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Local environment effects are important for providing a framework for understanding the changes 
in vibrational properties that result from disordering. In the present work the effects of local envi- 
ronments on thermodynamic quantities are examined using the embedded-atom method (EAM) for 
NiaAl and Cu3Au. Projections of the density of states onto different local environments are per- 
formed, and a local cluster expansion is calculated. It is found that the contribution to the entropy 
from a given atom is primarily determined by the atom and its first few neighbor shells. Relaxations 
are seen to qualitatively change the dependence of the entropy on local environment, changing the 
sign of the dominant interactions. Also, relaxations are found to extend the range of point and pair 
interactions and to increase the importance ofmultisite interactions. These results suggest that a spe- 
cial quasi-random structure (SQS), a small supercell constructed to approximate the local environ- 
ments of the disordered phase, might be able to reproduce the disordered phase vibrational 
thermodynamics. It is found that an eight-atom SQS can accurately represent the vibrational ther- 
modynamic properties of the disordered phase, implying that it could be a powerful tool for first- 
principles vibrational studies. 

1 .  I n t r o d u c t i o n  

The influence of vibrational effects on phase stability is at 
present poorly understood. Until recently most phase diagram 
calculations were performed without including vibrational 
contributions, which were assumed to be small. Now evidence 
is emerging that vibrations may play an important part in deter- 
mining phase diagrams. Recent experimental work on Ni3A1 
(Ref 1, 2) and Cu3Au (Ref 3) suggests that the vibrational en- 
tropy difference (AS) between the disordered and L12 phases is 
quite significant compared with the configurational effects. 
Theoretical calculations on these systems have also suggested 
that the vibrational AS could be quite large (Ref 4-7), although 
recent first-principles calculations have obtained a small vi- 
brational AS for Ni3A1 (Ref 8). The excitement and contro- 
versy these experimental and theoretical results have produced 
make clear the need for further study. 

In this work, the embedded-atom method (EAM) (Ref 9, 
10), coupled with the quasi-harmonic method (Ref 11, 12), is 
used to study vibrational properties of Ni3A1 and Cu3Au. The 
vibrational AS is calculated both with and without local relaxa- 
tion, obtaining reasonable agreement with experimental val- 
ues for Ni3A1 but not for Cu3Au. The effects of relaxation on 
the vibrational AS are found to be fairly small for Ni3A1, while 
for Cu3Au the relaxations have an important qualitative effect. 

The influence of local environment is studied in some de- 
tail. Projections of the density of states onto different local en- 
vironments are determined and used to calculate the local 
entropy. Acluster expansion (Ref 13-16) of the local entropy is 

performed in order to analyze the important aspects of the 
chemical environment. It is found that the contribution to the 
entropy from a given atom is primarily determined by the atom 
and its first few neighbor shells. Relaxations are seen to quali- 
tatively change the dependence on local environment, chang- 
ing the sign of the dominant interactions. Also, relaxations are 
found to extend the range of point and pair interactions and in- 
crease the importance of multisite interactions. 

The results of the cluster expansion suggest that special 
quasi-random structures (SQSs) (Ref 17-19) might be used 
successfully to model the vibrational thermodynamic proper- 
ties of the disordered phase. By comparing with results from a 
large (256-atom) disordered supercell, it is found that an eight- 
atom (SQS-8) can accurately represent the vibrational thermo- 
dynamic properties of the disordered phase. This suggests that 
the SQS-8 could be a powerful tool for first-principles vibra- 
tional studies. Including relaxation causes the SQS-8 to give a 
less accurate representation of the disordered phase vibrational 
thermodynamics. This can be understood in terms of the 
longer-range and multisite interactions found to be important 
in the relaxed cluster expansion. 

This article is arranged as follows. The following section, 
section 2, is a description of the computational methods, in- 
cluding the EAM, the quasi-harmonic method, the calculation 
of local thermodynamic quantities, the cluster expansion as 
applied to local quantities, and the SQS. Section 3 gives the re- 
sults of the cluster expansion of the local entropy for both the 
locally unrelaxed and relaxed cases. Section 4 compares the 
results of vibrational thermodynamic properties calculated 
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with the SQS-8 and a large (256-atom) disordered supercell. 
Section 5 gives a summary of the results and the conclusions. 

2 .  C o m p u t a t i o n a l  M e t h o d s  

2.1 Embedded-Atom Method 

A detailed discussion of the EAM is given in Ref 10 and is 
discussed only briefly here. The EAM is a semiempirical 
many-body potential, the parameters of which are fit to experi- 
mental or first-principles data. The Ni3A1 potentials being used 
were developed by Voter and Chen (Ref 20), and their applica- 
bility to the calculation of vibrational thermodynamic proper- 
ties has been shown in Ref 6. The Cu3Au potentials were 
developed by Foiles et al. in the context of developing a set of 
potentials for a number of transition metals (Ref 21). Unlike 
the Ni3A1 potentials, the Cu3Au potentials were fit using only 
pure-element properties and dilute heats of solution. There- 
fore, they may not be as reliable when used for alloy proper- 
ties; for example, it is well known that these potentials get the 
incorrect sign for the L12/D022 energy difference in Cu3Au. 
Preliminary results suggest that these Cu3Au potentials give a 
reasonable representation of the L12 vibrational spectrum and 
thermal expansion, but further testing of the potentials is re- 
quired to determine their accuracy for quantitative vibrational 
thermodynamic calculations. Although the EAM is always 
somewhat suspect because of the approximate nature of the 
potential, it allows one to perform calculations on systems 
more than 100 times the size that would be accessible to more 
accurate first-principles calculations. Because the EAM al- 
most certainly provides a reasonable physical model for the al- 
loy, it is appropriate to use it for the tests of the SQS and 
qualitative trends that are the focus of this article. 

2 .2  Quasi-Harmonic  Method 

The quasi-harmonic method is discussed in Ref 11. It is a 
simple extension of the harmonic approach, discussed in Ref 
11 and 12, to approximately include anharmonic effects. In the 
harmonic approximation, the vibrations are treated only to sec- 
ond order in the displacements. The dynamical matrix is then 
diagonalized to find eigenvectors and eigenvalues, which in 
turn can be used to calculate densities of states and thermody- 
namic properties. For example, in the harmonic approxima- 
tion, the entropy can be found from the density of states by the 
formula: 

S(T) = k B I d03g(03){(x/2)/tanh (x.,2) - log[2 sinh (x/2)]} (Eq 1) 

where T is the temperature, g(m) is the density of states, x = 
*im/kBT, and the integral is for all positive m. In the quasi-har- 
monic approach, the harmonically determined frequencies are 
considered as function of volume. The vibrational free energy 
can then be found as a function of volume, and by minimizing 
the free energy to find the equilibrium volume, the thermal ex- 
pansion effects are approximately included. The quasi-har- 
monic results have been compared with those of more accurate 
Monte Carlo calculations for Ni3A1, and it was found that the 
quasi-harmonic method significantly overestimates the ther- 

mal expansion, especially at high temperature. However, the 
effects have no qualitative impact, as using the Monte Carlo 
equilibrium volumes (rather than those from the quasi-har- 
monic method) changes the vibrational AS by only about 25%. 
Careful testing of the quasi-harmonic approximation com- 
pared to Monte Carlo results can be found in Ref 22. 

2 .3  Local  Thermodynamic  Quant i t i es  

In the harmonic approximation, thermodynamic quantities 
can be calculated by straightforward integration of the vibra- 
tional density of states (DOS) weighted by the appropriate 
function. Local thermodynamic quantities can be calculated in 
a similar manner using the projected or local DOS. 

This article defines a projected DOS in the following man- 
ner. The DOS can be expressed as a trace over a Green's func- 
tion (Ref 11) as: 

A 

D(03) = _203 ImTr G (03) (Eq 2) 

with: 

A . ~  A A 

G (03, k) = (03 2 1 -- D(k)'+ ie) -1 (Eq 3) 

Here Tr means the trace, Im means take the imaginary part, and 
J} is the dynamical matrix, ~ is a unit matrix of appropriate 
size, and e --+ 0 +. The trace may be taken in any basis; for ex- 
ample, taking the trace in the basis ofphonon eigenvectors [Wi) 
leads to the standard expression for the DOS: 

D (03) = E 8(03 - co/) (Eq 4) 
i 

Consider now a basis ]m, g) where m labels the atoms and bt 
labels the Cartesian component; each of the members of the 
basis is a vector of length 3N (N is the number of atoms in the 
unit cell) with a single element equal to one (the one corre- 
sponding to atom m and Cartesian direction bt) and all other 
elements zero. By evaluating the trace in this basis and making 
use of the closure property of the eigenvectors one obtains: 

D(03) = ~ ~ I(m,glWi){ 2 8(03-%)= ~ Dm,g(m ) (Eq5) 

m , g  i m,p  

The inner product [(m,btlWi)] is simply the Cartesian compo- 
nent u of the amplitude of displacement of atom m in mode i. 
The quantity D m p(O)) is the density of states projected onto 
atom m and direc'~on g. Equation 5 may be used to generate a 
variety of different projected DOSs. In this work the DOS is 
projected onto a given atom, which is done by constructing the 
sum o f D  m ~t(0)) over all g for the given atom m. 

The toi~l DOS can be written as a sum of the projected DOS 
for each atom. Therefore, any thermodynamic quantity calcu- 
lated by integrating over the total DOS can be written as a sum 
of terms each involving integrals over the projected DOS for 
each atom. These terms can be considered the local contribu- 
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tion from each atom to the total thermodynamic quantity. 
Studying the influence of the surrounding environment on the 
thermodynamic contribution of a given atom provides insight 
into how local environments affect the total alloy thermody- 
namics. 

2 . 4  C l u s t e r  E x p a n s i o n  

In order to make a quantitative analysis of the influence of 
the local environment, a cluster expansion (CE) of the local 
thermodynamics is performed. The CE formalism is generally 
appropriate for modeling the dependence of a quantity on 
chemical disorder (Ref 13, 14). The CE is usually applied to 
formation energies, although recently it has been extended to 
the study of vibrational properties (Ref 8, 15, 16). The idea of 
fitting interactions to represent local vibrational properties has 
also been pursued previously (Ref 23), but it was not done 
within the modern CE formalism, and only first-neighbor envi- 
ronments were included. 

The CE of a local function is slightly different from the CE 
of a global function, so it will be discussed in some detail here. 
The CE formalism allows any function of configuration (the 
occupation of each lattice site) to be written in a generalized Is- 
ing form. In the CE formalism for anA-B binary alloy, the alloy 
configuration is represented by pseudospin variables, defined 
as: 

cy(p) = -1 when an atom oftypeA is on sitep (Eq 6a) 

6(p) = + 1 when an atom of type B is on site p 

Any function of configuration F can be written: 

(Eq 6b) 

F(~)= ~ VuOa(~) (Eq7) 

where cr denotes the pseudospin configuration of the whole lat- 
tice, ct denotes a cluster of sites on the lattice, and N is the num- 
ber of lattice sites. The sum is over all possible clusters. ~ a  is 
called a cluster function and is equal to the product of the 
pseudospin values on all the sites in cluster c~. The Vc~ are the 
effective cluster interactions (ECI) and represent how the at- 
oms interact (Ref 14). The ECI are defined by the projection: 

Va = <F(O)Oa(CY)) = ~N ~ F (~) Oa((:Y ) (Eq 8) 
u 

where the summation is over all possible configurations of the 
system. 

The symmetry of the parent lattice on which the cluster ex- 
pansion is performed reduces the number of independent ECI. 
Let S be a symmetry operation of the parent lattice. For a global 
quantity, F(cy), it is true that: 

F(o) = F(S(o)) (Eq9) 

and this can be used to show that: 

Va = Vs(a) (Eq I0) 

For a local quantity, FP((~), which depends on configuration 
and which lattice site,p, is being considered, it is only true that: 

FP(G) = F S(p) (S(cy)) (Eq 11) 

Equation 11 shows only that the equality in Eq 10 holds when 
p = S(p). This follows from the fact that: 

Vex =IN Z FP((~)OeL(~) 
r 

1 
-- 2 N Z FP(S-1 (CO) Otx(s-l(o')) 

1 
- 2  N Z Fs(p)(C)Os(co (c) 

1 
- 2  N Z FP((Y)dPS(cO((Y) 

(Y 

= Vs(a) (Eq 12) 

Therefore Eq 10 is true by symmetry only when S is both a 
symmetry operation of the parent lattice and when p = S(p); 
that is, S is an element of the parent lattice point group for the 
pointp. 

A common method of determining the ECI is the Connolly- 
Williams, or structure inversion, method (Ref 14, 24-27) 
(SIM). This involves choosing a set of clusters whose corre- 
sponding ECI are expected to be the most significant. Reason- 
able criteria for establishing whether a cluster is likely to have 
a significant corresponding interaction are: 

�9 The cluster has as few points as possible. 
�9 The cluster is as compact as possible. 
�9 For a local CE, the cluster contains the relevant local pointp. 

These criteria are fairly standard except for the last one, which 
needs to be added for the case of a local CE. Following these 
criteria, only point and pair ECI are used in this article. 

Using the SIM with the usual CE formalism involves calcu- 
lating the quantity of interest for a number of different lattice 
configurations to get independent values to which one can fit 
ECI. In the case of a local quantity, a number of different values 
and local environments can be obtained from a single unit cell, 
particularly if it is large and disordered. For the authors' calcu- 
lations, a large number of distinct local values and environ- 
ments are obtained for fitting using a single 256-atom 
disordered unit cell. 

2 .5  S p e c i a l  Q u a s i - R a n d o m  S t r u c t u r e s  

The special quasi-random structures (SQSs) (Ref 17-19) 
are small unit cell lattice configurations that approximate the 
local environments of the disordered phase. This is done by 
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cons.acting the SQS to reproduce as closely as possible the 
short-range correlations of the disordered phase. The SQSs are 
very useful for first-principles calculations, as they allow one 
to directly calculate disordered phase properties using a tracta- 
ble number of atoms. They have been shown previously to rep- 
resent accurately such properties as total energies and band 
gaps (Ref 19), but they have not previously been tested on vi- 
brational properties to the knowledge of the authors. Here, 
SQS-8 is the focus because it is the smallest unit cell that can 
give a reasonable representation of the disordered phase. 
Larger unit cells are of less interest at this point as eight atoms 
is already pushing the computational limits of present first- 
principles phonon methods. 

The primitive lattice vectors, basis atom locations, and 
short-range correlations of the SQS-8 used in this work (Ref 
28) are given in Tables 1 to 3, respectively. The correlations of 
the random disordered state are also included for comparison. 
It can be seen that this SQS-8 reproduces the first three neigh- 
bor pair correlations of the random disordered state almost per- 
fectly, but that for farther pairs the agreement gets worse. The 
triplet correlations are also quite good, but the tetrahedron cor- 
relation shows significant deviation from the disordered state. 

3. Cluster Expansion Results  

A local CE of the local entropy (SP) has been performed as 
described in section 2.4. @ was found by integrating the DOS 
projected onto site p (the projected DOS is normalized to 3) 
against the appropriate function (see section 2.3). SP was found 
for each site p of a large disordered cell of 256 atoms, and 
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Fig. 1 Unrelaxed Ni3A1. The RMS error in the cluster expansion 
of the local entropy and the point (sofid) and pair (dashed) effec- 
tive cluster interactions themselves. 

checks were made for a 500-atom cell to assure that results 
were converged with respect to size. The calculations were 
performed at a lattice parameter of 3.614 ]k (for Ni3A1) and 
3.76 ,~ (for Cu3Au), and a temperature of 600 K. The calcula- 
tions are converged to within about 0.01 k B with respect to the 
k-point sampling used to calculate the DOS. The SIM was then 
used to fit ECI to Sp. A large number of ECI can be determined 
from a single disordered cell because it contains a large num- 
ber of distinct local entropies and environments. The ECI con- 
sidered corresponds to the zero cluster, the point clusterp, and, 
for each pointp '  in the first eight nearest-neighbor (nn) shells, 

Table 1 Primitive Lattice Vectors (PLV), in Units of 
Lattice Parameter 

PLV X Y Z 

PLV I ............................... 1 0 0 

PLV II .............................. 0.5 1 0.5 

PLV III  ............................. ~).5 -1 1.5 

Table 2 Basis Atom Locations, in Units of the Primitive 
Lattice Vectors 

Atom 
type PLV I PLV I I  PLV I I I  

A ..................................... 0.5 --0.25 1.25 

0.5 0.25 0.75 

1 0.75 0.75 

0 ~).75 1.25 

1 0.25 0.25 

0 M3.25 1.75 

B ..................................... 1 0.25 1.25 

0 ~).25 0.75 

Table 3 Correlations, Lattice Averaged Cluster 
Functions 

Cluster Random 
type Vertices SQS-8 disordered state 

Points .................. (000) -1/2 -1/2 
Pairs 

1 neighbor  ....... (000),(110) 1/4 1/4 
2 neighbor  ....... (000),(200) 1/3 1/4 
3 neighbor  ....... (000),(112) 1/4 1/4 
4 neighbor  ....... (000),(022) 0 1/4 

5 neighbor  ....... (000),(013) 1/6 1/4 

6 neighbor  ....... (000),(222) 0 1/4 

7 ne ighbor  ....... (000),(123) 1/3 1/4 
8 neighbor  ....... (000),(004) 2/3 1/4 

Triplets 

1 neighbor  ....... (000),(110),(101) -1/~ -1/8 

2 neighbor  ....... (000),(110),(200) -1/6 -1~ 

Quadruplets 

1 neighbor  ....... (000),(1 I0),(I01),(011) 1/2 1/16 
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the point p '  and pair pp '  clusters. Cluster expansions were per- 
formed for both locally unrelaxed and locally relaxed configu- 
rations. The results for locally unrelaxed Ni3A1, locally relaxed 
Ni3A1, locally unrelaxed Cu3Au, and locally relaxed Cu3Au 
are given in Fig. 1 to 4, respectively. The top halves of these 
figures show the RMS error in the values predicted by the ECI 
compared with the exact calculated values. The RMS errors 
are plotted as a function of the number of neighbor shells in- 
cluded in the CE. In the bottom half of these figures the point 
(solid) and pair (dashed) ECI themselves are plotted for each 
neighbor shell. 

In the unrelaxed case, the local environment is strongly 
dominated by the first-neighbor shell for both alloys, although 
most strikingly for Cu3Au. This can be seen by the sharp drop 
in the RMS error after the first shell and by the larger values of 
the first shell ECI. In both alloys the ECI are essentially zero 
after the fourth-neighbor shell, and in both alloys the inclusion 
of ECI out to the fourth-neighbor shell brings the RMS error 
down to about 0.01 kB, which shows that multisite interactions 
are not important. 

When local relaxation is included, there are a number of im- 
portant effects. First, for both alloys the ECI become longer 
range, as clearly evidenced by significant fifth-neighbor shell 
ECI. Second, in both alloys the RMS error decreases only to 
around 0.03 k B, not nearly as low a value as was obtained in the 
unrelaxed case. This is probably due to an increase in the im- 
portance of multisite interactions. It is unlikely that the RMS 
error is large due to a failure to include enough pairs, because 
ECI out near the eighth-neighbor shell do not seem to be sig- 
nificantly improving the RMS error. Finally, there is a dramatic 
change of sign of the dominant first-neighbor shell ECI when 
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Fig. 2 Relaxed Ni3A1. The RMS errorin the cluster expansion of 
the local entropy and the point (solid) and pair (dashed) effective 
cluster interactions themselves. 

local relaxation is included. This implies that the dependence 
on local environment is qualitatively different between the un- 
relaxed and relaxed case. 
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Fig. 3 Unrelaxed Cu3Au. The RMS error in the cluster expan- 
sion of the local entropy and the point (solid) and pair (dashed) ef- 
fective cluster interactions themselves. 
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Fig. 4 Relaxed Cu3Au. The RMS error in the cluster expansion 
of the local entropy and the point (solid) and pair (dashed) effec- 
tive cluster interactions themselves. 
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The qualitative effect of relaxation can be seen more plainly 
in Fig. 5 and 6 for Ni3A1 and Cu3Au, respectively. In these fig- 
ures, the local entropy has been plotted as a function of the 
nearest-neighbor shell point correlation function for both the 
relaxed (X) and unrelaxed (open circle) cases. The first thing to 
notice about these figures is that the local entropies are quite 
distinct for the two types of atoms. This is a simple mass effect, 
and in both cases the heavier atoms, which have lower fre- 
quency modes, have the higher local entropy. However, re- 
laxation also has a profound effect. For the unrelaxed case in 
both alloys, the local entropy on an atom is seen to decrease as 
its nearest-neighbor environment becomes more B-atom (Au 
or A1) rich. For the locally relaxed case just the opposite oc- 
curs, and the local entropy on an atom is seen to increase as its 
nearest-neighbor environment becomes more B-atom rich. o.o  

~,5.0~ l 

Ni 

AI 

i 
s.% .o -o.~ o'.o 0.5 

average nn point correlation (Ni -> AI) 

Fig. 5 Ni3A1. The local entropy as a function of the nearest- 
neighbor point correlation for both the locally unrelaxed (open cir- 
cle) and locally relaxed (X) cases. Lines are drawn to assist the eye. 
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Fig. 6 Cu3Au. The local entropy as a function of the nearest- 
neighbor point correlation for both the locally unrelaxed (open cir- 
cle) and locally relaxed (X) cases. Lines are drawn to assist the eye. 

The change of slope is what accounts for the change of sign in 
the dominant first-shell ECI with the inclusion of relaxation. 
The relaxation effect can be simply understood in terms of size 
mismatch. Both Cu-Au and Ni-A1 have a very large size mis- 
match between their constituents, the B-type atom (Au or A1) 
being the larger in both cases. Therefore, in the unrelaxed al- 
loy, the addition of large B atoms to the local environment will 
create more crowding, higher electron densities, and stronger 
force constants, which will lead to a decrease in the local en- 
tropy. However, in the relaxed alloy, the addition of large B at- 
oms to the local environment will cause atoms to be pushed 
away, lowering the electron density and decreasing the force 
constants; this will lead to an increase in the local entropy. The 
effect of size on local environment for the unrelaxed and re- 
laxed cases is shown in Fig. 7. 

The reasonably short-range influence of the local environ- 
ment suggests that a small unit cell with local environments 
similar to the disordered phase might be able to accurately 
model its vibrational properties. 

4. Special  Quasi-Random Structure 
Results  

A comparison is made between an eight-atom special 
quasi-random structure (SQS-8) and a randomly decorated 
256-atom supercell. The details of the SQS are discussed in 
section 2.5. The calculations are done in the quasi-harmonic 
approximation (see section 2.2) and are well converged with 
respect to k-point sampling and system size (for the disordered 
phase). Details of this implementation of the quasi-harmonic 

Locally Unrelaxed Lattice 

Locally Relaxed Lattice 

Fig. 7 The effects of adding large atoms to the local environ- 
ment. In the unrelaxed case, the crowding decreases the local en- 
tropy. In the relaxed case, the spreading increases the local 
entropy. 
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method can be found in Ref 6. Comparisons are given for the 
entropy difference (AS) between the structure being consid- 
ered (SQS-8 or 256-atom cell) and the L12 structure. The val- 
ues of AS as a function of temperature are given for the 
256-atom supercell (solid line) and the SQS-8 (dashed line) for 
locally unrelaxed Ni3A1, locally relaxed Ni3A1, locally unre- 
laxed Cu3Au, and locally relaxed Cu3Au, in Fig. 8 to 11, re- 
spectively. No cell external relaxations (e.g., c/a relaxation) 
are included in either the disordered phase or the SQS-8. 

First, consider the values of AS that were obtained. The pre- 
dictions for AS for these Ni3A1 potentials (Ref 20) have been 
found previously within the quasi-harmonic approximation 
(Ref 6). For Ni3A1 the value of AS is in good agreement with 
the experiments (Ref 1, 2), although the influence of thermal 
expansion on the theoretical results is quite significant, while it 
plays a small role in the experiments. Also, the experimentally 
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Fig. 8 Unrelaxed Ni3A1. The entropy difference with respect to 
the L12 phase for a disordered 256-atom cell (solid line) and an 
SQS-8 (dashed line). 

measured lattice parameter of the disordered phase samples for 
which AS was measured seems to be smaller than that of the 
L12 phase (Ref 7), which is in strong disagreement with other 
theoretical (Ref 6, 8, 29, 30) and experimental (Ref 31) results, 
including those obtained here. A complete understanding of 
the roles of grain size, lattice parameter, and thermal expansion 
in the experiments and calculations performed on this system 
has not yet been obtained, and the issues are presently being in- 
vestigated. 

For Cu3Au the unrelaxed value of AS is in good agreement 
with previous experimental (Ref 3) and theoretical (Ref 4, 5) 
work, but when local relaxations are included, the value of AS 
drops essentially to zero. This disagreement may be due to 
problems in the Cu3Au EAM potential being used (see section 
2.1), and attempts are presently underway to generate a more 
accurate potential based on alloy data. Even if the potentials 
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Fig. 9 Relaxed Ni3A1. The entropy difference with respect to the 
L12 phase for a disordered 256-atom cell (solid line) and an SQS-8 
(dashed line). 
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Fig. 10 Unrelaxed Cu3Au. The entropy difference with respect 
to the L12 phase for a disordered 256-atom cell (solid line) and an 
SQS-8 (dashed line). 
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Fig. 11 Relaxed Cu3Au. The entropy difference with respect to 
the L12 phase for a disordered 256-atom cell (solid line) and an 
SQS-8 (dashed line). 
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are somewhat inaccurate for Cu3Au, viewed as a realistic 
model system they demonstrate how large an impact local re- 
laxations can have on the vibrational thermodynamics. 

For both alloys the agreement between the SQS-8 and the 
256-atom supercell is quite good. It is somewhat worse for 
Ni3A1, particularly at very high temperatures, but still within a 
few tenths of a k B on average. This is to be expected from the 
previous results, as the SQS-8 only models the short-range 
correlations of the disordered phase accurately, and the inter- 
actions for Ni3A1 are somewhat longer range than for Cu3Au. 
For both alloys, the agreement becomes slightly worse when 
local interactions are included. Again, this is to be expected be- 
cause the interactions become longer range when relaxations 
are included. 

There are some aspects of the approach taken here that may 
overestimate the accuracy of the SQS-8 for calculating vibra- 
tional thermodynamic properties. The first is that the EAM 
often produces force constants that are somewhat shorter 
range than those found from first-principles or experiment. 
Because the SQS-8 models longer-range correlations less ef- 
fectively, this would bias the above results in its favor. In addi- 
tion, for the systems studied here with the EAM, the large 
values of AS are due primarily to volume effects. When a large 
AS is obtained, it is primarily due to the larger value of the dis- 
ordered phase volume. If the calculations were performed at a 
fixed volume, all the high temperature values of AS would be 
within about 0.03 k B of zero. Because effects based on the 
overall volume are presumably less sensitive to the exact cor- 
relations than those based on subtle rearrangements of the vi- 
brational modes, the SQS-8 may not provide as accurate a 
model for the vibrational properties of the disordered phase as 
the above calculations suggest for systems based on subtle re- 
arrangements of the vibrational modes. 

A conservative error estimate for AS is about 0.03 k s from 
these calculations. This is significantly below the values of 
around 0.1 to 0.4 k B that previous experiments and theoretical 
calculations have found in these alloys, and it would therefore 
be an acceptable error for many first-principles calculations. 
Even with the caveats mentioned above, the small errors found 
strongly suggest that the SQSs are a powerful tool for first- 
principles vibrational studies. 

5. S u m m a r y  and Conc lus ions  

The authors have performed a study of local environment 
effects on vibrational thermodynamic properties using the em- 
bedded-atom method and the quasi-harmonic method for 
Ni3A1 and Cu3Au. The local entropies on all atoms in a large 
disordered cell were calculated using projections of the den- 
sity of states onto each atom. These local entropies were then 
studied using a local cluster expansion formalism. By observ- 
ing the effective cluster interactions, it was shown that the con- 
tribution to the entropy from a given atom is primarily 
determined by the atom and its first few neighbor shells. The 
role of local relaxations were also investigated. It was found 
that local relaxations can completely change the dependence 
on local environment, actually changing the sign of the domi- 
nant interactions. This effect was explained qualitatively in 
terms of the size mismatch of the constituent atoms. Also, local 

relaxations were found to extend the range of point and pair in- 
teractions and increase the importance of multisite interac- 
tions. 

These results suggested that a special quasi-random struc- 
ture (SQS), a small supercell constructed to approximate the 
local environments of the disordered phase, might be able to 
reproduce the disordered phase vibrational thermodynamics. 
The use of SQSs for vibrational properties had not previously 
been tested to the knowledge of the authors. It was found that 
an eight-atom SQS can accurately represent the vibrational 
thermodynamic properties of the disordered phase (modeled 
by a randomly decorated 256-atom cell). These results suggest 
that SQSs will be a powerful tool for first-principles vibra- 
tional studies. 

The entropy difference between the disordered and L12-or- 
dered phases in Ni3A1 and Cu3Au were both calculated. Agree- 
ment with previous results was good for Ni3A1, but there are 
still many unanswered questions concerning the experimental 
and theoretical work to date on the entropy difference; re- 
search is ongoing. Agreement with previous results was poor 
for Cu3Au, and efforts at generating a more reliable potential 
are underway. 
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