAP, 1308 (2013) 042.
[131] Biagetti M., Dimastrogiovanni E., Fasiello M. and Peloso M., JCAP, 1504 (2015)

011.
[132] Fujita T., Yokoyama J. and Yokoyama S., PTEP, 2015 (2015) 043E01.
[133] Chung D. J. H., Kolb E. W., Riotto A. and Tkachev I. I., Phys. Rev. D, 62 (2000)

043508.
[134] Barnaby N. and Peloso M., Phys. Rev. Lett., 106 (2011) 181301.
[135] Barnaby N., Namba R. and Peloso M., JCAP, 1104 (2011) 009.
[136] Barnaby N., Pajer E. and Peloso M., Phys. Rev. D, 85 (2012) 023525.
[137] Anber M. M. and Sorbo L., Phys. Rev. D, 85 (2012) 123537.
[138] Namba R., Peloso M., Shiraishi M., Sorbo L. and Unal C., JCAP, 1601 (2016)

041.
[139] Ben-Dayan I., 1604.07899 [astro-ph.CO] preprint (2016).
[140] Garretson W. D., Field G. B. and Carroll S. M., Phys. Rev. D, 46 (1992) 5346.
[141] Cook J. L. and Sorbo L., JCAP, 1311 (2013) 047.
[142] Kofman L., Linde A. D. and Starobinsky A. A., Phys. Rev. D, 56 (1997) 3258.
[143] Pearce L., Peloso M. and Sorbo L., 1603.08021 [astro-ph.CO] preprint (2016).
[144] Anber M. M. and Sorbo L., Phys. Rev. D, 81 (2010) 043534.
[145] Meerburg P. D. and Pajer E., JCAP, 1302 (2013) 017.
[146] Domcke V., Pieroni M. and Binétruy P., 1603.01287 [astro-ph.CO] preprint (2016).
[147] Anber M. M. and Sorbo L., JCAP, 0610 (2006) 018.
[148] Lue A., Wang L.-M. and Kamionkowski M., Phys. Rev. Lett., 83 (1999) 1506.
[149] Vachaspati T., Phys. Rev. Lett., 87 (2001) 251302.
[150] Shiraishi M., Ricciardone A. and Saga S., JCAP, 1311 (2013) 051.
[151] Bartolo N., Matarrese S., Peloso M. and Shiraishi M., JCAP, 1501 (2015) 027.
[152] Acernese F. et al., Class. Quantum Grav., 22 (2005) S869.
[153] Gluscevic V. and Kamionkowski M., Phys. Rev. D, 81 (2010) 123529.
[154] Mirbabayi M., Senatore L., Silverstein E. and Zaldarriaga M., Phys. Rev. D, 91

(2015) 063518.
[155] Ferreira R. Z. and Sloth M. S., JHEP, 12 (2014) 139.
[156] Mukohyama S., Namba R., Peloso M. and Shiu G., JCAP, 1408 (2014) 036.
[157] Shiraishi M., Hikage C., Namba R., Namikawa T. and Hazumi M., 1606.06082

[astro-ph.CO] preprint (2016).
[158] Baumann D. et al., AIP Conf. Proc., 1141 (2009) 10.
[159] Seto N. and Taruya A., Phys. Rev. Lett., 99 (2007) 121101.
[160] Seto N. and Taruya A., Phys. Rev. D, 77 (2008) 103001.



490 M. C. GUZZETTI, N. BARTOLO, M. LIGUORI and S. MATARRESE

[161] Crowder S. G., Namba R., Mandic V., Mukohyama S. and Peloso M., Phys. Lett.
B, 726 (2013) 66.

[162] Hyde J. M., Phys. Rev. D, 92 (2015) 044026.
[163] Lyth D. H. and Liddle A. R., The primordial density perturbation: Cosmology, inflation

and the origin of structure (Cambridge University Press, Cambridge, UK) 2009.
[164] Traschen J. H. and Brandenberger R. H., Phys. Rev. D, 42 (1990) 2491.
[165] Albrecht A. and Steinhardt P. J., Phys. Rev. Lett., 48 (1982) 1220.
[166] Linde A. D., Phys. Lett. B, 129 (1983) 177.
[167] Linde A. D., Phys. Rev. D, 49 (1994) 748.
[168] Garcia-Bellido J. and Linde A. D., Phys. Rev. D, 57 (1998) 6075.
[169] Felder G. N., Garcia-Bellido J., Greene P. B., Kofman L., Linde A. D. and

Tkachev I., Phys. Rev. Lett., 87 (2001) 011601.
[170] Garcia-Bellido J., Garcia Perez M. and Gonzalez-Arroyo A., Phys. Rev. D, 67

(2003) 103501.
[171] Easther R. and Lim E. A., JCAP, 0604 (2006) 010.
[172] Easther R., Giblin J. T. and Lim E. A., Phys. Rev. D, 77 (2008) 103519.
[173] Greene P. B., Kofman L., Linde A. D. and Starobinsky A. A., Phys. Rev. D, 56

(1997) 6175.
[174] Felder G. N. and Kofman L., Phys. Rev. D, 75 (2007) 043518.
[175] Dufaux J. F., Bergman A., Felder G. N., Kofman L. and Uzan J.-P., Phys. Rev.

D, 76 (2007) 123517.
[176] Dufaux J.-F., Felder G., Kofman L. and Navros O., JCAP, 0903 (2009) 001.
[177] Felder G. N., Kofman L. and Linde A. D., Phys. Rev. D, 64 (2001) 123517.
[178] Garcia-Bellido J. and Figueroa D. G., Phys. Rev. Lett., 98 (2007) 061302.
[179] Price L. R. and Siemens X., Phys. Rev. D, 78 (2008) 063541.
[180] Garcia-Bellido J., Figueroa D. G. and Sastre A., Phys. Rev. D, 77 (2008) 043517.
[181] Garcia-Bellido J., Preheating the universe in hybrid inflation, in Proceedings of the

33rd Recontres de Moriond fundamental parameters in cosmology 1998, pp. 29–34.
[182] Easther R., Giblin, Jr. J. T. and Lim E. A., Phys. Rev. Lett., 99 (2007) 221301.
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