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Diffuse x-ray scattering from crystalline solid solutions is sensitive to both local chemical order and 
local bond distances. In short-range ordered alloys, fluctuations of chemistry and bond distances 
break the long-range symmetry of the crystal within a local region and contribute to the total energy 
of the alloy. Recent use of tunable synchrotron radiation to change the x-ray scattering contrast be- 
tween elements has greatly advanced the measurement of bond distances between the three kinds of 
atom pairs found in crystalline binary a]oloys. The estimated standard deviation on these recovered 
static displacements approaches +0.001 A (_+0.0001 nm), which is an order of magnitude more precise 
than obtained with extended x-ray absorption fine structure measurement. In addition, both the ra- 
dial and tangential displacements can be recovered to five near neighbors and beyond. These static 
displacement measurements provide new information that challenges the most advanced theoretical 
models of binary crystalline alloys. 

1. I n t r o d u c t i o n  

Although atomic size differences have long been recog- 
nized as critical to alloy design, experimental measurements of 
atomic size in crystalline alloys have been indirect or margin- 
ally precise. The recent availability of tunable x-rays from syn- 
chrotron sources now allows diffuse scattering measurements 
where the x-ray scattering contrast between the different ele- 
ments in the sample can be enhanced or reduced. This has led 
to meaningful recovery of individual pair displacements to 
typically _+0.001 A (_+0.0001 nm) (Ref 1-4). In a binary alloy of 
A and B atoms, the AA, AB, and BB average pair separation can 
be determined out to five or more atom shells (near neighbors). 
This new information presents a challenge to the theoretical 
community; theoretical models must allow for relaxation of 
the atoms away from the sites of the average lattice. 

The long-range effect of substitutional alloying on the alloy 
lattice parameter is well characterized. The addition of largeA 
atoms to an alloy with small B atoms expands the lattice con- 
stant from the pure B value. This is observed to be the case with 
a nearly linear response of the lattice constant to concentration 
throughout the solubility range and is often referred to as 
Vegard's law (Ref 5). Many models have been proposed to ex- 
plain this linear relationship between the lattice parameter and 
elemental concentration (Ref 5-7). Though these models re- 
produce the nearly linear change in lattice parameter with con- 
centration, actual measurements of the individual pair 
distances to test both models and theories have been almost 
nonexistent or of questionable accuracy. 

The local effect of atomic size plays an important, but still 
poorly understood, role in alloy behavior. That atomic size dis- 
parity between solvent and solute affects solubility and the 
physical/chemical properties of alloys is well known. In a dis- 
cussion of atomic size in alloys, Laves (Ref 8) shows that the 
ratio of the atomic radii of the components affects their crystal 

symmetry. Solid solution strengthening or hardening increases 
with atomic size difference (Ref 9). Though Hume-Rothery 
(Ref 10) recognized the role of atomic size differences on the 
structure and phase stability of alloys, the role and definition of 
atom size in metals with free electrons has remained elusive. 
Recent theoretical considerations stress the need to include 
static displacements in calculations of total energy (Ref 11). 

The most often quoted chemical displacements from an av- 
erage lattice are obtained from extended x-ray absorption fine 
structure (EXAFS) measurements. EXAFS measurements are 
usually made in dilute alloys with the assumption that all near- 
est-neighbor (nn) pairs to a solute atom are solvent atoms (Ref 
12, 13). EXAFS precision is typically 0.02 ,~ (0.002 nm), and 
at best 0.01 ,~ (0.001 nm), which for most alloys is marginal for 
measurement of the deviations of the atom pair spacings from 
the average long-range spacing. See Ref 12 and 13 and refer- 
ences contained therein for a general discussion of EXAFS 
measurements and results. 

Though diffuse scattering with x-rays (neutrons and elec- 
trons) has been used since 1951 to provide information on the 
displacement of the atoms from the sites of the average lattice 
(Ref 14, 15), the practice of separating the individual pair dis- 
placements with selected x-ray energies has only been devel- 
oped recently (Ref 1-4). Details of the x-ray measurements and 
data analysis to recover bond distances in alloys are found in 
Ref 4 and 16. Here the focus is on the reliability and implica- 
tion of the average bond distances recovered from crystalline 
binary alloys with the so-called "three x-ray energy" or "3~," 
technique. 

The information recovered is presented with an emphasis 
on the static displacements of the atoms from the sites of the 
average lattice. Sufficient description is given so that the 
physical meaning of the displacements recovered from diffuse 
scattering data can be understood by the nonspecialist. The dis- 
cussion is confined to x-ray diffuse scattering measurements 
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made on crystalline binary solid solution alloys where the av- 
erage lattice is well defined by sharp (unbroadened) Bragg re- 
flections. Defects such as stacking faults, high dislocation 
densities as from cold working, displacive transformation, inco- 
herent precipitates, and other defects that can broaden, split, or 
produce new Bragg reflections are precluded as leaving an ill-de- 
freed average lattice. Such defects are treated elsewhere (Ref 17). 

For crystalline solid solutions, the regular d spacing be- 
tween crystallographic planes is maintained for hundreds, 
even thousands of  planes as shown in Fig. 1; atoms are dis- 
placed out of  these average planes in such a way as to maintain 
a regular dspacing. In order to define the static displacements 
to +0.001 A (_+0.0001 nm) from this average lattice, the aver- 
age planar spacing should vary by less than _+0.001 ]k (+0.0001 
nm). On differentiating Bragg's law, we obtain: 

Ad 
- A 0 cot 0 (Eq 1) 

d 

Here, 0 is the half angle between the incident and scattered 
x-ray. For a scattering angle of 20 = 40 ~ an average d spacing 
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Fig. 1 (a) Displacement about the average lattice preserves the 
regular spacing between atomic planes such that d = d 1 = d 2 = d 3, 
.... The average lattice is obtained from (b) the positions of the 
sharp Bragg reflections. Information about short-range correla- 
tions among the atoms is contained in the diffusely distributed in- 
tensity between the Bragg peaks. 

of  2 A, and an error in Ad of  +0.001 ,~ (_+0.0001 nm), then A0 
= 0.01 ~ and the Bragg reflection would be broadened by A20 = 
0.02 ~ . Substitutional crystalline solid solutions typically have 
sharper Bragg reflections than this 0.02 ~ full width-half maxi- 
mum (FWHM). 

2. Pair Correlat ions from Diffuse 
Scattering:  Diffraction Theory 
of  Stat ic  D i s p l a c e m e n t  Terms 

This section begins with a brief overview of the kinematic 
diffraction theory in which the weak diffuse scattering can be 
approximated without extinction effects (first Born approxi- 
mation). The purpose of  this overview is to define the pair cor- 
relation parameters recovered from diffuse scattering 
measurements. Definitions of  the atomic displacements are il- 
lustrated in Fig. 2. 

The elastically scattered x-ray (neutron) intensity in elec- 
tron units (eu) per atom from an ensemble of  atoms is given by: 

I(h)= Z Z fpfq e27tih'(r-r)  (Eq2) 

p q 

wherefp andfq denote the complex x-ray atomic scattering fac- 
tor (or neutron scattering lengths),p and q designate the lattice 
sites, r and r are the position vectors for those sites, and h is P q . . 
the momentum transfer or reciprocal lattice vector [h I = (2 sin 
0)/~. For crystalline solid solutions in which the Bragg reflec- 
tions are sharp and the average lattice is well-defined, the atom 

Fig. 2 Schematic of a crystalline solid solution with atom pairs 
displaced by ~pq from the average lattice vector Rp - Rq. The + 
symbols represent the atom centers. The displacements are given 
in terms of their lmn components designated z~,~lmn, AYlmn, AZIm n 
where l = 2x, m = 2y, and n = 2z from an earlier convention for the 
designation of atom shells as integers. 

530 Journal of  Phase Equilibria Vol. 19 No. 6 1998 



Basic and Applied Research: Sec t ion  I 

positions can be represented by r = R + g where R is deter- 
mined from the lattice constant and ~ is the displacement of the 
atom from that average lattice. The exponential term is written: 

e 2 r c i h ' [ ( R - R ) + ( S p - S q ) ] = e 2 n i h ( R - R ) e 2 7 ~ i h ( S p - S q  ) (Eq 3a) 

and 

x 2 ...,? x ;  
e2Zi h. (~p - ~q) ==_ eiX = 1 + ix - ~... --t  ~.. + . . .  + iJ --j[ + . . .  (Eq 3b) 

wherej is an integer. 
This series expansion converges rapidly when h .  ~ is suffi- 

ciently small. Upon substitution of Eq 3(b) into Eq 2, the total 
intensity for a crystalline binary alloy can be written as: 

The average over all possible pairs that can be formed of the 
X components of the pair displacements forAA pairs with rela- 
tive coordinates lmn are given by (AXtAAmm.) and similarly for Y 
and Z in the same units as the lattice constant. The average dis- 
placements forAB pairs/AX oB '~ or their Y and Z components \ lmnl 
can be derived from the AA and B B  displacements. By defini- 
tion, the displacements are deviations from the_average lattice; 
the weighted average of the displacements (81m~) for all AA, 
AB,  BA,  and B B  pairs for any coordination shell is zero. Hence: 

[ ;  AA\ -t- C nBA ~ BA\ "1- C nAB [~ AB\ "1- C nB B [~BB\  __ 0 
CA ~lmn x lmn / A YImn \ Imn / B Ylmn\~lmn / B 111mn\'lmn / -- 

(Eq 8a) 

_When rew_ritten in terms of c~s with c A pBA = CB pAB, and with 
AB BA (Sims) = (Siren), it is determined that: 

IT =/FUND + ISRO + I1SD + 6 > 2 (Eq 4) 

/FUND --I- ISRO represents the first term of the series expansion, 
Ils represents the second term (ix) of Eq 3(b), and I >, repre- D j _ .  
sents the remainder. Following the treatment of Warren and co- 
workers (Ref 17), the terms for a cubic crystalline 
substitutional binary alloy are written as: 

IFUND=ICAfA +%/8F ~ ~ e2=ih(R-Rq) (Eq5) 

P q 

/SRO 
N = cA cB ~cA -f812 ~. % ' ,  e-2M*lmn COS [•(hl/+ h2m + h3n)] 

Iron 

(Eq 6) 

,,so f[CA ] N - a A CB Z sin [TZ(hll + h2m + h3n)] CB + O~lm n 
Imn 

(zXXIm) + h 2 (Ay/AAmn) + h3(AZ/~mn )] X Re ~eAOC A -fB)*l[hl AA 

--[~+ O~lmn]RerfB(fA-fB)*][hl (Z~fdn)+ h2(AY~d) + h3( Iz~BB)]} 

(Eq 7) 

Here c a is the A atom fraction of N atoms of a binary alloy, 
c e is the B atom fraction,fa andfB are the respective complex 
atomic scattering factors, and Re denotes the real part of a 
complex number. The lattice parameter of the cubic system is 
a; lmn  are the coordinates of the atom positions relative to the 
origin of the average lattice as shown in Fig. 2; and h 1, h2, and 
h 3 are the Cartesian coordinates of the momentum transfer vec- 
tor h in reciprocal lattice units (rlu). The Warren-Cowley short- 

B B range order coefficient O~lm n = 1 --l@lmBt{ICB , where p~/m~n is the 
conditional probability that after finding anA atom at lmn there 
is a B atom at the origin (Ref 17). The displacements 8p - 8q = 
-~lmn =- AXImn + A Y l m n  + Z~Zlmn are illustrated in Fig. 2. 

2(O~lmn_ 1 . . , A x O B ,  : ~A +lXimn (z~X~2)+ ~B +O~lmn \ lm# 
"\ lmn" LC" j Lr J 

(Eq 8b) 

Equation 8(b) ensures that the interatomic vector averaged 
over all pairs in the crystal for each lmn coordination shell is 
consistent with the average lattice long-range lattice parameter 
(Ref 14). For example r200 summed for all AA, AB,  and B B  
(200) pairs and divided by the number of pairs must equal the 
crystal lattice constant (the average unit cell size, a). No as- 
sumption is made as to how the displacements are distributed 
about the average. This information is contained in the higher 
moments. Thus there are only two independent pair displace- 
ments for each shell of a cubic crystalline binary alloy. Equa- 
tion 7 can be written in terms of any two of the three individual 
pair displacements according to Eq 8(b). For widely separated 
atoms, the first moment of the displacements goes to zero be- 
cause they are equally likely to be displaced in a positive or 
negative direction relative to the atom at the origin. To evaluate 
the contribution from the term I >  ~, it is assumed that either the 

J _ Z  
quadratic and high-order terms in this series expansion of the 
thermal and static displacements are the same for AA, AB,  and 
B B  atom pairs or that the different elements have nearly the 
same x-ray atomic scattering factors (Ref 1-4). This approxi- 
mation is good for alloys with elements nearby in the periodic 
table, as is the case of Fe-Ni, Cr-Fe, and Cr-Ni alloys that have 
been studied to date. These alloys have similar masses (similar 
thermal motions), similar sizes (small static displacements), 
and similar numbers of electrons (similar x-ray scattering fac- 
tors). With this approximation, these remaining terms of the se- 
ries expansion can be written as: 

6>-2 ~ _,'12 i j  -- e2n ih. R~ ~ 
N - ]cAfA + cMsI f .  ~ ((h- ~lmn ) j )  

lmn 

+ CA %~A -fsI  2 ~i ~ O~(Imn) (h" ~lmn ) j )  e 2~ i h. Rlm n (Eq 9) 
Iron 
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The first term of Eq 9 weakens the fundamental Bragg re- 
flections and distributes this intensity as temperature and static 
diffuse scattering. The second term ofEq 9 weakens the super- 
lattice reflections associated with long-range order or, as is the 
case here, weakens the short-range order (SRO) diffuse max- 
ima when there is only local order. 

The second term of Eq 9, which contains O~lmn, has been 
treated by Walker and Keating (Ref 18) and is included as a 
thermal like factor e-M~m, in Eq 6. The effect of including this 
term on recovered as  is not more than 2% at room temperature 
(Ref 2, 4). The first term ofEq 9 includes quadratic and higher- 
order thermal scattering and a smaller static diffuse scattering 
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Fig. 3 The variation in the Laue scattering term IfN i --fFe 12 with 
x-ray energy in the vicinity of the Fe and Ni K absorption edges 
permits selection of x-ray energies to change the contrast for re- 
covery of the local chemical order and displacements among the 
individual atom pairs. 
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Total elastically scattered x-ray intensity along the (h00) 
measured at 293 K for the three x-ray energies listed. Note the shift 
in contrast for intensities measured with energies 20 eV below the 
Fe K edge at 7092 eV and the Ni K edge at 8313 eV, which changes 
the sign of Re (fNi --fFe).  The outlying data point at the { 100} po- 
sition is from harmonic energy contamination of the incident ra- 
diation and such points are removed before processing. 

contribution. Typically, the quadratic static scattering is less 
than the quadratic thermal scattering by a factor of three or 
more at room temperature, even for alloys with large atomic 
size differences (e.g., AuCu3) (Ref 19). Because the first term 
ofEq 9 depends on (Czf A + csf~) 2, its separation fromlsR o and 
IlSD (which depend onfA - f~)  Can be accomplished by choos- 
ing an x-ray energy such thatfa -fB = 0. Thus, the first term of 
Eq 9 can be measured separately from IsRo + IlSD at one en- 
ergy and scaled by (CAf a + %f8) 2 to other energies. Measure- 
ments at three different x-ray energies and the recovery of the 
c~s and 8s are described in Ref 1 to 4. A nonlinear least-square 
fit to all three data sets is refined simultaneously with a pro- 
gram that includes the statistical errors on the input data (Ref 
4). 

The precision with which the displacements can be recov- 
ered depends in part on how significant the term Eq 7 is rela- 
tive to the term Eq 6, and on how large a contrast change can be 
effected infA (fa -fB)*; with x-rays the scattering contrast var- 
ies with energy near the atomic absorption edges (Ref 4). For 
atoms nearby in the periodic table, the contrast can actually be 
reversed, and because Ifa --fBI is small, the displacement term 
c~ (fz --fs) is large compared to the short-range or- 
der term containing (fz --fs) 2" 

For Fe and Ni alloys, (fa -fB) 2 can be made to approach 
zero by proper choice of x-ray energy (near 8500 eV) as shown 
in Fig. 3. The quadratic, higher-order thermal and static dis- 
placement scattering, along with the smearing functions of the 
experimental arrangement and possible multiple-scattering 
processes, are approximately removed by subtracting the 
scaled null Lane data. Though the assumption is made here that 
the A and B atoms have similar quadratic and higher-order dis- 
placements, possible errors introduced by this assumption are 
minimized by the choice of alloys with atoms of similar 
masses. The previous practice of calculating the thermal dif- 
fuse scattering (TDS) from force constants also assumes that 
constituent atoms have the same quadratic and higher-order 
displacements. However, the use of force constants makes the 
harmonic approximation and ignores both the high-frequency 
acoustical and optical modes and the short-range correlations 
important to the scattering at the zone boundaries. All this is in- 
cluded in the measured null Laue scattering. 

An example of the raw data measured for three different x- 
ray energies from an Fe46.sNi53.5 alloy is shown in Fig. 4 (Ref 
4). The solid line in Fig. 4 is the near-null Laue measurement 
of the quadratic and higher-order displacement terms, which is 
removed form the other data sets to recover the cts and the 8s. 
Comparison of x-ray results with neutron diffuse scattering 
measurements that energy-discriminate against thermal con- 
tributions gives very similar as  for Fe3Ni (Ref 4). 

3.  S t a t i s t i c a l  a n d  S y s t e m a t i c  E r r o r s  

The statistical uncertainties of the recovered parameters are 
estimated by propagating the standard deviation, +~-n, of the 
total number of counts, n, for each data point through the non- 
linear least-squares processing of the data. Systematic errors 
were determined by changing the values of input variables, 
such as the x-ray atomic scattering factors, and reprocessing 
the data. 
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As input parameters were varied, the intensities were rescaled 
so that the ISRO values are positive everywhere and match values 
at the origin of reciprocal space measured by small-angle scat- 
tering. The integrated Lane scattering over a repeat volume in 
reciprocal space is also constrained to have an average value of 
CA CB (fA --fB) 2; ~000 = 1. These two constraints eliminate most 
of the systematic errors associated with converting the raw in- 
tensifies into absolute units (Ref 20). The intensities measured 
at two different energies are adjusted to within -1% on a rela- 
tive scale, and the intensity at the origin is matched to meas- 
ured values. For these reasons, the standard deviations for c~000 
are estimated at -1%. 

Errors on the recovered cts and AXs arising from statistical 
and various possible systematic errors in the measurement and 

Table 1 Standard Deviation o f+ l f f  for the Uncertainties in 
Fe46.sNi53.5 for Statistical and Possible Systematic Errors 

B a s i c  a n d  A p p l i e d  R e s e a r c h :  S e c t i o n  I 

analysis of  diffuse scattering data are given in Tables 1 and 2 
for the Fe46.sNi53.5 alloy (Ref 4, 20-22). Details of  parameters 
used in the conversion to absolute intensity units are given in 
Ref 2 and 17. A previous assessment of  the systematic errors 
without the constraint of  forcing ~ = 1, and without keeping 
the intensity at the origin and fundamentals a positive match to 
known values, resulted in estimated errors being 2 to 5 times 
larger than those reported here (Ref 21). Parameters necessary 
to the analysis of  the data (other than well-known physical 
constants) with the best estimate of their standard deviations 
and their contributing standard deviations to the cts and AXs 
are listed in Tables 1 and 2. From a comparison of  theoretical 
and measured values, the following errors are estimated: a 0.2 
eu error on the real part of  the x-ray atomic scattering factors, a 

the Warren-Cowley Short-Range Order Parameter, ~, of  

ff(]"), a lp0) ,  f f (RRS),  ~(CA), 
lmn Cttmn (~Total) ff(~n) _+0.2 eu +1% +1 e u  (YCompton _+0.3 at.% 

000  ............................ 1.0000 (100) 0.0024 0 0 0 0 0 

110 ............................ ~) .0766 (54) 0.0018 0.0010 0.0048 0 0.0006 0.0011 

200  ............................ 0 .0646 (28) 0.0017 0.0003 0 .0016 0.0008 0.0013 0.0003 

211 ............................ -0 .0022  (15) 0.0014 0 0 .0004 0.0001 0.0002 0.0001 

220  ............................ 0 .0037 (14) 0.0013 0.0002 0.0003 0.0003 0.0003 0.0001 

310  ............................ ~ ) .0100  (11) 0.0011 0.0001 0 .0002 0.0001 0.0001 0.0001 

222 ............................ 0 .0037 (12) 0.0011 0 0.0002 0.0002 0.0003 0 

321 ............................ -0 .0032  (19) 0.0009 0 0.0001 0.0001 0.0001 0.0001 

400  ............................ 0.0071 (12) 0.0011 0.0002 0.0001 0.0003 0.0004 0 

330  ............................ -0 .0021 (9) 0.0008 0.0001 0 0.0003 0.0001 0 

411 ............................ 0 .0007 (7) 0.0007 0 0 0 0.0002 0 

4 2 0  ............................ 0 .0012 (8) 0.0007 0.0002 0 0.0004 0.0001 0 

332  ............................ -0 .0007  (7) 0 .0007 0 0 0 0.0001 0 

Total error is shown in parentheses; 0 indicates uncertainties less than 0.00005. 

Table 2 Standard Deviation o f+ l f f  o fx ,y ,  and z Components  of  the Pair Fe-Fe Displacements ~Fe-Fe f o r  the Various 
Atom Pairs of  Fe46.sNi53.5 for Statistical and Possible Systematic Errors 

ff(f "), ~(p0), ~(RRS), (Y(CA), 
lmn AX(ffTotal) , .~ ~(~nn) _+0.2 eu + 1 %  +1 eu  ~Compton _+0.3 at. % 

110 ........................... 0.0211 

200  ........................... - 0 .0228  

211 ........................... 0.0005 

121 ........................... 0 .0014 

220  ........................... 0 .0030 

310  ........................... 0.0022 

130 ........................... 0 .0009 

222  ........................... 0.0003 

321 ........................... 0.0011 

231 ........................... 0.0001 

123 ........................... 0.0008 

400  ........................... - 0 . 0019  

330  ........................... 0.0011 

411 ........................... - 0 .0008  

141 ........................... -0 .0001  

Total error is shown in parentheses; 

(25) 0.0002 0.0023 0.0007 0.0002 0.0004 0.0004 

(14) 0.0004 0.0010 0.0007 0.0002 0.0004 0.0002 

(2) 0.0002 0 0.0001 0.0001 0 0 

(4) 0.0001 0.0003 0.0001 0.0002 0 0 

(7) 0.0002 0.0006 0.0001 0.0003 0.0001 0 

(3) 0.0002 0.0001 0.0001 0.0002 0.0001 0 

(2) 0 .0002 0.0001 0 0.0001 0 0 

(3) 0 .0002 0.0002 0 0.0001 0 0 

(2) 0.0001 0.0001 0 0.0002 0 0 

(1) 0.0001 0 0 0.0001 0 0 

(4) 0.0001 0.0001 0 0 0 0 

(6) 0 .0004 0.0002 0.0001 0.0003 0.0001 0 

(4) 0.0002 0.0001 0 0.0003 0 0 

(3) 0.0002 0.0002 0 0.0002 0 0 

(2) 0.0001 0.0001 0 0.0001 0 0 

0 indicates uncertainties less than 0.00005 A. 
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1% error in the P0 calibration for converting the raw intensities 
to absolute units (eu), a 1 eu error in separating the inelastic 
resonant-Raman scattering (Ref 23), a 0 to 1 eu h dependent 
Compton scattering error, and an error of _+0.3 at.% in compo- 
sition (Ref 4, 22). Systematic errors are larger than the statisti- 
cal errors for the first three shells. 

The asymmetric contribution of the first moment of the 
static displacements, I1SD (Eq 7), to the diffuse intensity ISRO + 
IlSD for an Fe63.zNi36.8 alloy is displayed in Fig. 5 (Ref 24). 
Without static displacements, the IsRo maxima would occur at 
the 100 and 300 superlattice positions. The static atomic dis- 
placements for the alloy are similar to those given in Table 2. 
Such large distortions of the short-range order diffuse scatter- 
ing caused by displacements of <0.02 A (<0.002 nm) empha- 
size the sensitivity of this technique. When x-ray energy is 
changed from 7.092 to 8.313 keV, fNi becomes smaller thanfr e. 
Figure 5 displays a reversal in the shift of the position of the 
diffuse scattering maxima. These two x-ray energies were cho- 
sen for the 3~, method to emphasize this contrast, and a third 
was chosen nearest the null Laue energy for removal of the 
TDS. The total estimated standard deviation on the values of 
the c~s, and in particular the AXs, give unprecedented precision 
for the displacements with errors +0.003 A (+0.0003 nm) and 
less. 

4 .  S t a t i c  A t o m i c  D i s p l a c e m e n t s  

4.1  M e a n i n g  o f  R e c o v e r e d  S t a t i c  
D i s p l a c e m e n t s  

Because the x-ray beam is about a millimeter in diameter 
and penetrates a few microns into the sample, -1017 atoms 
contribute to the diffraction pattern with -10 TM first neighbor 
pairs. From Eq 3(a): 

20.0 [ 

10.0 

0 . 0  

�9 i , i 

T = Z 0 0  K 

-%.0 21o 31o ,.0 h~O0 (r.l.u.) 
Fig .  5 Diffusely scattered x-ray intensity from an Fe63.2Ni36.s 
Invar alloy associated with the chemical order ISRO and the first 
moment of the static displacements IlSD along the [hi00] direc- 
tion. A major intensity change is affected by the choice of two dif- 
ferent x-ray energies. The solid fines calculated from the c~s and ks 
recovered from the 3)~ data sets closely fit the observed data given 
by )r and +. The dashed lines are calculated intensity through the 
fundamental reflections. Source: Ref24. 

rp - rq = (Rp - Rq) + (~p - ~q) (Eq 10) 

and the frame of reference can be moved so that its origin al- 
ways resides o n  o n e  of the atoms of the pair, such that rp - r o -= 
0, Rp - R o - 0, and 8p - 5 o - 0, then: 

rp - rq : r o - rq = r o - rlm n : -rim n 

and with the atom pair identified by ij: 

(Eq ]1) 

rliJmn = Rlmn + 51iJmn (Eq ]2) 

where Rlm n is independent of the kinds of atom pairs because it 
is defined by the average lattice, that is, Bragg reflection posi- 
tions. The average value of the measured rim n for all the N pairs 
contributing to the measured intensity is: 

�9 . ] - -  _ 

(IZ/rnn) = g i  j s (Rim n "l- ~liJmn ) -- Rim n + (~liJmn) 
ij 

(Eq ]3) 

- / j  
Here  (~lmn) is the variable recovered from the diffuse scatter- 
ing. As shown in Eq 7, the rectangular coordinates of the aver- 
age displacement vector can be recovered: 

<g 0L~ = (AxL .) + (t, Yl~ . ) + (Azx~ n) (Eq 14) 

For cubic systems when the atom has less than 24 neighbor- 
ing atoms in a coordin_ation shell (permutations and combina- 
tions of_+l, .+_m, ~n), (StUn) must be parallel to the interatomic 
v e c t o r  Rim n. This maintains the statistically observed long- 
range cubic symmetry even though on a local scale this sym- 
metry is broken. For lmn multiplicities _>24, the displacements, 
o n  the average, need not be parallel to the average interatomic 
v e c t o r  Rlm n to  preserve cubic symmetry (Ref 25). 

Measurements of diffuse scattering from single crystals 
provides the vector components of the atomic displacements 
(AX), (AY), and {AZ); whereas the spherical average obtained 
from EXAFS and x-ray measurements on amorphous materi- 
als and crystalline powders gives only the magnitude of the ra- 
dial displacements. Thus, diffuse x-ray scattering provides 
new information about the vector displacements associated 
with near-neighbor chemistry. 

4 . 2  D i s c u s s i o n  o f  M e a s u r e d  D i s p l a c e m e n t s  

Measured displacements such as those presented in Table 2 
provide unique insight into how atoms move off their lattice 
sites when local symmetry is broken. Local symmetry is bro- 
ken when a multicomponent crystalline material is above the 
ordering temperature (with less-than-perfect long-range or- 
der) and/or off-stoichiometry. With perfect long-range order, 
the atoms are constrained to lie precisely on the sites of the av- 
erage lattice by balanced forces. In alloys where the local sym- 
metry is broken, new insights are gained into the chemically 
distinct bonding, including the interatomic bond distances and 
whether the displacements have both radial and tangential 
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components. With reference to Fig. 2, the displacement for the 
[110] nearest-neighbor atoms is, on average, radial with amag-  

nitude given by I(g.0>l ='Yl ,,0l 
Note that the Fe-Fe first-neighbor Poair distances given in 

Table 2 are 0.021 (3) A -  ~ = 0.030(4) A further apart than the 
average lattice and that second neighbor pairs are closer by (-)  
0.023(1) A. Average bond distances along the interatomic vec- 
tor between nearest-neighbor pairs for this fcc lattice are ob- 
tained by adding the ~/2lAXll0l to the average interatomic 
vector Rll 0 as definedin Fig. 2. IRll01 is just the cubic lattice 
constant, a, times 1/,/2. From the construction shown in Fig. 6, 
it follows that the vector distance between a pair of  atoms, 
~ , ,  has radial and tangential displacement components with 
magnitudes given by: 

m 

~liJmn [I - ~'ijmnR lmn" R lm" 

and 

(Eq 15a) 

~liJmn Z 4 -~liJmn 2 Imn II (Eq 15b) 

The radial (ll) and tangential (_1_) components of the dis- 
placements recovered from diffuse scattering measurements 
on single crystals are shown in Fig. 6. 

Because the Fea6.5Ni53.5 alloy is cubic (face centered), the 
A y  and AZ displacements are derived from the AXs given in 
Table 2 by permutation of the indices. (Henceforth, the <> will 
be dropped from the displacements for simplicity.) For exam- 
ple, AX321 has the identical value as AY231 and as AZ123, and 
AX321 = ~ 3 1 2  -- AY231 = AY132 = AZI23 = AZ213" In addition, 
AX321 = -AXe21 and similarly for the other combinations as 
illustrated in Fig. 7 (Ref 25). The nearest a tom pairs that could 

Fig. 6 Construction of the vectors recovered from diffuse scat- 
tering measurements on single crystals. Rim n is obtained from the 
lattice_parameter a, and the average components of the displace- 
ment 81~ n are recovered from measurements of the diffuse scatter- 
ing. 

exhibit nonradial components are those in the third neighbor- 
ing shell, lmn = 211. 

ff the displacements between atom pairs is, on the average, 
along their interatomic vector, then AX211 = 2AX121. For the 
Fe-Fe pair, displacements given in Table 2, AX211 = 0.0005(2) 
A and 2AX121 = 0.0028(8) A, thus the (211) Fe-Fe pair dis- 
placements have a significant tangential component. From Eq 
15(a) and (b), the magnitude of the displacement between 

(211) Fe-Fe pairs _ along the radial direction 8~-Fe II is 

tangential is 0.0013 (7) ,~. Thus the 0.0016(7) ,~and ~]-Fel  
_L i 

(211) Fe-Fe neighbors have a similar radial and tangential 
component to their displacements. For the (310) Fe-Fe pair 
displacements, AX310 = 3 AX130 within the total estimated er- 
ror, and on the average (310) displacements are predominantly 
radial. These measured displacements provide new informa- 
tion not obtained in other ways about the local atomic arrange- 
ments in crystalline solid solutions. 

Only a few crystalline binary alloys have had their individ- 
ual pair displacements measured with this 39~ technique. They 
include Fe22.sNi77.5 (Ref 1, 4), Fe46.5Ni53.5 (Ref 4), Cr47Fe53 
(Ref 2), and Cr20Niso (Ref 3). These results are summarized in 
Fig. 8, where the AX static displacements are plotted as a func- 
tion of the radial distance 1/2"412 + m 2 + n 2 ' When there is more 
than one value for AX, the plots show the various values. Most 
striking is the observation that for the three ordering alloys, the 
near-neighbor Fe-Ni and Cr-Ni bond distances are the smallest 
of  the three possible pairs (Fig. 8a to c). However, for the clus- 
tering Cr47Fe53 alloy, the Cr-Cr nn bond distances are closest 
and the Cr-Fe farthest apart. More details including the short- 

J m  S 

m = 2  

R121 

n 

Fig. 7 Radial displacements (parallel to the interatomic vector 
Rlmn) between the atom pairs require that the relative magnitudes 
of the displacement components be in the same proportion as the 
average lattice vector; zLX:AY:AZ = l:m:n. As shown for lmn = 
211, a radial displacement requires IAxl = 21AYI and I~o~1 -- 21~zl. 
For Inn = 121, I~o~1 = IAYI/2 and IAxl = IAzt. For a cubic lattice l, 
m, and n can be interchanged, and similarly, zLX, AY, and zSZ. Thus 
there is only one value AX for lmn multiplicities <24, i.e., 110, 200, 
222, etc., two values for AX when lmn has multiplicities equal to 
24 (l r m and l = m,n), and three values for AX with multiplicities 
equal to 48. 
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range order parameters t~ and numerical values of the displace- 
ments for each shell are given in the original papers. These pair 
displacement observations provide a more rigid test of theo- 
retical predictions than variations of the average lattice pa- 
rameter with concentration (Ref 26, 27). 

Chakraborty (Ref 28) has proposed a compressible Ising 
model that can qualitatively reproduce the observed shortened 
nn bond distance for Fe-Ni pairs and the expanded Cr-Fe pairs. 
In this model there is a "size effect" term, which reflects the 
different size of the atoms, and an "Ising" term, which is sensi- 
tive to the distance-dependent Ising interaction. For systems 
such as the Fe/Ni/Cr binary alloys where the "size" of the at- 
oms is similar the unlike pair displacements do not necessarily 
lie between the observed like-atom displacements. Small clus- 
ter calculations appear to be another useful tool for studying 
the mechanisms behind the observed displacements. The rela- 
tionship between local strains and overall lattice spacing is of 
great interest. Recent calculations on small 12 to 18 atom clus- 
ters reproduce some of the observed displacement trends in Fe- 
Ni alloys, but the results are complicated by large surface and 
concentration effects (Ref 29). An imbedded cluster calcula- 
tion could eliminate surface effects and lead to a more com- 
plete understanding of the forces driving the observed static 
displacements. For a recent review of the information recov- 
ered from diffuse scattering measurements and its role in test- 
ing theoretical concepts, see Ref 30. 

5.  C o n c l u s i o n s  

The displacements of the atoms from the sites of the aver- 
age lattice can be recovered from diffuse x-ray scattering 
measurements on single crystals. These measured displace- 
ments include information on the dynamic and static displace- 
ments and on the chemically sensitive local bond lengths. The 
expectations of the vector displacements are recovered, in- 
cluding the radial, and, unique to these measurements, the tan- 
gential displacement components. Analysis of the statistical 
and systematic errors shows that the value of these static dis- 
placements is statistically significant. Such measurements 
provide new information on the real structure of crystalline 
solid solutions for comparison with theoretical modeling. 
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Fig. 8 Displacement from the average lattice sites for chemically specific pairs. Shell radius divided by the lattice parameter a 0 becomes 1 for 
second neighbors (separated by the cube edge). Source: Ref 2 to 4. 
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