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Abstract Four classical examples on mathematical modeling in the life-sciences are
summarized. These include Turing’s diffusion-reaction systems in morphogenesis,
Hodkin’s and Huxley’s model on the initiation and propagation of action potentials
in a nerve fibre, first rigorous chemotaxis models, and the mathematical analysis of
molecular sequence characteristics.
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Mathematical methods in biology and medicine have been developed and have been
used since a long time. Examples cover a variety of experimental contexts, and a
broad spectrum of mathematical theories and techniques. An actual question for
talented young mathematicians, who are knowledgeable and curious about biology
and medicine, and who have strong skills in one or several branches of mathemat-
ics is, where to turn to for interesting, important, and challenging problems in the
life-sciences, to which mathematics can give a sensible input.

There exists a plethora of names and research branches for theoretical approaches,
mathematical modeling and mathematical analysis in the bio-medical sciences,
e.g. Theoretical Biology, Bioinformatics, Biomathematics, Biophysics, Mathemat-
ical Biology, Theoretical Biosciences, Computational Biology, Mathematics in the
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Life-Sciences, and many others. But so far there is no clear distinction of which type
of research is done in which area specifically. Thus it is very important to take a closer
look individually. Crucial questions are:

Are experimental questions of deeper relevance for biology or medicine addressed?
Are specific or profound mathematical tools useful and necessary in that context?
Do these mathematical methods help for a better understanding of the observed
phenomena or further predictions?

Just because one is able to use or to develop certain mathematical techniques it
does not always make sense to impose those onto each problem one is exposed to.
On the other hand, many researchers are still very hesitant to develop new or to use
deep mathematical techniques in the life-sciences, even though those methods could
be extremely useful to shed some more light on important experimental findings.

Highly interdisciplinary cooperations are already quite successful, even though a
crosswise quality control is not always possible. On the one hand side it becomes
more and more popular to use computer programs in order to solve a problem, with-
out knowing about all theoretical backbones and abstractions behind the respective
code. This approach does, in a strict sense, not allow to infer scientific conclusions
from the obtained results. On the other hand, not knowing by which materials and
methods experimental results have been obtained is similarly “risky” for an interpre-
tation or judgement of the relevance of the obtained results. Nevertheless, progress
is made, but quality standards for crosswise information should be developed and
further education should be improved in this direction in the future.

Among the many fundamental questions in the life-sciences, there exists a wealth
of problems of mathematical interest and challenge. Quite often interesting life-
science problems lay a natural basis for new and interesting mathematics to be de-
veloped. Further, mathematics might be able by its methodologies and concepts to
suggest new hypotheses for the functioning of biological systems, in a similar way
as it has proven to be very successful for instance in physics, sometimes even before
any experiment had been conducted.

Instead of giving examples of new biological problems and their mathematical
modeling, which I personally would consider interesting and worth doing mathemat-
ical analysis for, I rather prefer to summarize two older and two more modern clas-
sical examples of mathematical modeling and analysis in the life-sciences. These are
the results by Turing on diffusion-reaction systems in morphogenesis, Hodkin’s and
Huxley’s model for the initiation and propagation of action potentials in nerve, first
rigorous chemotaxis models, and the mathematical analysis of molecular sequence
alignment. Those contributions have already proven to be fundamental and they show
the impact which mathematical considerations and abstractions can have on the life-
sciences. Simply by being combined here, they may help to develop a personal taste
for possible future research. These examples also include abstract concepts on how
one could think about biological problems. This mathematical, conceptual approach
within the life-sciences is not yet developed as prominently as it principally could be,
even though it has already proven to be very useful.

Why should we be looking specifically at these four examples?
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First, I have chosen contributions closer to my own technical expertise. Second,
some fundamental and highly cited contributions are presented here, which have ini-
tiated and still do initiate a lot of follow up research.

Nearly all formulas and most text passages are directly taken from the original
papers cited in the references without this further being indicated. The references to
other related literature, which is huge, is kept minimal. The main aim of this note is
to create a renewed interest in reading the original papers.

1 Turing

In his 1952 paper on The Chemical Basis of Morphogenesis, [15], A.M. Turing dis-
cusses possible chemical mechanisms for pattern formation in early morphogenesis.

“It is suggested that a system of chemical substances, called morphogens, reacting
together and diffusing through a tissue, is adequate to account for the main phenom-
ena of morphogenesis. Such a system, although it may originally be quite homoge-
neous, may later develop pattern or structure due to an instability of the homogeneous
equilibrium, which is triggered off by random disturbances . . . . The purpose of this
paper is to discuss possible mechanisms by which genes of a zygote may determine
the anatomical structure of the resulting organism . . . a mathematical model of the
growing embryo will be described. This model will be a simplification and an ideal-
ization, and consequently a falsification. It is to be hoped that the features retained
for discussion are those of greatest importance in the present stage of knowledge.”

Turing analyzes two situations. In one of his mathematical models the cells within
the tissue are idealized as geometrical points. In his other model the matter of the
tissue is assumed to be continuously distributed. He then attaches a mechanical and
a chemical state to each cell within the system. As a first approximation, the me-
chanical aspects of morphogenesis are ignored in the mathematical models in [15],
and situations are considered where chemical aspects seem to be the most significant.
Turing was very aware, that mechanical and electrical aspects also play an important
role in development.

In [15] the mathematical tissue models are considered in a time frame, where the
cells are neither growing nor dividing, but during which certain substances are re-
acting chemically and are diffusing through the tissue. Turing calls these substances
morphogens, which could e.g. be hormones or skin pigments. He does not intend
to specify these morphogens but rather aims to describe important functional behav-
iors they may have. A detailed discussion about possible realistic mechanisms and
examples in developmental biology are included in his paper.

Without cell walls being present, the diffusibility of the chemicals within the “tis-
sue” would be inversely proportional to the square root of their respective molecular
weight. This assumption is used as a first approximation. The reaction rates are as-
sumed to obey the law of mass action. Considering N cells and M morphogens, the
state of the system is given by M · N numbers, namely the quantities of the M mor-
phogens in each of the N cells, which change in time.

The embryo in its blastula stage is considered to be spherically symmetric. De-
viations from the spherical symmetry are naturally to be expected and may greatly
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vary from embryo to embryo within a species. The specific type of these deviations is
not so important but rather the fact that there exist some deviations. The system may
reach a state of instability in which these irregularities tend to grow. By this a new
and stable equlibrium can be reached, where the initial symmetry is entirely gone.
The number of such new equilibria is usually not as large as the number of irregular-
ities giving rise to them, i.e. the direction of the axis of the gastrula can vary, but the
phenomenon of gastrulation otherwise takes place in a similar fashion in different or-
ganisms of the same species. Therefore Turing suggested to look for a breakdown of
symmetry of homogeneity in this context. Since systems naturally tend to leave un-
stable equilibria they can not often be observed being in those states. Such unstable
equilibria do occur when a system changes from a stable equilibrium into an unstable
one, triggered by external events.

First, in order to stress the basic strategy of his ideas, Turing considered two crucial
morphogens X, Y acting on a ring of N cells and onto each other. The morphogen
concentrations within each cell are denoted by Xr and Yr , r = 1, . . . ,N . It is assumed
that each cell r exchanges these two signals diffusively with its nearest neighbors
r − 1 and r + 1. Then

dXr

dt
= f (Xr,Yr) + μ(Xr+1 − 2Xr + Xr−1), (1)

dYr

dt
= g(Xr,Yr) + ν(Yr+1 − 2Yr + Yr−1), (2)

where cell N + 1 is identified with cell 1 and cell 0 with cell N . Further, μ, ν are the
cell-to-cell diffusion constants for X and Y , and f and g are the respective reaction
mechanisms. If f (h, k) = g(h, k) = 0, then each single cell r in the ring of cells
is in equilibrium, containing a respective signal concentration Xr = h and Yr = k.
Now assuming that the system is not far from such an equilibrium, let Xr = h + xr

and Yr = k + yr with small, non constant perturbations xr and yr . Then, by Taylor
expansion one obtains f (h+ xr , k + yr) ≈ axr + byr , g(h+ xr , k + yr) ≈ cxr + dyr ,
where higher powers of xr and yr are neglected. Then approximately one has

dxr

dt
= axr + byr + μ(xr+1 − 2xr + xr−1), (3)

dyr

dt
= cxr + dyr + ν(yr+1 − 2yr + yr−1). (4)

With the ansatz

xr =
N−1∑

s=0

exp[2πirs/N]ξs, yr =
N−1∑

s=0

exp[2πirs/N ]ηs, (5)

one obtains, after some calculations, that

dξs

dt
= [

a − 4μ sin2(πs/N)
]
ξs + bηs, (6)

dηs

dt
= cξs + [

d − 4ν sin2(πs/N)
]
ηs. (7)

Let ps and p̃s denote the roots of
[
p − a + 4μ sin2(πs/N)

] · [p − d + 4ν sin2(πs/N)
] = bc (8)
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with Reps ≥ Re p̃s . Then one gets

ξs = As exp(pst) + Bs exp(p̃s t), ηs = Cs exp(pst) + Ds exp(p̃s t), where

As

[
ps − a + 4μ sin2(πs/N)

] = bCs, Bs

[
p̃s − a + 4μ sin2(πs/N)

] = bDs (9)

and respective conditions resulting from the equation for ηs . Thus

Xr = h +
N∑

s=1

[
As exp(pst) + Bs exp(p̃s t)

]
exp(2πirs/N), (10)

Yr = k +
N∑

s=1

[
Cs exp(pst) + Ds exp(p̃s t)

]
exp(2πirs/N). (11)

These expressions will further be simplified. But before doing so, analogous formulas
for the continuous approximation of the discrete ring of tissue are derived. It turns out
that the qualitative behavior/structure forming properties for both models are similar.
Thus a continuous approximation is reasonable for the originally discrete model.

Consider a circle of radius ρ around the origin. Let θ be the angle at which a vector
pointing from the origin towards a point on this circle deviates from a fixed reference
vector of this type. Let

∂X

∂t
= a(X − h) + b(Y − k) + μ̃

ρ2

∂2X

∂θ2
, (12)

∂Y

∂t
= c(X − h) + d(Y − k) + ν̃

ρ2

∂2Y

∂θ2
, (13)

where μ = μ̃N2/(2πρ)2, ν = ν̃N2/(2πρ)2 for the diffusivities of the two mor-
phogens. As before a, b, c, d are the values at equilibrium of ∂f/∂X, ∂f/∂Y , ∂g/∂X,
∂g/∂Y . This system can be obtained as the limiting case of the discrete model. Its
general solution are

X = h +
∞∑

s=−∞

[
As exp(pst) + Bs exp(p̃s t)

]
exp(isθ), (14)

Y = k +
∞∑

s=−∞

[
Cs exp(pst) + Ds exp(p̃s t)

]
exp(isθ), (15)

where now ps and p̃s denote the roots of
[
p − a + μ̃s2/ρ2][p − d + ν̃s2/ρ2] = bc (16)

and fulfill As(ps −a+ μ̃s2/ρ2) = bCs , Bs(p̃s −a+ μ̃s2/ρ2) = bDs . These solutions
are also a limiting case of the solutions in the discrete setting.

Now looking again at the discrete setting, the asymptotic behavior of (10), (11)
will be dominated by those terms within the sums for which the corresponding ps

has the largest real part. Let ps0 be related to one of those leading terms, then also
pN−s0 = ps0 is related to one of them, since sin2(π(N − s0)/N) = sin2(πs0/N).
We distinguish two cases, namely when ps0 is real and when it is complex, and call
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“Rings” of cells with different periodic patterns of morphogen concentrations

these cases stationary, respectively oscillatory. Excluding certain specific situations,
the asymptotic behavior of the solution is as follows:

If the value of ps0 for one of the dominating terms is real, then asymptotically

Xr = h + 2 ReAs0 exp(I t + 2πis0r/N), Yr = k + 2 ReCs0 exp(I t + 2πis0r/N).

This is the stationary case, where I denotes the real part of ps0 , indicating the insta-
bility.

If the value of ps0 for one of the dominating terms is complex, then asymptotically

Xr = h + 2 exp(I t)Re
{
As0 exp(iωt + 2πis0r/N)

+ AN−s0 exp(−iωt − 2πis0r/N)
}
,

Yr = k + 2 exp(I t)Re
{
Cs0 exp(iωt + 2πis0r/N)

+ CN−s0 exp(−iωt − 2πis0r/N)
}
.

Here ω denotes the imaginary part of ps0 . This is the oscillatory case.
These formulas can be interpreted in terms of waves. Due to the relation (9) be-

tween As0 and Cs0 the pattern of one morphogen defines the pattern of the other. If
I > 0, then the pattern becomes more pronounced in time.

In the stationary case there are stationary waves on the ring having s0 minima or
maxima. Dividing s0 by the circumference 2πρ of the ring of cells one obtains the
wavelength for this pattern.

In the oscillatory case two wave trains are moving around the ring in opposite
directions. The wave-frequency is ω/(2π), and the wave velocity equals the wave-
length times the wave-frequency.

The wavelengths of the patterns on the ring depend on the chemical data and on
the circumference of the ring. Nevertheless, there exists a purely chemical, i.e. true
wavelength, which is independent of the radius of the ring. This is the limit to which
the wavelength converges, when the ring is successively growing, i.e. the wavelength
of that radius, which gives the largest possible instability I .

A number of situations can develop:

(a) Stationary case with extreme long wavelength:
An example for this is μ = ν = 0.25, b = c = 1, and a = d . Thus both mor-

phogens act in a similar fashion. Here ps = a − sin2(πs/N)+ 1 is a real number,
being largest for s = 0. Therefore the chemical content of all cells is the same,
and each of them behaves as if it is isolated. Each cell is in an unstable equilib-
rium and slips out if it in synchrony with the other cells.

(b) Oscillatory case with extreme long wavelength:
An example for this is again μ = ν = 0.25, a = d , but now b = −c = 1. Then

ps = a − sin2(πs/N) ± i. The real part of this complex number is largest when
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s = 0. The behavior is similar to case (a), but now the departure from equilibrium
is oscillatory.

(c) Stationary waves of extreme short wavelength:
An example for this is v = 0, so no exchange of the second morphogen to

neighboring cells takes place, and μ = 1, a = I − 1, b = −c = 1, d = I . Then

ps = I − 0.5 − 2 sin2(πs/N) +
√(

2 sin2(πs/N) + 0.5
)2 − 1,

which is largest when sin2(πs/N) is largest. If N is even, then the morphogen
content of each cell is similar to that of the next but one cell, but its content is
distinctively different from that of its immediate neighbors. For an odd number
of cells, this arrangement is not possible. In this case the morphogen concen-
tration varies from zero to a maximum value from one location to the position
diametrically opposite to it.

(d) Stationary waves of finite wavelength:
This case has many important biological implications. An example is

a = I − 2, b = 2.5, c = −1.25, d = I + 1.5, μ̃ = 1, ν̃ = 0.5 with
μ/μ̃ = ν/ν̃ = (N/2πρ)2, and ρ being the radius of the ring of N cells. Let
U := [N sin(πs/N)/(πρ)]2, then the roots are calculated from

(p − I )2 + (0.5 + 0.75U)(p − I ) + 0.5(U − 0.5)2 = 0.

For U = 0.5 and the related s0 there are stationary waves with s0 minima and
a wave-length equal to the chemical wave-length ps0 = I . For every other ps

we have Reps < I . If ρ is chosen such that U = 0.5 can not be solved for an
integral s, then the number of minima will be one of the two nearest integers,
usually the nearest to the non-integral solution.

The two following effects can only occur for three or more morphogens.
(e) Oscillatory case with finite wavelength:

Here genuine traveling waves can occur. A system with three morphogens
which corresponds to the previous considerations consists of a 3 × 3 matrix
M with detM = 0 as the analogon to (8). The off-diagonal components of M

are mij = aij , i �= j , and its diagonal elements are mii = aii − p − μiU , with
U = [N sin(πs/N)/(πρ)]2, respectively U = [2π/λ]2, where λ is the wave-
length. A system of three linear(ized) equations is considered, analogous to (3),
(4) and (12), (13), where the mij denote the respective coefficients for the reac-
tion terms, instead of a, b, c, d . Parameter values leading to traveling waves are
e.g. μ1 = 2/3, μ2 = 1/3, μ3 = 0, for the diffusivities of the three morphogens,
and a11 = −10/3, a12 = a31 = 3, a13 = −1, a21 = −2, a22 = 7/3, a23 = a33 = 0,
a32 = −4. Consider

detM = p3 + p2(U + 1) + p
[
1 + 2(U − 1)2/9

] + U + 1 = 0.

For any root p of this equation, 0 is its maximal real part, thus p = ±i and
U = 1. So there do exist traveling waves. When adding I to the aii , i = 1,2,3,
one obtains the instability I in place of zero.

(f) Oscillatory case with extreme short wavelength:
Metabolic oscillations, where neighboring cells are nearly 1800 out of

phase can be obtained only with three morphogens. Example data are μ1 = 1,
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μ2 = μ3 = 0 for the diffusivities, and a11 = a12 = a23 = −1, a13 = a22 = a31 =
a33 = 0, a21 = a32 = 1. Consider detM = p3 + p2(U + 1) + 2p + U + 1 = 0.
For U ≥ 0 all roots have negative real part. For large U the real part of p can
approach zero as closely as desired, but never attains zero.

Next some general formulas for the two morphogen case are presented, which al-
low to directly check given parameter sets on their possible pattern forming ef-
fects. Taking the limiting case of a ring of cells of large radius one may write
U = [N sin(πs/N)/(πρ)]2 = [2π/λ]2 = [s/ρ]2 in (8), (16), and obtains for the con-
tinuous ring of tissue that

(p − a + μ̃U)(p − d + ν̃U) = bc,

whose solutions are

p = a + d

2
− μ̃ + ν̃

2
U ±

√(
μ̃ − ν̃

2
U + d − a

2

)2

+ bc.

As before, let I = I (U) denote the real part of p. The corresponding wave length
for this instability is λ = 2π/

√
U . The dominant waves correspond to the maximum

of I (U), which may either be attained at U = 0 or U = ∞, or at a stationary point
on that part of the curve which is hyperbolic, not straight. In this later case at the
maximum one has

p = I = (dμ̃ − aν̃ − 2
√

μ̃ν̃
√−bc)(μ̃ − ν̃)−1,

U = (
a − d + (μ̃ + ν̃)

√−bc/
√

μ̃ν̃
)
(μ̃ − ν̃)−1.

Conditions which then lead to the above mentioned four cases (a), (b), (c), (d) for two
morphogens under the assumption that ν̃ ≤ μ̃ and μ̃ > 0 are the following:

(a) Stationary waves with extreme long wavelength occur for

either bc > 0,
or bc < 0 and (d − a)/

√−bc > (μ̃ + ν̃)/
√

μ̃ν̃,
or bc < 0 and (d − a)/

√−bc < −2.

Conditions for instability, i.e. structure formation in all three cases are:

either bc > ad , or a + d > 0.

(b) Oscillations with extreme long wavelength, i.e. synchronized oscillations, occur
when bc < 0 and −2 < (d − a)/

√−bc < 4
√

μ̃ν̃/(μ̃ + ν̃).
There is an instability, if in addition a + d > 0.

(c) Stationary waves of extreme short wave-length occur if bc < 0 and 0 = ν̃ < μ̃.
There is an instability, if in addition a + d > 0.

(d) Stationary waves of finite length:
This case is highly cited in the large body of literature since the publication of
Turing’s paper and biologically very relevant.
It occurs if bc < 0 and 4

√
μ̃ν̃/(μ̃ + ν̃) < (d − a)/

√−bc < (μ̃ + ν̃)/
√

μ̃ν̃.
Due to this chain of inequalities we need μ̃ �= ν̃.
An instability occurs if additionally [d√

μ̃/ν̃ − a
√

ν̃/μ̃]/√−bc > 2.
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To obtain a better insight into the dependencies of the involved parameters con-
sider the scaling ν̃ = γ μ̃, γ ∈ (0,1). Then the conditions given above read:

bc < 0 and 4
√

γ /(1 + γ ) < (d − a)/
√−bc < (1 + γ )/

√
γ

and (d/
√

γ − a
√

γ )/
√−bc > 2.

Thus for very similar diffusion coefficients, i.e. 1 �= γ ≈ 1, at least one of the reaction
rates has to be tuned quite precisely in relation to the other three. Some additional
formulas for concrete calculations in this case are

a = μ̃(ν̃ − μ̃)−1(2ν̃U0 + χ) + I, b = μ̃(ν̃ − μ̃)−1
(
(μ̃ + ν̃)U0 + χ

)
α,

c = ν̃(μ̃ − ν̃)−1
(
(μ̃ + ν̃)U0 + χ

)
α−1, d = ν̃(μ̃ − ν̃)−1(2μ̃U0 + χ) + I.

Here 2π/
√

U0 is the chemical wavelength and χ > 0, α are parameters.
So far the naturally occurring disturbances were assumed not to operate continu-

ously and the marginal reaction rates did not change in time. Dropping these assump-
tions and instead letting the statistical amplitude of the noise disturbances be constant
in time one obtains instead of (6), (7) that

dξ

dt
= ãξ + bη + R1(t),

dη

dt
= cξ + d̃η + R2(t),

where now ξ, η are written in place of ξs, ηs , since s is fixed, and where ã = a −
4μ sin2(πs/N), d̃ = d − 4ν sin2(πs/N). The disturbances R1, R2 are assumed to be
white noise. Now one introduces new variables u,v by means of

ξ = b(u + v), η = (p − ã)u + (p̃ − ã)v.

Here p > p̃ denote the roots of (p − ã)(p − d̃) = bc. Assume that v = 0, since it is
small in comparison with u due to dv/dt ≈ p̃v. This results from just considering
leading order terms. Then one obtains after some calculations that

u =
∫ t

−∞
[
L1(w)R1(w) + L2(w)R2(w)

]
exp

(∫ t

w

q(z)dz

)
dw,

with L1(t) = (p̃ − ã)/
[
b(p̃ − p)

]
, L2(t) = 1/(p̃ − p), q = p + bL′

1(t).

The interest is not so much in such solutions per se, but rather in the statistical distri-
bution of the values of u, ξ, η at various time instances after the instability has set in.
Since we have assumed white noise acting, u at time t is distributed according to the
normal error law with variance

∫ t

−∞
[
β1L

2
1(w) + β2L

2
2(w)

]
exp

(
2
∫ t

w

q(z)dz

)
dw,

where the constants β1, β2 describe the amplitude of the noise disturbances.
If the system is in a distinctly stable state, then q(t), which is close to

p(t), is distinctly negative and the above variance of u can be approximated by
[β1L

2
1(t) + β2L

2
2(t)][−2q(t)]−1.

If the system is unstable, so q(t) > 0, then the variance of u can—after some
calculations and suitable assumptions—be approximated by

√
π

[
β1L

2
1(t0) + β2L

2
2(t0)

]
exp

(
2
∫ t

t0

q(z)dz

)/√
q ′(t0).
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Here t0 denotes the last time instance when q(t) = 0. Thus disturbances near the
time when the instability is zero are the only ones which have a reasonable ultimate
effect. Those which occur earlier are damped out by the subsequent period of stability.
Those which occur later have a shorter period of instability within which they would
need to develop to a greater amplitude. The factor exp(

∫ t

t0
q(z)dz) is essentially the

integrated instability and describes the extent to which one would expect disturbances
of an appropriate wavelength to grow between the time instances t0 and t . The factor√

πβ1L
2
1(t0)/

√
q ′(t0) indicates that the disturbances on the first morphogen should

be regarded as lasting for a time
√

π(bL1(t0))
2/

√
q(t0).

In his paper Turing shortly refers also to the situation of non-linear reaction rates
and gives some qualitative conclusions. With some practical computations/numerical
examples he completes his analysis. A biological interpretation of the obtained math-
ematical results follows. The effects within the ring of cells and within the continuous
ring of tissue are extremely similar. The main focus in [15] is on the situation, when
the reaction-diffusion systems describing the dynamics of the morphogens are just
unstable. A strong assumption was the linearity of the reaction rates. The patterns
appearing are best described in terms of waves. The situation when there is an insta-
bility for an isolated cell, compare case (a), might account for dappled color patterns.
If so, then these patterns must be laid down in a latent form when the developing
foetus is only a few inches long. There may not be any similarity between the con-
tents of cells which are far apart. Case (b) is similar to case (a) and might account
for metabolic oscillations. In case (c) there is a drift from equilibrium which is in
opposite directions in neighboring cells. In the biologically most interesting case (d)
the peaks of the waves are uniformly spaced around the ring of cells. The number of
peaks corresponds to the chemical wavelength divided by the circumference of the
ring of tissue. With at least three morphogens it is possible to obtain traveling waves.
For all these patterns to occur the range of suitable reaction rates is rather general.

Biological examples and a critical discussion of the relevance of the mathemati-
cal model in specific situations follow in the original paper. Further, hints on how to
choose biological questions in a sensible way in order to pave the way for a possi-
ble detection of fundamental mechanisms in biology are given. After that, chemical
waves on the sphere are discussed in the context of gastrulation. Spherical surface
harmonics play a fundamental role here. The breakdown of homogeneity and the on-
set of pattern formation in this case is axially symmetric about a new axis, which is
determined by the specificities of the disturbing influences.

At the end of his paper Turing advertizes the use of computers, stresses the role
of mechanics in developmental biology and the importance of analysing non-linear
problems. By intentionally structuring the chapters of his paper in different ways, he
made his results comprehensible for a broad readership with a varying background of
knowledge. In [15, Chap. 4] he gives a brilliant account of the idea of a bifurcation
parameter in a common language. His article comprises many more interesting points
than those which are commonly cited nowadays. Modestly Turing ends his seminal
paper:

“It must be admitted that the biological examples which it has been possible to
give in the present paper are very limited. . . . Taking this in combination with the
relatively elementary mathematics used in this paper one could hardly expect to find



Mathematics and the Life-Sciences: A Personal Point of View 153

that many observed biological phenomena would be covered. It is thought, however,
that the imaginary biological systems which have been treated, and the principles
which have been discussed, should be of some help in interpreting real biological
forms.”

Due to his untimely death Turing could not finish his manuscript on “Morphogen
Theory of Phyllotaxis” [16], which clearly indicates how he had intended to proceed.

2 Hodgkin-Huxley

Another classical and important example for mathematical modeling in the life-
sciences was published at around the same time when Turing’s paper appeared.
Hodgkin and Huxley—who received the Nobelprize in 1963—concluded in [7],
A Quantitative Description of Membrane Current and it Application to Conduction
and Excitation in Nerve, a series of their previous papers. Some of their results were
obtained together with their colleague Katz, who received the Nobelprize in 1970.
Their paper describes experimental results, mathematical modeling and numerical
analysis of the flow of electric current through the surface membrane of a giant nerve
fibre, the giant axon of the squid.

Data of voltage clamp experiments were used as the basis for a mathematical de-
scription of the changes in sodium and potassium conductance associated with an al-
teration of the membrane potential. Once the parameters in the mathematical model
were fixed, this theoretical approach was used to predict the behavior of an exemplary
nerve fibre of the squid Loligo pealeii under a variety of new experimental settings.
Astonishingly good agreement of the mathematical model with the experimental re-
sults were obtained. The mathematical results did even account for conduction and
excitation in quantiative terms.

At rest the membrane of the axon is polarized, i.e. its electrical potential is non-
zero. Depending on the intra- and extracellular ionic concentrations and their intrinsic
charges, both, sodium and potassium have an equilibrium potential. If the membrane
potential is equal to this equilibrium or reversal potential, then no net movement of
the respective ions will occur. If the potentials differ, then the respective ions flow
out or into the cell. Specific channels within the membrane conduct either sodium
(Na+) or potassium (K+). When the membrane potential exceeds a threshold, then
the sodium channels open, and the membranes sodium conductance is raised. Due
to the characteristics of the sodium equilibrium potential, sodium flows inward, and
the membrane potential rises further up, such that also the potassium channels open.
Potassium then flows outward, according to the characteristics of its own equilibrium
potential. Thus the membrane potential drops back down. This process generates a
spike, whose rising phase is caused by the sodium influx, and whose dropping down
is caused by the potassium outflux. Therefore Hodgkin and Huxley borrowed from
the theory of electrical circuits to mathematically model their experimental findings.

The assumptions for their system of equations is based on a number of initial volt-
age clamp experiments, i.e. measurements of ionic currents by holding the membrane
voltage at a set level. These assumptions are the following:

The most relevant ionic currents within the nerve, sodium and potassium, are de-
noted by INa and IK . Further, a small leakage current Il is introduced, in order to take
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removals from the system into account. This leakage current is made up by chloride
and other ions, and is not further specified in the mathematical model. Ionic currents
can be carried through the membrane of the giant nerve fibre by either charging the
membrane capacitance or by the movement of ions. The larger the capacitance, i.e.
the ability to store electrical charge, the more electrical charge can be hold at a given
voltage. For each component of the ionic current the electrical potential difference
and a permeability coefficient can be measured. Thus one obtains

INa = gNa(E − ENa),

i.e. the sodium current INa equals the sodium conduction gNa , respectively the per-
meability of the membrane for sodium, times the difference between the membrane
potential E and the equilibrium potential ENa for the sodium ions. Similar equations
are considered for potassium and the leakage current.

The thickness and composition of the excitable membrane were unknown at the
time and the nature of the molecular events underlying changes in the permeability of
the membrane could not be measured experimentally. Thus the idea was to develop
biological hypotheses for the functioning of the experimental system by the help of
a mathematical model. With their model Hodgkin and Huxley analyzed which of
the developed theories were consistent with concrete experiments and which theories
could be excluded by them. This is an important conceptual ansatz. Especially in
situations where direct experimental measurements can not yet be done, mathematical
modeling can give important new insights, also for the planing of new experiments.

Hodgkin and Huxley divided the total membrane current density I into the contri-
bution of the membrane capacity current and the ionic current density Ii , which are
assumed to be in parallel

I = CM

dV

dt
+ Ii . (17)

Here V denotes the displacement of the membrane potential from its resting value
and CM the membrane capacity per unit area, which is assumed to be constant. For
an inward current, I is positive, and V is negative for depolarization. Equation (17)
neglects though dielectric losses within the membrane. Further, the ionic current den-
sity is split into

Ii = INa + IK + Il,
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namely the components carried by sodium ions, potassium ions and others. For the
individual ionic currents it is assumed that

INa = gNa(E − ENa) = gNa(V − VNa), (18)

IK = gK(E − EK) = gK(V − VK), (19)

Il = ḡl(E − El) = ḡl(V − Vl), (20)

where ENa , EK are the equilibrium potentials for the sodium and potassium ions,
and El is the potential at which the leakage current due to chloride and other ions is
zero. Further V = E − Er , VNa = ENa − Er , VK = EK − Er , Vl = El − Er , where
Er is the absolute value of the resting potential. So V,VNa,VK,Vl can be measured
directly as displacements from the resting potential. It is assumed that

gK = ḡKn4,
dn

dt
= αn(1 − n) − βnn. (21)

Here the constant ḡK has the dimension of the conductance/cm2; αn,βn are rate con-
stants, which vary with voltage but not with time and have dimensions of 1/time.
Further, the dimensionless variable n varies between 0 and 1, and represents the pro-
portion of particles, for example at the inside of the membrane, and (1−n) represents
the proportion elsewhere, e.g. at the outside of the membrane. In this case αn deter-
mines the rate of transfer of particles from the outside of the membrane to the inside,
while βn determines the transfer in the opposite direction.

The assumptions on the power four of n in (21) was chosen, simply because it
results into the best fit of the solutions of the mathematical model when compared
with experimental results. Nevertheless, the ansatz can be interpreted as follows: The
potassium ions can only cross the membrane when four similar particles occupy a
certain region of the membrane. If a particle has negative charge, the respective αn

should increase and βn should decrease, while the membrane is depolarized. In the
resting state V = 0 the resting value for n is n0 = αn0/(αn0 +βn0). With this condition
the solution for the n-equation with initial value n(0) = n0 is

n = n∞ − (n∞ − n0) exp(−t/τn), where n∞ = αn/(αn + βn), τn = 1/(αn + βn),

and gK = (√
gK∞ − [√gK∞ − √

gK0 ] exp(−t/τn)
)4

.

Here gK∞ is the value finally attained by the potassium conductance, and gK0 is the
potassium conductance at t = 0. The agreement with the experimental results turned
out to be very good. Only a stronger initial delay could be observed experimentally.

In order to find suitable functions which relate αn and βn to the membrane poten-
tial, all measurements were plotted against V . The following continuous curves then
gave a good fit for the obtained experimental data

αn = 0.01(V + 10)
[
exp

(
0.1(V + 10)

) − 1
]−1

, βn = 0.125 exp(V/80).

These equations can be given a qualitative physical basis, if one supposes that the
variation of αn and βn with respect to the membrane potential do arise from the effect
of the electric field on the movement of a negatively charged particle, which rests on
the outside of the membrane when V is large and positive, and on the inside of the
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membrane when V it is large and negative. It is speculated that some asymmetry in
the structure of the membrane may be responsible for the asymmetry in αn and βn.

For the sodium conductance the following formal assumptions are made:

gNa = ḡNam
3h,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh,

where ḡNa is constant and αm,βm,αh,βh only depend on V . A physical basis for
these equations can be given by an argument as follows: The sodium conductance
is assumed to be proportional to the number of sites on the inside of the membrane
which are occupied simultaneously by three activating molecules but are not blocked
by an inactivating molecule. Here m represents the proportion of activating molecules
on the inside of the membrane, and (1 − m) their proportion on the outside of the
membrane. Further h represents the proportion of inactivating molecules on the out-
side of the membrane and (1 −h) their proportion on the inside. Finally αn or βh and
βm or αh represent the transfer rate constants in the two directions. Solutions of these
equations with m(0) = m0, h(0) = h0 are

m = m∞ − (m∞ − m0) exp(−t/τm) h = h∞ − (h∞ − h0) exp(−t/τh), (22)

where m∞ = αm/(αm + βm), τm = 1/(αm + βm), h∞ = αh/(αh + βh), and
τh = 1/(αh + βh). In the resting state the sodium conductance is very small when
compared with the value attained during a large depolarization. Therefore it is as-
sumed that m0 = 0 for a depolarization greater than 30 mV. Further, inactivation is
nearly complete for V < −30 mV, so that then also h∞ is neglected. So the expres-
sion for the sodium conductance becomes

gNa = g̃Na

[
1 − exp(−t/τm)

]3 exp(−t/τh),

where g̃Na = ḡNam
3∞h0 is the value which the sodium conductance would attain

if h would remain at its resting level h0. This equation was fitted to experimental
curves by comparing different ratios of τm to τh. The rate constants αm, βm were
then obtained in a similar manner as αn, βn before:

αm = 0.1(V + 25)
[
exp

(
0.1(V + 25)

) − 1
]−1

, βm = 4 exp(V/18),

and analogously

αh = 0.07 exp(V/20), βh = [
exp

(
0.1(V + 30)

) + 1
]−1

.

One of the most striking properties of the membrane is the extreme steepness of the
relation between ionic conductance and membrane potential. The possible meaning
of this result can be illustrated as follows:

Suppose that a charged molecule with some affinity for sodium rests either on
the inside or the outside of the membrane, and is present in negligible concentra-
tions elsewhere. Let the sodium conductance be proportional to the number of such
molecules on the inside of the membrane but be independent of their number at the
outside. Boltzmann’s principle then relates the proportion Pi of the molecules on the
inside of the membrane to the ones on the outside Po, by

Pi/Po = exp
[
(ω + zeE)/(kT )

]
, Pi + Po = 1,
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where E is the potential difference between the outside and the inside of the mem-
brane, ω is the work required to move a molecule from the inside to the outside of
the membrane when E = 0, e is the absolute value of the electronic charge, z is the
number of positive electronic charges on the molecules, k is the Boltzmann constant,
and T is the absolute temperature.

Then Pi = (1 + exp[−(ω + zeE)/(kT )])−1. If V > −30 mV, then h∞ is of a
similar form, namely h∞ = (1 + exp[(Vh − V )/7])−1. This is consistent with the
suggestion that inactivation might be due to the movement of a negatively charged
particle which blocks the flow of sodium ions when it reaches the inside of the mem-
brane. This is quite interesting, but on the other hand still some further ad hoc as-
sumptions have to be made in order to obtain satisfactory functions αh,βh which fit
to the experiments. So altogether the following system of equations results

I = CM

dV

dt
+ ḡKn4(V − VK) + ḡNam

3h(V − VNa ) + ḡl(V − Vl)

dn

dt
= αn(1 − n) − βnn,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh

αn = 0.01(V + 10)
[
exp

(
0.1(V + 10)

) − 1
]−1

, βn = 0.125 exp(V/80)

αm = 0.1(V + 25)
[
exp

(
0.1(V + 25)

) − 1
]−1

, βm = 4 exp(V/18)

αh = 0.07 exp(V/20), βh = [
exp

(
0.1(V + 30)

) + 1
]−1

.

(23)

The α′s and β ′s are appropriate for a temperature of 6.3◦C. Potentials are given in
mV, current densities in µA/cm2, conductances in m mho/cm2, capacity in µF /cm2,
and time in msec. Here V denotes volt, A ampere, mho Siemens, and F farad. There
is one important quantiative difference between the solutions of the mathematical
model and the experimental data, namely that the theoretical current has too little
delay at the sodium potential. Therefore the equations do not fully account for the
delay in the rises of gK . Otherwise the comparison between experiment and theory is
astonishingly good.

For a membrane action potential which propagates in space, one has for the mem-
brane current i per unit length that

i =
(

1

r1 + r2

)
∂2V

∂x2
,

where r1, r2 are the external and internal resistances per unit length, and x is the
distance along the fibre. For an axon surrounded by a large volume of conducting
fluid, r1 is negligible, thus

i = 1

r2

∂2V

∂x2
, respectively I = a

2R2

∂2V

∂x2
,

where I is the membrane current density, a is the radius of the fibre and R2 is the
specific resistance of the axoplasm. Inserting this formula into (23) one obtains

a

2R2

∂2V

∂x2
= CM

∂V

∂t
+ ḡKn4(V − VK) + ḡNam

3h(V − VNa ) + ḡl(V − Vl).

The other equations of the system remain unchanged for this case.
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The mathematical model was numerically approximated and extensively studied
by Hodgkin and Huxley in [7]. It predicted with fair accuracy many of the electrical
properties of the squid giant axon, including many phenomena of excitation, like an-
ode break excitation and accommodation. Interestingly the mathematical model was
tested without further adjustment to many follow up experiments. Not only qualita-
tively but also quantitatively the model reflects very well:

• the form, duration, amplitude and threshold of an action potential under zero mem-
brane current at two temperatures,

• the form, duration, amplitude and velocity of a propagated action potential,
• the form and amplitude of the impedance changes associated with an action poten-

tial,
• the total inward movement of sodium ions as well as the total outward movement

of potassium ions associated with an impulse,
• the threshold and response during the refractory period,
• the existence and form of subthreshold responses,
• the existence and form of an anode break response,
• and the properties of the subthreshold oscillations,

as can be observed in cephalopod axons. The theory also predicts that a direct current
does not excite if it rises too slow.

The constants used in the mathematical model were entirely derived from voltage
clamp records without any adjustment to make them fit the phenomena they were
subsequently applied to. Therefore, the qualitative comparison of the model with new
experiments is quite satisfactory. This agreement, as Hodgkin and Huxley pointed out
in their paper, does of course not necessarily mean, that the model is more than an
empirical description of the dynamics of sodium and potassium. They were aware
that in principle very different mathematical systems could give equally good results.
The system they discuss takes into account a specific mechanism for permeability
changes. This fairly simple change in response to alterations in membrane potential
interestingly is a sufficient explanation for a wide range of experimental phenomena.

Finally Hodgkin and Huxley critically discuss their results. The solutions of the
mathematical model cover the short-term responses of the membrane and do apply to
experiments with an isolated squid giant axon. Additional processes have to be taken
into account for a nerve in a living animal in order to maintain the ionic gradients
and not to let them run down as it happens in the mathematical model for the isolated
squid giant axon. Also, the equations do not account for after-potentials. Easy modi-
fications of the model could account for increases of the resting potential. This could
be achieved by reducing the leak conductance and adding a small outward current,
which represents the metabolic extrusion of sodium ions. Upon changes of the con-
centrations of sodium and potassium the resting potential and the action potential of
many excitable tissues behave qualitatively similar. There is though a large difference
in the exact shape of the action potentials, so at least the parameters in the model have
to be different in other applications.

In very few aspects the behavior of the mathematical model does not agree with the
experimental results. One assumption was that the membrane capacity behaves like a
perfect condenser/capacitor, i.e. approximately like two electrical conductors/plates
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separated by an insulator that can store energy by becoming polarized. This simpli-
fication may account for the fact that the initial fall in potential after application of a
short shock is much less marked in the model than it is in the experimental curves.

Another aspect is that the potassium concentration in the model does not show as
much delay in the conductance rise upon depolarization, e.g. to the sodium potential,
as was observed in the voltage clamp experiment. Therefore the falling phase of the
spike develops too early in the mathematical model.

Further the model showed in comparison with the experiment a too large exchange
of internal and external potassium ions per impulse.

The theory strongly supports the idea that the responses of an isolated giant axon of
Loligo to electrical stimuli are due to reversible alterations in sodium and potassium
permeability which arise from changes in membrane potential.

The impact of the results by Hodgkin, Huxley, and Katz in the decades after their
findings was very strong. Hodgkin and Huxley discovered the voltage-dependent ion
channels by their combined approach of experimental and theoretical analysis. In-
teresting is the fourth power they assumed in their model for n, which simply is the
minimal power giving the best fits for the data obtained from a series of experiments.
One of the seminal contributions of Hodgkin and Huxley was the notion that sodium
channels transit between various conformational states in the process of opening. Yet
another set of conformations is entered when the channels shut during maintained de-
polarization. It is known today, that indeed the potassium channels have a tetrameric
structure. Four homologous subunits change conformation as these channels open.

3 Chemotaxis and Self-Organization

Chemotaxis is a phenomenon which can be observed in a variety of developmental
processes, in microorganisms as well as in certain cells of vertebrates. It describes
the directed movement of the respective species towards higher concentrations of a
chemical signal. This process is very common and important for the correct position-
ing and relocation of cells during structure formation of cell populations or within
tissues, e.g. during embryogenesis. Cells can also react negatively, by moving away
from a signal source. In this note, for convenience, only positive chemotaxis is con-
sidered.

One of the model organisms in biology for development and especially also for
chemotaxis are the slime mold amoebae Dictyostelium discoideum, Dd. Under star-
vation conditions these amoebae produce an attracting chemical messenger, called
acrasin. Such kind of self-production is not always the case in chemotaxis. The at-
tractive signal can also arise from external sources. In some amoeboid species the
acrasin is degraded by an enzyme called acrasinase, which occurs both bound to the
cell membrane and free.

Under starvation conditions Dd aggregates chemotactically and then coordinates
further to develop into structures, which are termed fruiting bodies, in order to allow
part of the population to survive in a vegetative state. This structure forming process
requires the death of about 90 percent of the amoebae for the survival of about 10
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Life-cycle of Dictyostelium discoideum, (Dd)

percent. Aggregation phenomena, in which spatially separated cells first form a mul-
ticellular group and then differentiate, are ideal model systems for the understanding
of the interactions between cells during morphogenesis.

An important question in the context of self-organization of Dd is, if chemotaxis
is a main driving mechanism, not only for the movement of the amoebae towards
higher concentrations of acrasin, but also for aggregation, mound formation and fur-
ther development in order to survive.

In [12] Keller and Segel proposed a mathematical model for chemotaxis of Dd
which takes into account

• the acrasin of concentration v, which is produced by the amoebae at a rate f (v)

per cell,
• the acrasinase of concentration η, which is produced by the amoebae at a rate

g(v, η) per cell,
• the amoebae, whose concentration u changes as a result of an oriented chemotac-

tic motion in the direction of a positive gradient of acrasin and a random motion
analogous to diffusion.

• The acrasin and the acrasinase react to form a complex of concentration c, which
dissociates into the free acrasinase plus the degraded product.

• The acrasin, the acrasinase and the complex diffuse according to Fick’s law.

This model system considered in a two-dimensional spatial domain, e.g. the Petri
dish, then reads

∂tu = −∇ · (D1∇v) + ∇ · (D2∇u) (24)

∂tv = −k1vη + k−1c + uf (v) + Dv�v (25)

∂t c = k1vη − (k−1 + k2)c + Dc�c (26)

∂tη = −k1vη + (k−1 + k2)c + ug(v, η) + Dη�η, (27)

with Neumann boundary conditions. Here k1, k−1, k2 are the rate constants for the
acrasin-acrasinase reactions. The system accounts for a stage where the attractive
signal is steadily released by all amoebae in the field. The entire process is modelled
spatially two dimensional, since all amoebae in the respective experimental situation
are first crawling over a more or less flat substrate within the Petri dish. As described
in [13] the amoebae are roughly about 10 µm in diameter. A lower threshold for
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aggregation is about 5 × 104 amoebae per square centimeter. The density at their
closest packing is about 106 amoebae per square centimeter. Thus the amoebae, when
still moving within a monolayer, are separated from each other by about less than
50 µm. Therefore a density description is sensible.

Assuming the complex c to be in a steady state with regard to the chemical re-
actions, i.e. k1vη − (k−1 + k2)c = 0, and further that the total concentration of the
enzyme (both free and bound) is constant, i.e. η + c = η̃, a simplified model was
derived in [12], namely

∂tu = −∇ · (D1∇v) + ∇ · (D2∇u) (28)

∂tv = −k(v)v + uf (v) + Dv�v, (29)

again in a two-dimensional domain with Neumann boundary conditions, and with
k(v) = η̃k2k1/(k−1 + k2 + k1v). Linearizing around constant steady states ũ, ṽ and
performing a perturbation analysis, like it was done for the Turing system, result into
the following instability condition

D1f (ṽ) + D2f
′(ṽ)ũ > D2

[
k(ṽ) + ṽk′(ṽ)

]
. (30)

If f and k are constant one has D1f > D2k. Thus the acrasin production and the
chemotactic strength of the amoebae have to overcome the decay of acrasin and the
random motion of the amoebae suitably, in order for an instability to arise. Gener-
ally, when looking at the two terms on the left hand side of (30), one obtains two
different sources of instability. As mentioned, a high acrasin production and a strong
chemotactic response promote instabilities. Diffusion and decay of acrasin are acting
against this, as can be seen from the term on the right hand side of (30).

On the other hand, assuming D1 to be small and then looking at f ′(ṽ)ũ > k(ṽ) +
ṽk′(ṽ), a second possible mechanism for an instability to occur, is a larger density of
amoebae, or a rapidly increasing production of acrasin, due to a small increase of the
acrasin level, which outweights its decay.

Whether the above mentioned instabilities really lead to a clustering of the amoe-
bae, where they start to also crawl over each other, can only be learned from a non-
linear analysis. If the model system is indeed able to indicate the onset of a local
accumulation in three dimensional aggregates of amoebae instead of a somewhere
more and somewhere less densely packed single cell layer, the assumption that the
solutions of this system are well-behaved has to break down, since the model setup is
spatially two dimensional. Such an initiation of further self-organization can be ex-
perimentally observed in Dd. So one is not only interested in the mere pattern forming
behavior of the system, i.e. the emergence of regions of higher density of amoebae
and regions of lower density. The question to be addressed with the mathematical
model for chemotaxis of Dd is, if a suitable spatially 2-dimensional model for the
observed chemotactic cell motion first results in regions of higher cell densities and
then is also able to indicate the onset of the experimentally observed 3-dimensional
self-organization. When using a spatially 2-dimensional model for this behavior, then
a necessary feature is that the solutions to the model should not exist globally in order
to answer this question positively. In [1] it was already conjectured that δ-functions
might be possible solutions of (28), (29).
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On the other hand, one could start with a spatially 3-dimensional model right from
the beginning. Then the peculiarities of cell motion in the third dimension would also
have to be described. This motion is crucially different from mere three dimensional
chemotactic motion. The basic model treated in [10], which for the first time an-
swered the biological question of chemotaxis being a possible driving mechanism for
the onset of self-organization of Dd in mathematical rigorous terms reads

∂tu = �u − χ∇(u∇v) (31)

∂tv = Dv�v − μv + βu (32)

u(0, ·) = u0, v(0, ·) = v0, u0, v0 ≥ 0 (33)

∂νu(t, ·) = ∂νv(t, ·) = 0 on δΩ, Ω ⊂ R
2. (34)

This system is a specific version of the simplified Keller-Segel model with D1 = χu

and D2 = 1. The amoebae undergo random motion and move up the chemical gradi-
ent ∇v with a so-called chemotactic sensitivity of strength χ . The attractive chemical
diffuses, it is produced with a rate β by the amoebae themselves and decays with
rate μ. Here χ,Dv,μ,β are all positive constants. The diffusion of the chemical
is much faster than the random motion of the cells. So Dv is assumed to be of or-
der 1/ε, with ε being small. Further, it is assumed that the production rate of the
attractive chemical fulfills β = Dvα, and that α and μ are of order one. Then for
w̄ := 1

Ω

∫
Ω

wdx one obtains

ū(t) = ū0, (∂t + μ)v̄/Dv = αū = αū0.

Introducing the relative density of the chemical v∗ := v− v̄ one gets (∂t +μ)v∗/Dv =
�v∗ + α(u − ū0). Hence for small ε one may as well consider the approximating
system

∂tu = �u − χ∇(u∇v) = �u − χ∇(
u∇v∗)

0 = �v∗ + α(u − ū0).

Then rescaling v� = v∗/(αū0), u� = u/ū0, and after that immediately dropping the �,
one obtains

∂tu = �u − χ̃∇(u∇v)

0 = �v + u − 1,
(35)

where χ̃ = αū0χ . By the maximum principle one has for any solution (u, v) that
u ≥ 0, and v can be computed from u.

In the rigorous bifurcation analysis for general chemotaxis systems given in [14]
it was already pointed out that the long time behavior of the solutions can only be
non-constant if χ̃ is larger than the modulus of the first non-zero eigenvalue of the
Laplacian.

The main results in [10] are the following. For an open, bounded domain Ω ∈ R
2

with C1-boundary and initial data u0 in C1

(a) there is a critical number c(Ω) such that for χ̃ = αū0χ < c(Ω) there exists a
unique, smooth positive solution for system (35) with the respective initial data
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and boundary values for all time. More precisely, if u is a smooth, positive solu-
tion of (35) and 0 < t∗ ≤ ∞ is the maximal time of its existence, then there exists
c1(Ω) > 0 such that t∗ < ∞ implies

lim
k→∞ lim sup

t→t∗−

∫

Ω

(u − k)+ dx ≥ c1(Ω).

(b) If Ω ⊂ R
2 is a disk, then there exists c∗ > 0 such that for χ̃ = αū0χ > c∗ radi-

ally symmetric positive initial values can be constructed so that explosion of u

happens in the center of the disc in finite time.

With the second result it is shown that this chemotaxis model exhibits effects
which indicate the onset of a self-organization phenomenon, which later, experimen-
tally, leads to fruiting body formation of Dd. The authors remark that (a) contains
information on the rate of explosion if it happens in finite time, and that it would
be interesting to know more about the set of explosion points at t∗. Further they
mention, that solutions may globally exist in a weak sense and that the study of sin-
gularities after a finite maximal time of existence is another important topic to be
studied. Interestingly this last suggestion within the paper was followed up only quite
recently. Biologically such an analysis gives hints about what may happen after part
of the amoebae have started to self-organize. Can more aggregates form later and
self-organize too?

The modeling and analysis of the onset of chemotactic self-organization of Dd in
[10], a highly interesting developmental process, has also contributed a lot to the un-
derstanding of the biological relevance of certain singular solutions for mathematical
models in the life-sciences. This has been recognized much later in comparison to
other sciences, where the relevance of singular solutions had long been established
before, e.g. in physics. In this specific context we refer also to [17].

Although not given explicitly in their theorems, from the estimates in [10] one
can directly deduce the explicit critical constant c∗ for the radially symmetric set-
ting, which distinguishes between the existence of global solutions and blowup of
solutions.

In summary, a large enough chemotactic sensitivity, a large enough production
rate of the attractive chemical signal and/or a large enough initial mass of amoebae
is necessary for the onset of self-organization due to chemotaxis in the mathematical
model. Qualitatively this fits very well to what is measured and known experimen-
tally. This first rigorous result on switching between existence of global solutions and
singular solutions, just by a slight variation of certain parameters of the model sys-
tems has triggered a huge number of mathematical research on chemotaxis systems
and aggregation phenomena. Many more results are still expected to come. Within the
‘DMV-Jahresberichte’ two reviews have been provided [8, 9], with a quite complete
overview of what has been proved until then.

4 Statistical Significance of Molecular Sequence Characteristics

It is well known that an unusual pattern in a nucleic acid or a protein sequence, or
that a region of strong similarity shared by two or more sequences can be of bi-
ological significance. Therefore it is desirable to know whether such a pattern can
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Sequence alignment

have arisen simply by chance or rather not. In order to identify interesting sequence
patterns, appropriate scoring values have to be assigned to individual residues of a
single sequence or to a set of residues when several sequences should be compared.
For single sequences, such scores can reflect biophysical properties such as charge or
secondary structure potential. For multiple sequences the scores can reflect nucleotide
or amino acid similarity. How to measure such characteristics in a reasonable way is
an important task in order to obtain an efficient and reliable search algorithm. In this
context the basic local alignment search tool BLAST and its follow up algorithms are
highly successful and the most frequently used software in computational biology.
Surprisingly, it is less well known, that the success of these programs heavily relies
on rigorous mathematical results. Only those do finally allow for a sound biological
interpretation of the obtained output. By using an appropriate random model [2, 3, 6]
a mathematical theory was developed which provides precise formulas for assessing
the statistical significance of any region with high scores. Significant sequence con-
figurations are characterized with reference to a general scoring scheme. This chapter
is strongly based on the summary given in [11].

Determining which patterns are likely or unlikely to occur just by chance in nu-
cleic acid and protein sequence analysis, helps to identify features of interest for
experimental study. Interesting patterns in a single protein sequence might be un-
usual concentrations of charged residues or potential glycosylation sites. A region of
high similarity of two or more sequences may indicate a common function. A math-
ematical model appropriate to experimental data was constructed in [2, 3, 6], which
provides a benchmark for analyzing various data statistics on a sound basis. This
independence random model generates successive letters of a given sequence in an
independent fashion such that e.g. the letter aj is selected with probability pj . In
the case of proteins the pj are usually specified as the actual amino acid frequencies
in the sequence under consideration. A random first-order Markov model then pre-
scribes pjk as the conditional probability for sampling letter ak following letter aj .
In the case of a single protein sequence the pjk would correspond to the observed
diresidue frequencies. More complex random models can account for more elaborate
long-range dependencies.

Other mathematical models which were available previous to [2, 3, 6], and are
outlined in [11], do not allow to describe properties or mismatches that vary in degree.
This limits their value for applications. In sequence comparison one would like to be
able to count a mismatch between isoleucine and valine differently from one between
glycine and tryptophan.

Let us first describe the mathematical theory given in [2, 3, 6], and summarized
in [11], in the context of the analysis of a single protein sequence with the objec-
tive to identify segments with statistically significant high scores, e.g. for charge
concentration, phosphorylation potential, or secondary structure propensity. Let A =
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{a1, a2, . . .} be the alphabet in use with corresponding letter scores {s1, s2, . . .}. It will
be explained later how to choose sensible scoring criteria. For the random sequence
model the letters are sampled from A independently, with the respective probabilities
{p1,p2, . . .}. The theorems summarized in [11] are proved and further generalized in
[2, 3, 6] also to random models where successive letters have a Markov dependence.

One is primarily interested in the segment of the sequence with largest aggre-
gate (additive) score, which is denoted as maximal segment score. The length of this
segment is determined by the structure of the data themselves, rather than being pre-
scribed. Previous profile studies of protein sequences had used a fixed length, but no
clear criteria for choosing this so-called window length had been proposed, and no
rigorous significance results were available.

For the mathematical ansatz summarized in [11] it is required that

• at least one score is positive,
• and the expected score E := ∑

pisi is negative.

Otherwise the maximal segment would tend to be the whole sequence under consid-
eration, which is not what one is interested in. For any set of scores with E > 0 one
can define the modified scores s̃i := si − αE with suitable α > 1 to fulfill the above
condition.

In order to assess the statistical significance of high-scoring segments in a given
protein sequence, it is important to know the probability distribution for maximal
segment scores from a random sequence of length n. Let λn∗ be the unique, positive
solution of

n∑

i=1

pi exp
(
λnsi

) = 1.

Note, that also λn = 0 solves this equation. Let M(n) denote the maximal segment
score for the random sequence of length n. It was proved in [2, 3, 6] that M(n) is of
order log(n)/λn∗ , and that the limiting distribution for the centered maximal segment
score M(n) − log(n)/λn∗ =: M̃(n) fulfills

Prob
{
M̃(n) > x

} ≈ 1 − exp
(−K∗e−λn∗x

)
. (36)

Additionally an explicit formula for K∗ was given, i.e. a rapidly converging series,
which is convenient for computational approaches.

The number of separate high-scoring segments, i.e. those with scores exceeding
x + log(n)/λn∗ for x ∈ R, and which are sufficiently far apart, can be closely approxi-
mated by a Poisson distribution with parameter K∗ exp(−λn∗x). Therefore the proba-
bility of finding m or more distinct segments with score greater than or equal to S can
be closely approximated by (1 − e−y

∑m−1
i=0 yi/i!), where y = K∗n exp(−λn∗S). For

m = 1 this reduces to the right hand side of Eq. (36). With this distribution one can
assess whether or not the count of segments with moderate to high score over a whole
protein is unusually high, since (36) allows to calculate explicitly the probability that
some segment from a random sequence has a score larger than a given value. This
provides a crucial benchmark for assessing the statistical significance of high-scoring
segments.
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As mentioned before, it is very important to define a good scoring scheme with
relevance for the respective experimental situation. Often natural criteria underly the
chosen score assignments. But sometimes one may be confronted with an unusual
amino acid composition whose features are not easy to describe. The search for op-
timality of scoring schemes in order to identify a particular region is only possi-
ble if there occurs no statistical difference between the composition of high-scoring
chance segments and the composition of similarly scoring true segments. The fol-
lowing mathematical result makes the composition of high-scoring chance segments
relevant for the selection of suitable scores.

For a random sequence, growing without bound, the frequency of say letter ai

in any sufficiently high-scoring segment approaches pi exp(λ∗si) with probability
one. In particular this is true for the maximal segment. Since si = log(qi/pi)/λ

∗ for
qi := pi exp(λ∗si), the score associated with each letter is the logarithm to some base
q/p, where p is the frequency with which the letter appears by chance, and q is
the letter’s implicit target frequency. So the question of an optimal set of scores can
be recast into the question of what is an optimal set of target frequencies. The best
target frequencies to choose are those in the region of interest. So one merely has to
characterize the letter distribution in those regions. The score for the letter ai can be
set equal to the corresponding log-likelihood ratio, namely log(qi/pi).

When comparing several sequences a basic problem is, to find similar segments in
each sequence and to align them. Again the question is, when such subalignments are
statistically significant and when not. Consider two independent random sequences
with letter probabilities {p1,p2, . . .} and {p̃1, p̃2 . . .}. The pair of letters aibj , where
ai is of the first sequence and bj is of the second sequence occurs with probability
pip̃j . Let the score for such a pairing be sij , which results in a scoring matrix. As
before one assumes that

• the expected pair score
∑

i,j pip̃j sij is negative,
• and there is some probability of a positive score.

Now λ∗ is determined as the unique, positive solution of
∑

i,j

pip̃j exp(λsij ) = 1,

subject to the assumption that the probability distributions {pi} and {p̃j } for the
two sequences are not too dissimilar and that the sequence lengths m and n grow
at roughly equal rates. The previously mentioned rigorous result also holds for the
maximal scoring segmental alignment, but with n now being replaced by nm. For
large x one obtains

Prob
{
M > x + log(nm)/λ∗

} ≤ K∗e−λ∗x.

Thus any alignment of segments from two sequences has an unusually high score
(statistically significant at the 1% level) if M exceeds x0 + log(nm)/λ∗, where x0 is
determined by K∗ exp(−λ∗x0) = 0.01. This result can also be generalized in a natural
way to the comparison of more than two sequences. The random model for protein
sequences upon which this result is based is most useful for showing that the scores
of certain subalignments can be explained by chance alone. As before, the random
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model for protein sequence comparison serves as a benchmark. Also in this case,
optimal score matrices can be obtained by refined estimations of random and target
distributions.

Example Consider a specific protein of length n and a set of amino acid scores. In
order to calculate the level below which 99% of the maximal segment scores for
random sequences with similar composition and length will fall, one first takes the
amino acid probabilities for a random protein model directly from the protein at hand.
From these probabilities and the given scores, one can calculate K∗ and λ∗. Solving
exp(−e−λ∗x) = 0.99 for x yields x = − log log(1/0.99)/λ∗. Then any segment with
score greater than x + (logn + logK∗)/λ∗ is considered significant at the 99% level.

The statistical theory for multiple high-scoring segments works similarly.

More generally in [4] two independent sequences X1, . . . ,Xn and Y1, . . . , Yn are
considered. It is supposed that the first sequence is i.i.d. μX and the second one is
i.i.d. μY , where μX and μY are distributions on finite alphabets ΣX and ΣY . A score
F : ΣX × ΣY → R is assigned to each letter pair (Xi, Yj ). For the maximal non-
aligned segment score Mn = max{0≤i,j≤n−r,r≥0}{∑r

l=1 F(Xi+l , Yj+l )}, i.e. the max-
imal segment score allowing for shifts it was proved in [4] that

Mn/ logn → γ ∗(μX,μY ),

where γ ∗ is determined by a tractable variational formula. Further, the pair empiri-
cal measure of (Xi+l , Yj+l ) during the segment where Mn is achieved converges to a
probability measure ν∗, which is accessible by the same formula. These results gener-
alize to intrasequence scores with shifts, to asymptotics of the longest quality match,
to more than two independent sequences, and to sequences of different length. The
constant γ ∗ is expressed in terms of relative entropy functions. Vital for applications
is the precise limit distribution of Mn centered at (γ ∗/ logn), which is given in [5].

Due to the paramount relevance of these and follow up results for the BLAST-type
of programs it is recommended to not only reread the cited articles, but also related
and follow up literature. This mathematical theory is the foundation and logical basis
of the involved algorithms, and one of the fundamental contributions to nowadays
computational biology tools. A fact, which unfortunately is barely known.
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