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Abstract

Equal-arm detectors of gravitational radiation allow phase measurements many orders of
magnitude below the intrinsic phase stability of the laser injecting light into their arms. This
is because the noise in the laser light is common to both arms, experiencing exactly the same
delay, and thus cancels when it is differenced at the photo detector. In this situation, much
lower level secondary noises then set the overall performance. If, however, the two arms have
different lengths (as will necessarily be the case with space-borne interferometers), the laser
noise experiences different delays in the two arms and will hence not directly cancel at the
detector. In order to solve this problem, a technique involving heterodyne interferometry with
unequal arm lengths and independent phase-difference readouts has been proposed. It relies
on properly time-shifting and linearly combining independent Doppler measurements, and for
this reason it has been called time-delay interferometry (TDI).

This article provides an overview of the theory, mathematical foundations, and experimen-
tal aspects associated with the implementation of TDI. Although emphasis on the application
of TDI to the Laser Interferometer Space Antenna (LISA) mission appears throughout this
article, TDI can be incorporated into the design of any future space-based mission aiming to
search for gravitational waves via interferometric measurements. We have purposely left out
all theoretical aspects that data analysts will need to account for when analyzing the TDI
data combinations.
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peared in the literature since the original review got released.
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1 Introduction

Breakthroughs in modern technology have made possible the construction of extremely large in-
terferometers both on the ground and in space for the detection and observation of gravitational
waves (GWs). Several ground-based detectors around the globe have been operational for several
years, and are now in the process of being upgraded to achieve even higher sensitivities. These are
the LIGO and VIRGO interferometers, which have arm lengths of 4 km and 3 km, respectively, and
the GEO and TAMA interferometers with arm lengths of 600 m and 300 m, respectively. These
upgraded detectors will operate in the high frequency range of GWs of ∼ 1 Hz to a few kHz. A
natural limit occurs on decreasing the lower frequency cut-off because it is not practical to increase
the arm lengths on ground and also because of the gravity gradient noise which is difficult to elim-
inate below 1 Hz. Thus the ground based interferometers will not be sensitive below this limiting
frequency. But, on the other hand, in the cosmos there exist interesting astrophysical GW sources
which emit GWs below this frequency such as the galactic binaries, massive and super-massive
black-hole binaries, etc. If we wish to observe these sources, we need to go to lower frequencies.
The solution is to build an interferometer in space, where such noises will be absent and allow the
detection of GWs in the low frequency regime. The Laser Interferometer Space Antenna (LISA)
mission, and more recent variations of its design [13, 35], is the typical example of a space-based
interferometer aiming to detect and study gravitational radiation in the millihertz band. In order
to make such observations LISA relied on coherent laser beams exchanged between three identical
spacecraft forming a giant (almost) equilateral triangle of side 5 × 106 km to observe and detect
low frequency cosmic GWs. Ground- and space-based detectors will complement each other in
the observation of GWs in an essential way, analogous to the way optical, radio, X-ray, 𝛾-ray,
etc. observations do for the electromagnetic spectrum. As these detectors begin to make their
observations, a new era of gravitational astronomy is on the horizon and a radically different view
of the Universe is expected to emerge.

The astrophysical sources observable in the mHz band include galactic binaries, extra-galactic
super-massive black-hole binaries and coalescences, and stochastic GW background from the early
Universe. Coalescing binaries are one of the important sources in this frequency region. These
include galactic and extra galactic stellar mass binaries, and massive and super-massive black-
hole binaries. The frequency of the GWs emitted by such a system is twice its orbital frequency.
Population synthesis studies indicate a large number of stellar mass binaries in the frequency range
below 2 – 3 mHz [4, 34]. In the lower frequency range (≤ 1 mHz) there is a large number of such
unresolvable sources in each of the frequency bins. These sources effectively form a stochastic GW
background referred to as binary confusion noise.

Massive black-hole binaries are interesting both from the astrophysical and theoretical points of
view. Coalescences of massive black holes from different galaxies after their merger during growth
of the present galaxies would provide unique new information on galaxy formation. Coalescence
of binaries involving intermediate mass black holes could help to understand the formation and
growth of massive black holes. The super-massive black-hole binaries are strong emitters of GWs
and these spectacular events can be detectable beyond red-shift of 𝑧 = 10. These systems would
help to determine the cosmological parameters independently. And, just as the cosmic microwave
background is left over from the big bang, so too should there be a background of gravitational
waves. Unlike electromagnetic waves, gravitational waves do not interact with matter after a few
Planck times after the big bang, so they do not thermalize. Their spectrum today, therefore, is
simply a red-shifted version of the spectrum they formed with, which would throw light on the
physical conditions at the epoch of the early Universe.

Interferometric non-resonant detectors of gravitational radiation with frequency content 𝑓l <
𝑓 < 𝑓u (𝑓l, 𝑓u being respectively the lower and upper frequency cut-offs characterizing the detector’s
operational bandwidth) use a coherent train of electromagnetic waves (of nominal frequency 𝜈0 ≫
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𝑓u) folded into several beams, and at one or more points where these intersect, monitor relative
fluctuations of frequency or phase (homodyne detection). The observed low-frequency fluctuations
are due to several causes:

1. frequency variations of the source of the electromagnetic signal about 𝜈0,

2. relative motions of the electromagnetic source and the mirrors (or amplifying transponders)
that do the folding,

3. temporal variations of the index of refraction along the beams, and

4. according to general relativity, to any time-variable gravitational fields present, such as the
transverse-traceless metric curvature of a passing plane gravitational-wave train.

To observe gravitational waves in this way, it is thus necessary to control, or monitor, the other
sources of relative frequency fluctuations, and, in the data analysis, to use optimal algorithms
based on the different characteristic interferometer responses to gravitational waves (the signal)
and to the other sources (the noise) [55]. By comparing phases of electromagnetic beams referenced
to the same frequency generator and propagated along non-parallel equal-length arms, frequency
fluctuations of the frequency reference can be removed, and gravitational-wave signals at levels
many orders of magnitude lower can be detected.

In the present single-spacecraft Doppler tracking observations, for instance, many of the noise
sources can be either reduced or calibrated by implementing appropriate microwave frequency
links and by using specialized electronics [52], so the fundamental limitation is imposed by the
frequency (time-keeping) fluctuations inherent to the reference clock that controls the microwave
system. Hydrogen maser clocks, currently used in Doppler tracking experiments, achieve their
best performance at about 1000 s integration time, with a fractional frequency stability of a few
parts in 10−16. This is the reason why these one-arm interferometers in space (which have one
Doppler readout and a “3-pulse” response to gravitational waves [14]) are most sensitive to mHz
gravitational waves. This integration time is also comparable to the microwave propagation (or
“storage”) time 2𝐿/𝑐 to spacecraft en route to the outer solar system (for example 𝐿 ≃ 5 – 8 AU
for the Cassini spacecraft) [52].

Low-frequency interferometric gravitational-wave detectors in solar orbits, such as the LISA
mission and the currently considered eLISA/NGO mission [5, 13, 35], have been proposed to
achieve greater sensitivity to mHz gravitational waves. However, since the armlengths of these
space-based interferometers can differ by a few percent, the direct recombination of the two beams
at a photo detector will not effectively remove the laser frequency noise. This is because the
frequency fluctuations of the laser will be delayed by different amounts within the two arms of
unequal length. In order to cancel the laser frequency noise, the time-varying Doppler data must
be recorded and post-processed to allow for arm-length differences [53]. The data streams will
have temporal structure, which can be described as due to many-pulse responses to 𝛿-function
excitations, depending on time-of-flight delays in the response functions of the instrumental Doppler
noises and in the response to incident plane-parallel, transverse, and traceless gravitational waves.

Although the theory of TDI can be used by any future space-based interferometer aiming to
detect gravitational radiation, this article will focus on its implementation by the LISA mission [5].

The LISA design envisioned a constellation of three spacecraft orbiting the Sun. Each spacecraft
was to be equipped with two lasers sending beams to the other two (∼ 0.03 AU away) while
simultaneously measuring the beat frequencies between the local laser and the laser beams received
from the other two spacecraft. The analysis of TDI presented in this article will assume a successful
prior removal of any first-order Doppler beat notes due to relative motions [57], giving six residual
Doppler time series as the raw data of a stationary time delay space interferometer. Following [51, 2,
10], we will regard LISA not as constituting one or more conventional Michelson interferometers,
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but rather, in a symmetrical way, a closed array of six one-arm delay lines between the test
masses. In this way, during the course of the article, we will show that it is possible to synthesize
new data combinations that cancel laser frequency noises, and estimate achievable sensitivities of
these combinations in terms of the separate and relatively simple single arm responses both to
gravitational wave and instrumental noise (cf. [51, 2, 10]).

In contrast to Earth-based interferometers, which operate in the long-wavelength limit (LWL)
(arm lengths ≪ gravitational wavelength ∼ 𝑐/𝑓0, where 𝑓0 is a characteristic frequency of the
GW), LISA does not operate in the LWL over much of its frequency band. When the physical
scale of a free mass optical interferometer intended to detect gravitational waves is comparable to
or larger than the GW wavelength, time delays in the response of the instrument to the waves,
and travel times along beams in the instrument, cannot be ignored and must be allowed for in
computing the detector response used for data interpretation. It is convenient to formulate the
instrumental responses in terms of observed differential frequency shifts – for short, Doppler shifts
– rather than in terms of phase shifts usually used in interferometry, although of course these data,
as functions of time, are inter-convertible.

This second review article on TDI is organized as follows. In Section 2 we provide an overview
of the physical and historical motivations of TDI. In Section 3 we summarize the one-arm Doppler
transfer functions of an optical beam between two carefully shielded test masses inside each space-
craft resulting from (i) frequency fluctuations of the lasers used in transmission and reception, (ii)
fluctuations due to non-inertial motions of the spacecraft, and (iii) beam-pointing fluctuations and
shot noise [15]. Among these, the dominant noise is from the frequency fluctuations of the lasers
and is several orders of magnitude (perhaps 7 or 8) above the other noises. This noise must be very
precisely removed from the data in order to achieve the GW sensitivity at the level set by the re-
maining Doppler noise sources which are at a much lower level and which constitute the noise floor
after the laser frequency noise is suppressed. We show that this can be accomplished by shifting
and linearly combining the twelve one-way Doppler data measured by LISA. The actual procedure
can easily be understood in terms of properly defined time-delay operators that act on the one-way
Doppler measurements. In Section 4 we develop a formalism involving the algebra of the time-
delay operators which is based on the theory of rings and modules and computational commutative
algebra. We show that the space of all possible interferometric combinations canceling the laser
frequency noise is a module over the polynomial ring in which the time-delay operators play the
role of the indeterminates [10]. In the literature, the module is called the module of syzygies [3, 29].
We show that the module can be generated from four generators, so that any data combination
canceling the laser frequency noise is simply a linear combination formed from these generators.
We would like to emphasize that this is the mathematical structure underlying TDI for LISA.

Also in Section 4 specific interferometric combinations are derived, and their physical inter-
pretations are discussed. The expressions for the Sagnac interferometric combinations (𝛼, 𝛽, 𝛾, 𝜁)
are first obtained; in particular, the symmetric Sagnac combination 𝜁, for which each raw data
set needs to be delayed by only a single arm transit time, distinguishes itself against all the other
TDI combinations by having a higher order response to gravitational radiation in the LWL when
the spacecraft separations are equal. We then express the unequal-arm Michelson combinations
(𝑋,𝑌, 𝑍) in terms of the 𝛼, 𝛽, 𝛾, and 𝜁 combinations with further transit time delays. One of these
interferometric data combinations would still be available if the links between one pair of spacecraft
were lost. Other TDI combinations, which rely on only four of the possible six inter-spacecraft
Doppler measurements (denoted 𝑃 , 𝐸, and 𝑈) are also presented. They would of course be quite
useful in case of potential loss of any two inter-spacecraft Doppler measurements.

TDI so formulated presumes the spacecraft-to-spacecraft light-travel-times to be constant in
time, and independent from being up- or down-links. Reduction of data from moving interfer-
ometric laser arrays in solar orbit will in fact encounter non-symmetric up- and downlink light
time differences that are significant, and need to be accounted for in order to exactly cancel the
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laser frequency fluctuations [44, 7, 45, 41, 9]. In Section 5 we show that, by introducing a set of
non-commuting time-delay operators, there exists a quite general procedure for deriving general-
ized TDI combinations that account for the effects of time-dependence of the arms. Using this
approach it is possible to derive “flex-free” expression for the unequal-arm Michelson combinations
𝑋1, and obtain the generalized expressions for all the TDI combinations [58]. Alternatively, a
rigorous mathematical formulation can be given in terms of rings and modules. But because of
the non-commutativity of operators the polynomial ring is non-commutative. Thus the algebraic
problem becomes extremely complex and a general solution seems difficult to obtain [9]. But we
show that for the special case when one arm of LISA is dysfunctional a plethora of solutions can
be found [11]. Such a possibility must be envisaged because of reasons such as technical failure or
even operating costs.

In Section 6 we address the question of maximization of the LISA signal-to-noise-ratio (SNR) to
any gravitational-wave signal present in its data. This is done by treating the SNR as a functional
over the space of all possible TDI combinations. As a simple application of the general formula
we have derived, we apply our results to the case of sinusoidal signals randomly polarized and
randomly distributed on the celestial sphere. We find that the standard LISA sensitivity figure
derived for a single Michelson interferometer [15, 38, 40] can be improved by a factor of

√
2 in the

low-part of the frequency band, and by more than
√
3 in the remaining part of the accessible band.

Further, we also show that if the location of the GW source is known, then as the source appears
to move in the LISA reference frame, it is possible to optimally track the source, by appropriately
changing the data combinations during the course of its trajectory [38, 39]. As an example of such
type of source, we consider known binaries within our own galaxy.

In Section 7, we finally address aspects of TDI of more practical and experimental nature,
and provide a list of references where more details about these topics can be found. It is worth
mentioning that, as of today, TDI has already gone through several successful experimental tests [8,
32, 48, 33, 25] and that it has been endorsed by the eLISA/NGO [13, 35] project as its baseline
technique for achieving its required sensitivity to gravitational radiation.

We emphasize that, although this article will use as baseline mission reference the LISA mission,
the results here presented can easily be extended to other space mission concepts.
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2 Physical and Historical Motivations of TDI

Equal-arm interferometer detectors of gravitational waves can observe gravitational radiation by
canceling the laser frequency fluctuations affecting the light injected into their arms. This is done
by comparing phases of split beams propagated along the equal (but non-parallel) arms of the
detector. The laser frequency fluctuations affecting the two beams experience the same delay
within the two equal-length arms and cancel out at the photodetector where relative phases are
measured. This way gravitational-wave signals of dimensionless amplitude less than 10−20 can be
observed when using lasers whose frequency stability can be as large as roughly a few parts in
10−13.

If the arms of the interferometer have different lengths, however, the exact cancellation of the
laser frequency fluctuations, say 𝐶(𝑡), will no longer take place at the photodetector. In fact, the
larger the difference between the two arms, the larger will be the magnitude of the laser frequency
fluctuations affecting the detector response. If 𝐿1 and 𝐿2 are the lengths of the two arms, it is
easy to see that the amount of laser relative frequency fluctuations remaining in the response is
equal to (units in which the speed of light 𝑐 = 1)

Δ𝐶(𝑡) = 𝐶(𝑡− 2𝐿1)− 𝐶(𝑡− 2𝐿2). (1)

In the case of a space-based interferometer such as LISA, whose lasers are expected to display
relative frequency fluctuations equal to about 10−13/

√
Hz in the mHz band, and whose arms will

differ by a few percent [5, 13, 35], Eq. (1) implies the following expression for the amplitude of the
Fourier components of the uncanceled laser frequency fluctuations (an over-imposed tilde denotes
the operation of Fourier transform):

|̃︂Δ𝐶(𝑓)| ≃ | ̃︀𝐶(𝑓)| 4𝜋𝑓 |(𝐿1 − 𝐿2)|. (2)

At 𝑓 = 10−3 Hz, for instance, and assuming |𝐿1 − 𝐿2| ≃ 0.5 s, the uncanceled fluctuations from
the laser are equal to 6.3× 10−16/

√
Hz. Since the LISA sensitivity goal was about 10−20/

√
Hz in

this part of the frequency band, it is clear that an alternative experimental approach for canceling
the laser frequency fluctuations is needed.

A first attempt to solve this problem was presented by Faller et al. [17, 19, 18], and the scheme
proposed there can be understood through Figure 1. In this idealized model the two beams
exiting the two arms are not made to interfere at a common photodetector. Rather, each is made
to interfere with the incoming light from the laser at a photodetector, decoupling in this way the
phase fluctuations experienced by the two beams in the two arms. Now two Doppler measurements
are available in digital form, and the problem now becomes one of identifying an algorithm for
digitally canceling the laser frequency fluctuations from a resulting new data combination.

The algorithm they first proposed, and refined subsequently in [24], required processing the two
Doppler measurements, say 𝑦1(𝑡) and 𝑦2(𝑡), in the Fourier domain. If we denote with ℎ1(𝑡), ℎ2(𝑡)
the gravitational-wave signals entering into the Doppler data 𝑦1, 𝑦2, respectively, and with 𝑛1, 𝑛2

any other remaining noise affecting 𝑦1 and 𝑦2, respectively, then the expressions for the Doppler
observables 𝑦1, 𝑦2 can be written in the following form:

𝑦1(𝑡) = 𝐶(𝑡− 2𝐿1)− 𝐶(𝑡) + ℎ1(𝑡) + 𝑛1(𝑡), (3)

𝑦2(𝑡) = 𝐶(𝑡− 2𝐿2)− 𝐶(𝑡) + ℎ2(𝑡) + 𝑛2(𝑡). (4)

From Eqs. (3) and (4) it is important to note the characteristic time signature of the random process
𝐶(𝑡) in the Doppler responses 𝑦1, 𝑦2. The time signature of the noise 𝐶(𝑡) in 𝑦1(𝑡), for instance,
can be understood by observing that the frequency of the signal received at time 𝑡 contains laser
frequency fluctuations transmitted 2𝐿1 s earlier. By subtracting from the frequency of the received
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P.D

Laser

P.D

L1

L2

n0, C(t)

y1(t)

y2(t)

Figure 1: Light from a laser is split into two beams, each injected into an arm formed by pairs of free-
falling mirrors. Since the length of the two arms, 𝐿1 and 𝐿2, are different, now the light beams from the
two arms are not recombined at one photo detector. Instead each is separately made to interfere with the
light that is injected into the arms. Two distinct photo detectors are now used, and phase (or frequency)
fluctuations are then monitored and recorded there.

signal the frequency of the signal transmitted at time 𝑡, we also subtract the frequency fluctuations
𝐶(𝑡) with the net result shown in Eq. (3).

The algorithm for canceling the laser noise in the Fourier domain suggested in [17] works as
follows. If we take an infinitely long Fourier transform of the data 𝑦1, the resulting expression of
𝑦1 in the Fourier domain becomes (see Eq. (3))

̃︀𝑦1(𝑓) = ̃︀𝐶(𝑓)
[︀
𝑒4𝜋𝑖𝑓𝐿1 − 1

]︀
+ ̃︀ℎ1(𝑓) + ̃︀𝑛1(𝑓). (5)

If the arm length 𝐿1 is known exactly, we can use the ̃︀𝑦1 data to estimate the laser frequency
fluctuations ̃︀𝐶(𝑓). This can be done by dividing ̃︀𝑦1 by the transfer function of the laser noise 𝐶
into the observable 𝑦1 itself. By then further multiplying ̃︀𝑦1/[𝑒4𝜋𝑖𝑓𝐿1 − 1] by the transfer function
of the laser noise into the other observable ̃︀𝑦2, i.e., [𝑒4𝜋𝑖𝑓𝐿2 − 1], and then subtract the resulting
expression from ̃︀𝑦2 one accomplishes the cancellation of the laser frequency fluctuations.

The problem with this procedure is the underlying assumption of being able to take an infinitely
long Fourier transform of the data. Even if one neglects the variation in time of the LISA arms, by
taking a finite-length Fourier transform of, say, 𝑦1(𝑡) over a time interval 𝑇 , the resulting transfer
function of the laser noise 𝐶 into 𝑦1 no longer will be equal to [𝑒4𝜋𝑖𝑓𝐿1 − 1]. This can be seen by
writing the expression of the finite length Fourier transform of 𝑦1 in the following way:

̃︀𝑦𝑇1 ≡
∫︁ +𝑇

−𝑇

𝑦1(𝑡) 𝑒
2𝜋𝑖𝑓𝑡 𝑑𝑡 =

∫︁ +∞

−∞
𝑦1(𝑡)𝐻(𝑡) 𝑒2𝜋𝑖𝑓𝑡 𝑑𝑡 , (6)

where we have denoted with 𝐻(𝑡) the function that is equal to 1 in the interval [−𝑇,+𝑇 ], and
zero everywhere else. Eq. (6) implies that the finite-length Fourier transform ̃︀𝑦𝑇1 of 𝑦1(𝑡) is equal
to the convolution in the Fourier domain of the infinitely long Fourier transform of 𝑦1(𝑡), ̃︀𝑦1, with
the Fourier transform of 𝐻(𝑡) [28] (i.e., the “Sinc Function” of width 1/𝑇 ). The key point here
is that we can no longer use the transfer function [𝑒4𝜋𝑖𝑓𝐿𝑖 − 1], 𝑖 = 1, 2, for estimating the laser
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noise fluctuations from one of the measured Doppler data, without retaining residual laser noise
into the combination of the two Doppler data 𝑦1, 𝑦2 valid in the case of infinite integration time.
The amount of residual laser noise remaining in the Fourier-based combination described above,
as a function of the integration time 𝑇 and type of “window function” used, was derived in the
appendix of [53]. There it was shown that, in order to suppress the residual laser noise below the
LISA sensitivity level identified by secondary noises (such as proof-mass and optical path noises)
with the use of the Fourier-based algorithm an integration time of about six months was needed.

A solution to this problem was suggested in [53], which works entirely in the time-domain.
From Eqs. (3) and (4) we may notice that, by taking the difference of the two Doppler data 𝑦1(𝑡),
𝑦2(𝑡), the frequency fluctuations of the laser now enter into this new data set in the following way:

𝑦1(𝑡)− 𝑦2(𝑡) = 𝐶(𝑡− 2𝐿1)− 𝐶(𝑡− 2𝐿2) + ℎ1(𝑡)− ℎ2(𝑡) + 𝑛1(𝑡)− 𝑛2(𝑡) . (7)

If we now compare how the laser frequency fluctuations enter into Eq. (7) against how they appear
in Eqs. (3) and (4), we can further make the following observation. If we time-shift the data 𝑦1(𝑡)
by the round trip light time in arm 2, 𝑦1(𝑡− 2𝐿2), and subtract from it the data 𝑦2(𝑡) after it has
been time-shifted by the round trip light time in arm 1, 𝑦2(𝑡− 2𝐿1), we obtain the following data
set:

𝑦1(𝑡− 2𝐿2)− 𝑦2(𝑡− 2𝐿1) = 𝐶(𝑡− 2𝐿1)− 𝐶(𝑡− 2𝐿2) + ℎ1(𝑡− 2𝐿2)− ℎ2(𝑡− 2𝐿1)

+𝑛1(𝑡− 2𝐿2)− 𝑛2(𝑡− 2𝐿1) . (8)

In other words, the laser frequency fluctuations enter into 𝑦1(𝑡)−𝑦2(𝑡) and 𝑦1(𝑡−2𝐿2)−𝑦2(𝑡−2𝐿1)
with the same time structure. This implies that, by subtracting Eq. (8) from Eq. (7) we can generate
a new data set that does not contain the laser frequency fluctuations 𝐶(𝑡),

𝑋 ≡ [𝑦1(𝑡)− 𝑦2(𝑡)]− [𝑦1(𝑡− 2𝐿2)− 𝑦2(𝑡− 2𝐿1)] . (9)

The expression above of the 𝑋 combination shows that it is possible to cancel the laser frequency
noise in the time domain by properly time-shifting and linearly combining Doppler measurements
recorded by different Doppler readouts. This in essence is what TDI amounts to.

In order to gain a better physical understanding of how TDI works, let’s rewrite the above 𝑋
combination in the following form

𝑋 = [𝑦1(𝑡) + 𝑦2(𝑡− 2𝐿1)]− [𝑦2(𝑡) + 𝑦1(𝑡− 2𝐿2)] , (10)

where we have simply rearranged the terms in Eq. (9 [45].
Equation (10) shows that 𝑋 is the difference of two sums of relative frequency changes, each

corresponding to a specific light path (the continuous and dashed lines in Figure 2). The continuous
line, corresponding to the first square-bracket term in Eq. (10), represents a light-beam transmitted
from spacecraft 1 and made to bounce once at spacecraft 3 and 2 respectively. Since the other
beam (dashed line) experiences the same overall delay as the first beam (although by bouncing
off spacecraft 2 first and then spacecraft 3) when they are recombined they will cancel the laser
phase fluctuations exactly, having both experienced the same total delays (assuming stationary
spacecraft). For this reason the combination 𝑋 can be regarded as a synthesized (via TDI) zero-
area Sagnac interferometer, with each beam experiencing a delay equal to (2𝐿1 + 2𝐿2). In reality,
there are only two beams in each arm (one in each direction) and the lines in Figure 2 represent
the paths of relative frequency changes rather than paths of distinct light beams.

In the following sections we will further elaborate and generalize TDI to the realistic LISA
configuration.
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Figure 2: Schematic diagram for 𝑋, showing that it is a synthesized zero-area Sagnac interferometer.
The optical path begins at an “x” and the measurement is made at an “o”.

3 Time-Delay Interferometry

The description of TDI for LISA is greatly simplified if we adopt the notation shown in Figure 3,
where the overall geometry of the LISA detector is defined. There are three spacecraft, six optical
benches, six lasers, six proof-masses, and twelve photodetectors. There are also six phase difference
data going clock-wise and counter-clockwise around the LISA triangle. For the moment we will
make the simplifying assumption that the array is stationary, i.e., the back and forth optical paths
between pairs of spacecraft are simply equal to their relative distances [44, 7, 45, 58].

Several notations have been used in this context. The double index notation recently employed
in [45], where six quantities are involved, is self-evident. However, when algebraic manipulations
are involved the following notation seems more convenient to use. The spacecraft are labeled 1, 2,
3 and their separating distances are denoted 𝐿1, 𝐿2, 𝐿3, with 𝐿𝑖 being opposite spacecraft 𝑖. We
orient the vertices 1, 2, 3 clockwise in Figure 3. Unit vectors between spacecraft are 𝑛̂𝑖, oriented
as indicated in Figure 3. We index the phase difference data to be analyzed as follows: The
beam arriving at spacecraft 𝑖 has subscript 𝑖 and is primed or unprimed depending on whether the
beam is traveling clockwise or counter-clockwise (the sense defined here with reference to Figure 3)
around the LISA triangle, respectively. Thus, as seen from the figure, 𝑠1 is the phase difference
time series measured at reception at spacecraft 1 with transmission from spacecraft 2 (along 𝐿3).

Similarly, 𝑠′1 is the phase difference series derived from reception at spacecraft 1 with transmis-
sion from spacecraft 3. The other four one-way phase difference time series from signals exchanged
between the spacecraft are obtained by cyclic permutation of the indices: 1 → 2 → 3 → 1. We
also adopt a notation for delayed data streams, which will be convenient later for algebraic ma-
nipulations. We define the three time-delay operators 𝒟𝑖, 𝑖 = 1, 2, 3, where for any data stream
𝑥(𝑡)

𝒟𝑖𝑥(𝑡) = 𝑥(𝑡− 𝐿𝑖), (11)

where 𝐿𝑖, 𝑖 = 1, 2, 3, are the light travel times along the three arms of the LISA triangle (the
speed of light 𝑐 is assumed to be unity in this article). Thus, for example, 𝒟2𝑠1(𝑡) = 𝑠1(𝑡 − 𝐿2),
𝒟2𝒟3𝑠1(𝑡) = 𝑠1(𝑡 − 𝐿2 − 𝐿3) = 𝒟3𝒟2𝑠1(𝑡), etc. Note that the operators commute here. This is
because the arm lengths have been assumed to be constant in time. If the 𝐿𝑖 are functions of
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Figure 3: Schematic LISA configuration. The spacecraft are labeled 1, 2, and 3. The optical paths are
denoted by 𝐿𝑖, 𝐿

′
𝑖 where the index 𝑖 corresponds to the opposite spacecraft. The unit vectors n̂𝑖 point

between pairs of spacecraft, with the orientation indicated.

time then the operators no longer commute [7, 58], as will be described in Section 4. Six more
phase difference series result from laser beams exchanged between adjacent optical benches within
each spacecraft; these are similarly indexed as 𝜏𝑖, 𝜏

′
𝑖 , 𝑖 = 1, 2, 3. The proof-mass-plus-optical-bench

assemblies for LISA spacecraft number 1 are shown schematically in Figure 4. The photo receivers
that generate the data 𝑠1, 𝑠

′
1, 𝜏1, and 𝜏 ′1 at spacecraft 1 are shown. The phase fluctuations from

the six lasers, which need to be canceled, can be represented by six random processes 𝑝𝑖, 𝑝
′
𝑖, where

𝑝𝑖, 𝑝
′
𝑖 are the phases of the lasers in spacecraft 𝑖 on the left and right optical benches, respectively,

as shown in the figure. Note that this notation is in the same spirit as in [57, 45] in which moving
spacecraft arrays have been analyzed.

We extend the cyclic terminology so that at vertex 𝑖, 𝑖 = 1, 2, 3, the random displacement vectors
of the two proof masses are respectively denoted by 𝛿⃗𝑖(𝑡), 𝛿⃗

′
𝑖(𝑡), and the random displacements

(perhaps several orders of magnitude greater) of their optical benches are correspondingly denoted

by Δ⃗𝑖(𝑡), Δ⃗
′
𝑖(𝑡) where the primed and unprimed indices correspond to the right and left optical

benches, respectively. As pointed out in [15], the analysis does not assume that pairs of optical

benches are rigidly connected, i.e., Δ⃗𝑖 ̸= Δ⃗′
𝑖, in general. The present LISA design shows optical

fibers transmitting signals both ways between adjacent benches. We ignore time-delay effects for
these signals and will simply denote by 𝜇𝑖(𝑡) the phase fluctuations upon transmission through
the fibers of the laser beams with frequencies 𝜈𝑖, and 𝜈′𝑖. The 𝜇𝑖(𝑡) phase shifts within a given
spacecraft might not be the same for large frequency differences 𝜈𝑖−𝜈′𝑖. For the envisioned frequency
differences (a few hundred MHz), however, the remaining fluctuations due to the optical fiber can
be neglected [15]. It is also assumed that the phase noise added by the fibers is independent of
the direction of light propagation through them. For ease of presentation, in what follows we will
assume the center frequencies of the lasers to be the same, and denote this frequency by 𝜈0.

The laser phase noise in 𝑠′3 is therefore equal to 𝒟1𝑝2(𝑡)− 𝑝′3(𝑡). Similarly, since 𝑠2 is the phase
shift measured on arrival at spacecraft 2 along arm 1 of a signal transmitted from spacecraft 3,
the laser phase noises enter into it with the following time signature: 𝒟1𝑝

′
3(𝑡) − 𝑝2(𝑡). Figure 4

endeavors to make the detailed light paths for these observations clear. An outgoing light beam
transmitted to a distant spacecraft is routed from the laser on the local optical bench using mirrors
and beam splitters; this beam does not interact with the local proof mass. Conversely, an incoming
light beam from a distant spacecraft is bounced off the local proof mass before being reflected onto
the photo receiver where it is mixed with light from the laser on that same optical bench. The
inter-spacecraft phase data are denoted 𝑠1 and 𝑠′1 in Figure 4.

Beams between adjacent optical benches within a single spacecraft are bounced off proof masses
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Figure 4: Schematic diagram of proof-masses-plus-optical-benches for a LISA spacecraft. The left-hand
bench reads out the phase signals 𝑠1 and 𝜏1. The right-hand bench analogously reads out 𝑠′1 and 𝜏 ′

1. The
random displacements of the two proof masses and two optical benches are indicated (lower case 𝛿⃗𝑖, 𝛿⃗

′
𝑖 for

the proof masses, upper case Δ⃗𝑖,Δ
′
𝑖 for the optical benches).

in the opposite way. Light to be transmitted from the laser on an optical bench is first bounced
off the proof mass it encloses and then directed to the other optical bench. Upon reception it does
not interact with the proof mass there, but is directly mixed with local laser light, and again down
converted. These data are denoted 𝜏1 and 𝜏 ′1 in Figure 4.

The expressions for the 𝑠𝑖, 𝑠′𝑖 and 𝜏𝑖, 𝜏 ′𝑖 phase measurements can now be developed from
Figures 3 and 4, and they are for the particular LISA configuration in which all the lasers have
the same nominal frequency 𝜈0, and the spacecraft are stationary with respect to each other.1

Consider the 𝑠′1(𝑡) process (Eq. (14) below). The photo receiver on the right bench of spacecraft 1,

which (in the spacecraft frame) experiences a time-varying displacement Δ⃗′
1, measures the phase

difference 𝑠′1 by first mixing the beam from the distant optical bench 3 in direction 𝑛̂2, and laser

phase noise 𝑝3 and optical bench motion Δ⃗3 that have been delayed by propagation along 𝐿2,
after one bounce off the proof mass (𝛿⃗′1), with the local laser light (with phase noise 𝑝′1). Since
for this simplified configuration no frequency offsets are present, there is of course no need for any
heterodyne conversion [57].

In Eq. (13) the 𝜏1 measurement results from light originating at the right-bench laser (𝑝′1, Δ⃗
′
1),

bounced once off the right proof mass (𝛿⃗′1), and directed through the fiber (incurring phase shift
𝜇1(𝑡)), to the left bench, where it is mixed with laser light (𝑝1). Similarly the right bench records
the phase differences 𝑠′1 and 𝜏 ′1. The laser noises, the gravitational-wave signals, the optical path
noises, and proof-mass and bench noises, enter into the four data streams recorded at vertex 1
according to the following expressions [15]:

𝑠1 = 𝑠 gw
1 + 𝑠 optical path

1 +𝒟3𝑝
′
2 − 𝑝1 + 𝜈0

[︁
−2𝑛̂3 · 𝛿⃗1 + 𝑛̂3 · Δ⃗1 + 𝑛̂3 · 𝒟3Δ⃗

′
2

]︁
, (12)

𝜏1 = 𝑝′1 − 𝑝1 − 2𝜈0 𝑛̂2 ·
(︁
𝛿⃗′1 − Δ⃗′

1

)︁
+ 𝜇1. (13)

1 It should be noticed that the optical bench design shown in Figure 4 is one the earlier ones proposed for the
LISA mission, and it represents one of the possible configurations for integrating the onboard drag-free system
with the TDI measurements. Although other optical bench designs will result into different inter-proof-mass phase
measurements, they can be accommodated within TDI [37].
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𝑠′1 = 𝑠
′gw
1 + 𝑠

′optical path
1 +𝒟2𝑝3 − 𝑝′1 + 𝜈0

[︁
2𝑛̂2 · 𝛿⃗′1 − 𝑛̂2 · Δ⃗′

1 − 𝑛̂2 · 𝒟2Δ⃗3

]︁
, (14)

𝜏 ′1 = 𝑝1 − 𝑝′1 + 2𝜈0 𝑛̂3 ·
(︁
𝛿⃗1 − Δ⃗1

)︁
+ 𝜇1 . (15)

Eight other relations, for the readouts at vertices 2 and 3, are given by cyclic permutation of the
indices in Eqs. (12), (13), (14), and (15).

The gravitational-wave phase signal components 𝑠 gw
𝑖 , 𝑠

′gw
𝑖 , 𝑖 = 1, 2, 3, in Eqs. (12) and (14) are

given by integrating with respect to time the Eqs. (1) and (2) of reference [2], which relate metric

perturbations to optical frequency shifts. The optical path phase noise contributions 𝑠 optical path
𝑖 ,

𝑠
′optical path
𝑖 , which include shot noise from the low SNR in the links between the distant spacecraft,
can be derived from the corresponding term given in [15]. The 𝜏𝑖, 𝜏

′
𝑖 measurements will be made

with high SNR so that for them the shot noise is negligible.
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4 Algebraic Approach for Canceling Laser and Optical Bench
Noises

In ground-based detectors the arms are chosen to be of equal length so that the laser light expe-
riences identical delay in each arm of the interferometer. This arrangement precisely cancels the
laser frequency/phase noise at the photodetector. The required sensitivity of the instrument can
thus only be achieved by near exact cancellation of the laser frequency noise. However, in LISA it
is impossible to achieve equal distances between spacecraft, and the laser noise cannot be canceled
in this way. It is possible to combine the recorded data linearly with suitable time-delays corre-
sponding to the three arm lengths of the giant triangular interferometer so that the laser phase
noise is canceled. Here we present a systematic method based on modules over polynomial rings
which guarantees all the data combinations that cancel both the laser phase and the optical bench
motion noises.

We first consider the simpler case, where we ignore the optical-bench motion noise and consider
only the laser phase noise. We do this because the algebra is somewhat simpler and the method is
easy to apply. The simplification amounts to physically considering each spacecraft rigidly carrying
the assembly of lasers, beam-splitters, and photodetectors. The two lasers on each spacecraft could
be considered to be locked, so effectively there would be only one laser on each spacecraft. This
mathematically amounts to setting Δ⃗𝑖 = Δ⃗′

𝑖 = 0 and 𝑝𝑖 = 𝑝′𝑖. The scheme we describe here for
laser phase noise can be extended in a straight-forward way to include optical bench motion noise,
which we address in the last part of this section.

The data combinations, when only the laser phase noise is considered, consist of the six suitably
delayed data streams (inter-spacecraft), the delays being integer multiples of the light travel times
between spacecraft, which can be conveniently expressed in terms of polynomials in the three delay
operators 𝒟1, 𝒟2, 𝒟3. The laser noise cancellation condition puts three constraints on the six
polynomials of the delay operators corresponding to the six data streams. The problem, therefore,
consists of finding six-tuples of polynomials which satisfy the laser noise cancellation constraints.
These polynomial tuples form a module2 called the module of syzygies. There exist standard
methods for obtaining the module, by which we mean methods for obtaining the generators of
the module so that the linear combinations of the generators generate the entire module. The
procedure first consists of obtaining a Gröbner basis for the ideal generated by the coefficients
appearing in the constraints. This ideal is in the polynomial ring in the variables 𝒟1, 𝒟2, 𝒟3 over
the domain of rational numbers (or integers if one gets rid of the denominators). To obtain the
Gröbner basis for the ideal, one may use the Buchberger algorithm or use an application such as
Mathematica [65]. From the Gröbner basis there is a standard way to obtain a generating set for
the required module. This procedure has been described in the literature [3, 29]. We thus obtain
seven generators for the module. However, the method does not guarantee a minimal set and
we find that a generating set of 4 polynomial six-tuples suffice to generate the required module.
Alternatively, we can obtain generating sets by using the software Macaulay 2.

The importance of obtaining more data combinations is evident: They provide the necessary
redundancy – different data combinations produce different transfer functions for GWs and the
system noises so specific data combinations could be optimal for given astrophysical source pa-
rameters in the context of maximizing SNR, detection probability, improving parameter estimates,
etc.

2 A module is an Abelian group over a ring as contrasted with a vector space which is an Abelian group over a
field. The scalars form a ring and just like in a vector space, scalar multiplication is defined. However, in a ring the
multiplicative inverses do not exist in general for the elements, which makes all the difference!
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4.1 Cancellation of laser phase noise

We now only have six data streams 𝑠𝑖 and 𝑠′𝑖, where 𝑖 = 1, 2, 3. These can be regarded as 3
component vectors s and s′, respectively. The six data streams with terms containing only the
laser frequency noise are

𝑠1 = 𝒟3𝑝2 − 𝑝1,

𝑠′1 = 𝒟2𝑝3 − 𝑝1
(16)

and their cyclic permutations.

Note that we have intentionally excluded from the data additional phase fluctuations due to the
GW signal, and noises such as the optical-path noise, proof-mass noise, etc. Since our immediate
goal is to cancel the laser frequency noise we have only kept the relevant terms. Combining the
streams for canceling the laser frequency noise will introduce transfer functions for the other noises
and the GW signal. This is important and will be discussed subsequently in the article.

The goal of the analysis is to add suitably delayed beams together so that the laser frequency noise
terms add up to zero. This amounts to seeking data combinations that cancel the laser frequency
noise. In the notation/formalism that we have invoked, the delay is obtained by applying the
operators 𝒟𝑘 to the beams 𝑠𝑖 and 𝑠′𝑖. A delay of 𝑘1𝐿1+𝑘2𝐿2+𝑘3𝐿3 is represented by the operator
𝒟𝑘1

1 𝒟𝑘2
2 𝒟𝑘3

3 acting on the data, where 𝑘1, 𝑘2, and 𝑘3 are integers. In general, a polynomial in 𝒟𝑘,
which is a polynomial in three variables, applied to, say, 𝑠1 combines the same data stream 𝑠1(𝑡)
with different time-delays of the form 𝑘1𝐿1 + 𝑘2𝐿2 + 𝑘3𝐿3. This notation conveniently rephrases
the problem. One must find six polynomials say 𝑞𝑖(𝒟1,𝒟2,𝒟3), 𝑞

′
𝑖(𝒟1,𝒟2,𝒟3), 𝑖 = 1, 2, 3, such

that
3∑︁

𝑖=1

𝑞𝑖𝑠𝑖 + 𝑞′𝑖𝑠
′
𝑖 = 0. (17)

The zero on the right-hand side of the above equation signifies zero laser phase noise.

It is useful to express Eq. (16) in matrix form. This allows us to obtain a matrix operator
equation whose solutions are q and q′, where 𝑞𝑖 and 𝑞′𝑖 are written as column vectors. We can
similarly express 𝑠𝑖, 𝑠

′
𝑖, 𝑝𝑖 as column vectors s, s′, p, respectively. In matrix form Eq. (16) becomes

s = D𝑇 · p, s′ = D · p, (18)

where D is a 3× 3 matrix given by

D =

⎛⎝−1 0 𝒟2

𝒟3 −1 0
0 𝒟1 −1

⎞⎠. (19)

The exponent ‘𝑇 ’ represents the transpose of the matrix. Eq. (17) becomes

q𝑇 · s+ q′𝑇 · s′ = (q𝑇 ·D𝑇 + q′𝑇 ·D) · p = 0, (20)

where we have taken care to put p on the right-hand side of the operators. Since the above equation
must be satisfied for an arbitrary vector p, we obtain a matrix equation for the polynomials (q,q′):

q𝑇 ·D𝑇 + q′ ·D = 0. (21)

Note that since the 𝒟𝑘 commute, the order in writing these operators is unimportant. In mathe-
matical terms, the polynomials form a commutative ring.
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4.2 Cancellation of laser phase noise in the unequal-arm interferometer

The use of commutative algebra is very conveniently illustrated with the help of the simpler
example of the unequal-arm interferometer. Here there are only two arms instead of three as
we have for LISA, and the mathematics is much simpler and so it easy to see both physically
and mathematically how commutative algebra can be applied to this problem of laser phase noise
cancellation. The procedure is well known for the unequal-arm interferometer, but here we will
describe the same method but in terms of the delay operators that we have introduced.

Let 𝜑(𝑡) denote the laser phase noise entering the laser cavity as shown in Figure 5. Consider
this light 𝜑(𝑡) making a round trip around arm 1 whose length we take to be 𝐿1. If we interfere
this phase with the incoming light we get the phase 𝜑1(𝑡), where

𝜑1(𝑡) = 𝜑(𝑡− 2𝐿1)− 𝜑(𝑡) ≡ (𝒟2
1 − 1)𝜑(𝑡). (22)

The second expression we have written in terms of the delay operators. This makes the procedure
transparent as we shall see. We can do the same for the arm 2 to get another phase 𝜑2(𝑡), where

𝜑2(𝑡) = 𝜑(𝑡− 2𝐿2)− 𝜑(𝑡) ≡ (𝒟2
2 − 1)𝜑(𝑡). (23)

Clearly, if 𝐿1 ̸= 𝐿2, then the difference in phase 𝜑2(𝑡)− 𝜑1(𝑡) is not zero and the laser phase noise
does not cancel out. However, if one further delays the phases 𝜑1(𝑡) and 𝜑2(𝑡) and constructs the
following combination,

𝑋(𝑡) = [𝜑2(𝑡− 2𝐿1)− 𝜑2(𝑡)]− [𝜑1(𝑡− 2𝐿2)− 𝜑1(𝑡)], (24)

then the laser phase noise does cancel out. We have already encountered this combination at the
end of Section 2. It was first proposed by Tinto and Armstrong in [53].

2

Beam splitter

Beam

M

M1

L1

L 2

φ  t ( )

Figure 5: Schematic diagram of the unequal-arm Michelson interferometer. The beam shown corresponds
to the term (𝒟2

2 − 1)(𝒟2
1 − 1)𝜑(𝑡) in 𝑋(𝑡) which is first sent around arm 1 followed by arm 2. The second

beam (not shown) is first sent around arm 2 and then through arm 1. The difference in these two beams
constitutes 𝑋(𝑡).
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The cancellation of laser frequency noise becomes obvious from the operator algebra in the
following way. In the operator notation,

𝑋(𝑡) = (𝒟2
1 − 1)𝜑2(𝑡)− (𝒟2

2 − 1)𝜑1(𝑡)

= [(𝒟2
1 − 1)(𝒟2

2 − 1)− (𝒟2
2 − 1)(𝒟2

1 − 1)]𝜑(𝑡)

= 0. (25)

From this one immediately sees that just the commutativity of the operators has been used to
cancel the laser phase noise. The basic idea was to compute the lowest common multiple (L.C.M.)
of the polynomials 𝒟2

1 − 1 and 𝒟2
2 − 1 (in this case the L.C.M. is just the product, because the

polynomials are relatively prime) and use this fact to construct 𝑋(𝑡) in which the laser phase noise
is canceled. The operation is shown physically in Figure 5.

The notions of commutativity of polynomials, L.C.M., etc. belong to the field of commutative
algebra. In fact we will be using the notion of a Gröbner basis which is in a sense the generalization
of the notion of the greatest common divisor (gcd). Since LISA has three spacecraft and six
inter-spacecraft beams, the problem of the unequal-arm interferometer only gets technically more
complex; in principle the problem is the same as in this simpler case. Thus, the simple operations
which were performed here to obtain a laser noise free combination 𝑋(𝑡) are not sufficient and more
sophisticated methods need to be adopted from the field of commutative algebra. We address this
problem in the forthcoming text.

4.3 The module of syzygies

Equation (21) has non-trivial solutions. Several solutions have been exhibited in [2, 15]. We merely
mention these solutions here; in the forthcoming text we will discuss them in detail. The solution
𝜁 is given by −q𝑇 = q′𝑇 = (𝒟1,𝒟2,𝒟3). The solution 𝛼 is described by q𝑇 = −(1,𝒟3,𝒟1𝒟3)
and q′𝑇 = (1,𝒟1𝒟2,𝒟2). The solutions 𝛽 and 𝛾 are obtained from 𝛼 by cyclically permuting the
indices of 𝒟𝑘, q, and q′. These solutions are important, because they consist of polynomials with
lowest possible degrees and thus are simple. Other solutions containing higher degree polynomials
can be generated conveniently from these solutions. Since the system of equations is linear, linear
combinations of these solutions are also solutions to Eq. (21).

However, it is important to realize that we do not have a vector space here. Three independent
constraints on a six-tuple do not produce a space which is necessarily generated by three basis
elements. This conclusion would follow if the solutions formed a vector space but they do not.
The polynomial six-tuple q, q′ can be multiplied by polynomials in 𝒟1, 𝒟2, 𝒟3 (scalars) which
do not form a field. Thus, the inverse in general does not exist within the ring of polynomials.
We, therefore, have a module over the ring of polynomials in the three variables 𝒟1, 𝒟2, 𝒟3. First
we present the general methodology for obtaining the solutions to Eq. (21) and then apply it to
Eq. (21).

There are three linear constraints on the polynomials given by Eq. (21). Since the equations are
linear, the solutions space is a submodule of the module of six-tuples of polynomials. The module
of six-tuples is a free module, i.e., it has six basis elements that not only generate the module
but are linearly independent. A natural choice of the basis is 𝑓𝑚 = (0, . . . , 1, . . . , 0) with 1 in the
𝑚-th place and 0 everywhere else; 𝑚 runs from 1 to 6. The definitions of generation (spanning)
and linear independence are the same as that for vector spaces. A free module is essentially like a
vector space. But our interest lies in its submodule which need not be free and need not have just
three generators as it would seem if we were dealing with vector spaces.

The problem at hand is of finding the generators of this submodule, i.e., any element of the
submodule should be expressible as a linear combination of the generating set. In this way the
generators are capable of spanning the full submodule or generating the submodule. In order to
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achieve our goal, we rewrite Eq. (21) explicitly component-wise:

𝑞1 + 𝑞′1 −𝒟3𝑞
′
2 −𝒟2𝑞3 = 0,

𝑞2 + 𝑞′2 −𝒟1𝑞
′
3 −𝒟3𝑞1 = 0,

𝑞3 + 𝑞′3 −𝒟2𝑞
′
1 −𝒟1𝑞2 = 0.

(26)

The first step is to use Gaussian elimination to obtain 𝑞1 and 𝑞2 in terms of 𝑞3, 𝑞
′
1, 𝑞

′
2, 𝑞

′
3,

𝑞1 = −𝑞′1 +𝒟3𝑞
′
2 +𝒟2𝑞3,

𝑞2 = −𝑞′2 +𝒟1𝑞
′
3 +𝒟3𝑞1

= −𝒟3𝑞
′
1 − (1−𝒟2

3)𝑞
′
2 +𝒟1𝑞

′
3 +𝒟2𝒟3𝑞3,

(27)

and then substitute these values in the third equation to obtain a linear implicit relation between
𝑞3, 𝑞

′
1, 𝑞

′
2, 𝑞

′
3. We then have:

(1−𝒟1𝒟2𝒟3)𝑞3 + (𝒟1𝒟3 −𝒟2)𝑞
′
1 +𝒟1(1−𝒟2

3)𝑞
′
2 + (1−𝒟2

1)𝑞
′
3 = 0. (28)

Obtaining solutions to Eq. (28) amounts to solving the problem since the remaining polynomials
𝑞1, 𝑞2 have been expressed in terms of 𝑞3, 𝑞

′
1, 𝑞

′
2, 𝑞

′
3 in Eq. (27). Note that we cannot carry on the

Gaussian elimination process any further, because none of the polynomial coefficients appearing
in Eq. (28) have an inverse in the ring.

We will assume that the polynomials have rational coefficients, i.e., the coefficients belong to 𝒬,
the field of the rational numbers. The set of polynomials form a ring – the polynomial ring in three
variables, which we denote by ℛ = 𝒬[𝒟1,𝒟2,𝒟3]. The polynomial vector (𝑞3, 𝑞

′
1, 𝑞

′
2, 𝑞

′
3) ∈ ℛ4.

The set of solutions to Eq. (28) is just the kernel of the homomorphism 𝜙 : ℛ4 → ℛ, where the
polynomial vector (𝑞3, 𝑞

′
1, 𝑞

′
2, 𝑞

′
3) is mapped to the polynomial (1−𝒟1𝒟2𝒟3)𝑞3 + (𝒟1𝒟3 −𝒟2)𝑞

′
1 +

𝒟1(1 − 𝒟2
3)𝑞

′
2 + (1 − 𝒟2

1)𝑞
′
3. Thus, the solution space ker𝜙 is a submodule of ℛ4. It is called

the module of syzygies. The generators of this module can be obtained from standard methods
available in the literature. We briefly outline the method given in the books by Becker et al. [3],
and Kreuzer and Robbiano [29] below. The details have been included in Appendix A.

4.4 Gröbner basis

The first step is to obtain the Gröbner basis for the ideal 𝒰 generated by the coefficients in Eq. (28):

𝑢1 = 1−𝒟1𝒟2𝒟3, 𝑢2 = 𝒟1𝒟3 −𝒟2, 𝑢3 = 𝒟1(1−𝒟2
3), 𝑢4 = 1−𝒟2

1. (29)

The ideal 𝒰 consists of linear combinations of the form
∑︀

𝑣𝑖𝑢𝑖 where 𝑣𝑖, 𝑖 = 1, . . . , 4 are polynomials
in the ring ℛ. There can be several sets of generators for 𝒰 . A Gröbner basis is a set of generators
which is ‘small’ in a specific sense.

There are several ways to look at the theory of Gröbner basis. One way is the following:
Suppose we are given polynomials 𝑔1, 𝑔2, . . . , 𝑔𝑚 in one variable over say 𝒬 and we would like to
know whether another polynomial 𝑓 belongs to the ideal generated by the 𝑔’s. A good way to
decide the issue would be to first compute the gcd 𝑔 of 𝑔1, 𝑔2, . . . , 𝑔𝑚 and check whether 𝑓 is a
multiple of 𝑔. One can achieve this by doing the long division of 𝑓 by 𝑔 and checking whether the
remainder is zero. All this is possible because 𝒬[𝑥] is a Euclidean domain and also a principle ideal
domain (PID) wherein any ideal is generated by a single element. Therefore we have essentially
just one polynomial – the gcd – which generates the ideal generated by 𝑔1, 𝑔2, . . . , 𝑔𝑚. The ring of
integers or the ring of polynomials in one variable over any field are examples of PIDs whose ideals
are generated by single elements. However, when we consider more general rings (not PIDs) like
the one we are dealing with here, we do not have a single gcd but a set of several polynomials which
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generates an ideal in general. A Gröbner basis of an ideal can be thought of as a generalization of
the gcd. In the univariate case, the Gröbner basis reduces to the gcd.

Gröbner basis theory generalizes these ideas to multivariate polynomials which are neither
Euclidean rings nor PIDs. Since there is in general not a single generator for an ideal, Gröbner
basis theory comes up with the idea of dividing a polynomial with a set of polynomials, the set
of generators of the ideal, so that by successive divisions by the polynomials in this generating set
of the given polynomial, the remainder becomes zero. Clearly, every generating set of polynomials
need not possess this property. Those special generating sets that do possess this property (and
they exist!) are called Gröbner bases. In order for a division to be carried out in a sensible manner,
an order must be put on the ring of polynomials, so that the final remainder after every division
is strictly smaller than each of the divisors in the generating set. A natural order exists on the
ring of integers or on the polynomial ring 𝒬(𝑥); the degree of the polynomial decides the order in
𝒬(𝑥). However, even for polynomials in two variables there is no natural order a priori (is 𝑥2 + 𝑦
greater or smaller than 𝑥+ 𝑦2?). But one can, by hand as it were, put an order on such a ring by
saying 𝑥 ≫ 𝑦, where ≫ is an order, called the lexicographical order. We follow this type of order,
𝒟1 ≫ 𝒟2 ≫ 𝒟3 and ordering polynomials by considering their highest degree terms. It is possible
to put different orderings on a given ring which then produce different Gröbner bases. Clearly, a
Gröbner basis must have ‘small’ elements so that division is possible and every element of the ideal
when divided by the Gröbner basis elements leaves zero remainder, i.e., every element modulo the
Gröbner basis reduces to zero.

In the literature, there exists a well-known algorithm called the Buchberger algorithm, which
may be used to obtain the Gröbner basis for a given set of polynomials in the ring. So a Gröbner
basis of 𝒰 can be obtained from the generators 𝑢𝑖 given in Eq. (29) using this algorithm. It is
essentially again a generalization of the usual long division that we perform on univariate polyno-
mials. More conveniently, we prefer to use the well known application Mathematica. Mathematica
yields a 3-element Gröbner basis 𝒢 for 𝒰 :

𝒢 = {𝒟2
3 − 1,𝒟2

2 − 1,𝒟1 −𝒟2𝒟3}. (30)

One can easily check that all the 𝑢𝑖 of Eq. (29) are linear combinations of the polynomials in 𝒢
and hence 𝒢 generates 𝒰 . One also observes that the elements look ‘small’ in the order mentioned
above. However, one can satisfy oneself that 𝒢 is a Gröbner basis by using the standard methods
available in the literature. One method consists of computing the S-polynomials (see Appendix A)
for all the pairs of the Gröbner basis elements and checking whether these reduce to zero modulo
𝒢.

This Gröbner basis of the ideal 𝒰 is then used to obtain the generators for the module of
syzygies. Note that although the Gröbner basis depends on the order we choose among the 𝒟𝑘,
the module itself is independent of the order [3].

4.5 Generating set for the module of syzygies

The generating set for the module is obtained by further following the procedure in the literature [3,
29]. The details are given in Appendix A, specifically for our case. We obtain seven generators for
the module. These generators do not form a minimal set and there are relations between them;
in fact this method does not guarantee a minimum set of generators. These generators can be
expressed as linear combinations of 𝛼, 𝛽, 𝛾, 𝜁 and also in terms of 𝑋(1), 𝑋(2), 𝑋(3), 𝑋(4) given
below in Eq. (31). The importance in obtaining the seven generators is that the standard theorems
guarantee that these seven generators do in fact generate the required module. Therefore, from
this proven set of generators we can check whether a particular set is in fact a generating set. We
present several generating sets below.
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Alternatively, we may use a software package called Macaulay 2 which directly calculates the
generators given the Eqs. (26). Using Macaulay 2, we obtain six generators. Again, Macaulay’s
algorithm does not yield a minimal set; we can express the last two generators in terms of the first
four. Below we list this smaller set of four generators in the order 𝑋 = (𝑞1, 𝑞2, 𝑞3, 𝑞

′
1, 𝑞

′
2, 𝑞

′
3):

𝑋(1) =
(︀
𝒟2 −𝒟1𝒟3, 0, 1−𝒟2

3, 0,𝒟2𝒟3 −𝒟1,𝒟2
3 − 1

)︀
,

𝑋(2) = (−𝒟1,−𝒟2,−𝒟3,𝒟1,𝒟2,𝒟3) ,

𝑋(3) = (−1,−𝒟3,−𝒟1𝒟3, 1,𝒟1𝒟2,𝒟2) ,

𝑋(4) = (−𝒟1𝒟2,−1,−𝒟1,𝒟3, 1,𝒟2𝒟3) .

(31)

Note that the last three generators are just 𝑋(2) = 𝜁, 𝑋(3) = 𝛼, 𝑋(4) = 𝛽. An extra generator
𝑋(1) is needed to generate all the solutions.

Another set of generators which may be useful for further work is a Gröbner basis of a module.
The concept of a Gröbner basis of an ideal can be extended to that of a Gröbner basis of a
submodule of (𝐾[𝑥1, 𝑥2, . . . , 𝑥𝑛])

𝑚 where 𝐾 is a field, since a module over the polynomial ring can
be considered as generalization of an ideal in a polynomial ring. Just as in the case of an ideal,
a Gröbner basis for a module is a generating set with special properties. For the module under
consideration we obtain a Gröbner basis using Macaulay 2:

𝐺(1) = (−𝒟1,−𝒟2,−𝒟3,𝒟1,𝒟2,𝒟3) ,

𝐺(2) =
(︀
𝒟2 −𝒟1𝒟3, 0, 1−𝒟2

3, 0,𝒟2𝒟3 −𝒟1,𝒟2
3 − 1

)︀
,

𝐺(3) = (−𝒟1𝒟2,−1,−𝒟1,𝒟3, 1,𝒟2𝒟3) ,

𝐺(4) = (−1,−𝒟3,−𝒟1𝒟3, 1,𝒟1𝒟2,𝒟2) ,

𝐺(5) =
(︀
𝒟3(1−𝒟2

1),𝒟2
3 − 1, 0, 0, 1−𝒟2

1,𝒟1(𝒟2
3 − 1)

)︀
.

(32)

Note that in this Gröbner basis 𝐺(1) = 𝜁 = 𝑋(2), 𝐺(2) = 𝑋(1), 𝐺(3) = 𝛽 = 𝑋(4), 𝐺(4) = 𝛼 = 𝑋(3).
Only 𝐺(5) is the new generator.

Another set of generators are just 𝛼, 𝛽, 𝛾, and 𝜁. This can be checked using Macaulay 2,
or one can relate 𝛼, 𝛽, 𝛾, and 𝜁 to the generators 𝑋(𝐴), 𝐴 = 1, 2, 3, 4, by polynomial matrices.
In Appendix B, we express the seven generators we obtained following the literature, in terms of
𝛼, 𝛽, 𝛾, and 𝜁. Also we express 𝛼, 𝛽, 𝛾, and 𝜁 in terms of 𝑋(𝐴). This proves that all these sets
generate the required module of syzygies.

The question now arises as to which set of generators we should choose which facilitates further
analysis. The analysis is simplified if we choose a smaller number of generators. Also we would
prefer low degree polynomials to appear in the generators so as to avoid cancellation of leading
terms in the polynomials. By these two criteria we may choose 𝑋(𝐴) or 𝛼, 𝛽, 𝛾, 𝜁. However, 𝛼,
𝛽, 𝛾, 𝜁 possess the additional property that this set is left invariant under a cyclic permutation of
indices 1, 2, 3. It is found that this set is more convenient to use because of this symmetry.

4.6 Canceling optical bench motion noise

There are now twelve Doppler data streams which have to be combined in an appropriate manner
in order to cancel the noise from the laser as well as from the motion of the optical benches. As
in the previous case of canceling laser phase noise, here too, we keep the relevant terms only,
namely those terms containing laser phase noise and optical bench motion noise. We then have
the following expressions for the four data streams on spacecraft 1:
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𝑠1 = 𝒟3

[︁
𝑝′2 + 𝜈0n̂3 · Δ⃗′

2

]︁
−
[︁
𝑝1 − 𝜈0n̂3 · Δ⃗1

]︁
, (33)

𝑠′1 = 𝒟2

[︁
𝑝3 − 𝜈0n̂2 · Δ⃗3

]︁
−
[︁
𝑝′1 + 𝜈0n̂2 · Δ⃗′

1

]︁
, (34)

𝜏1 = 𝑝′1 − 𝑝1 + 2𝜈0n̂2 · Δ⃗′
1 + 𝜇1, (35)

𝜏 ′1 = 𝑝1 − 𝑝′1 − 2𝜈0n̂3 · Δ⃗1 + 𝜇1. (36)

The other eight data streams on spacecraft 2 and 3 are obtained by cyclic permutations of the
indices in the above equations. In order to simplify the derivation of the expressions canceling the
optical bench noises, we note that by subtracting Eq. (36) from Eq. (35), we can rewriting the
resulting expression (and those obtained from it by permutation of the spacecraft indices) in the
following form:

𝑧1 ≡ 1

2
(𝜏1 − 𝜏 ′1) = 𝜑′

1 − 𝜑1, (37)

where 𝜑′
1, 𝜑1 are defined as

𝜑′
1 ≡ 𝑝′1 + 𝜈0n̂2 · Δ⃗′

1,

𝜑1 ≡ 𝑝1 − 𝜈0n̂3 · Δ⃗1,
(38)

The importance in defining these combinations is that the expressions for the data streams 𝑠𝑖, 𝑠
′
𝑖

simplify into the following form:
𝑠1 = 𝒟3𝜑

′
2 − 𝜑1 ,

𝑠′1 = 𝒟2𝜑3 − 𝜑′
1 .

(39)

If we now combine the 𝑠𝑖, 𝑠
′
𝑖, and 𝑧𝑖 in the following way,

𝜂1 ≡ 𝑠1 −𝒟3𝑧2 = 𝒟3𝜑2 − 𝜑1 , 𝜂1′ ≡ 𝑠1′ + 𝑧1 = 𝒟2𝜑3 − 𝜑1 , (40)

𝜂2 ≡ 𝑠2 −𝒟1𝑧3 = 𝒟1𝜑3 − 𝜑2 , 𝜂2′ ≡ 𝑠2′ + 𝑧2 = 𝒟3𝜑1 − 𝜑2 , (41)

𝜂3 ≡ 𝑠3 −𝒟2𝑧1 = 𝒟2𝜑1 − 𝜑3 , 𝜂3′ ≡ 𝑠3′ + 𝑧3 = 𝒟1𝜑2 − 𝜑3 , (42)

we have just reduced the problem of canceling of six laser and six optical bench noises to the
equivalent problem of removing the three random processes 𝜑1, 𝜑2, and 𝜑3 from the six linear
combinations 𝜂𝑖, 𝜂′𝑖 of the one-way measurements 𝑠𝑖, 𝑠′𝑖, and 𝑧𝑖. By comparing the equations
above to Eq. (16) for the simpler configuration with only three lasers, analyzed in the previous
Sections 4.1 to 4.4, we see that they are identical in form.

4.7 Physical interpretation of the TDI combinations

It is important to notice that the four interferometric combinations (𝛼, 𝛽, 𝛾, 𝜁), which can be used
as a basis for generating the entire TDI space, are actually synthesized Sagnac interferometers.
This can be seen by rewriting the expression for 𝛼, for instance, in the following form,

𝛼 = [𝜂1′ +𝒟2𝜂3′ +𝒟1𝒟2𝜂2′ ]− [𝜂1 +𝒟3𝜂2 +𝒟1𝒟3𝜂3], (43)

and noticing that the first square bracket on the right-hand side of Eq. (43) contains a combination
of one-way measurements describing a light beam propagating clockwise around the array, while
the other terms in the second square-bracket give the equivalent of another beam propagating
counter-clockwise around the constellation.

Contrary to 𝛼, 𝛽, and 𝛾, 𝜁 can not be visualized as the difference (or interference) of two
synthesized beams. However, it should still be regarded as a Sagnac combination since there exists
a time-delay relationship between it and 𝛼, 𝛽, and 𝛾 [2]:

𝜁 −𝒟1𝒟2𝒟3𝜁 = 𝒟1𝛼−𝒟2𝒟3𝛼+𝒟2𝛽 −𝒟3𝒟1𝛽 +𝒟3𝛾 −𝒟1𝒟2𝛾. (44)
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As a consequence of the time-structure of this relationship, 𝜁 has been called the symmetrized
Sagnac combination.

By using the four generators, it is possible to construct several other interferometric combina-
tions, such as the unequal-arm Michelson (𝑋,𝑌, 𝑍), the Beacons (𝑃,𝑄,𝑅), the Monitors (𝐸,𝐹,𝐺),
and the Relays (𝑈, 𝑉,𝑊 ). Contrary to the Sagnac combinations, these only use four of the six data
combinations 𝜂𝑖, 𝜂

′
𝑖. For this reason they have obvious utility in the event of selected subsystem

failures [15].
These observables can be written in terms of the Sagnac observables (𝛼, 𝛽, 𝛾, 𝜁) in the following

way,
𝒟1𝑋 = 𝒟2𝒟3𝛼−𝒟2𝛽 −𝐷3𝛾 + 𝜁,

𝑃 = 𝜁 −𝒟1𝛼,

𝐸 = 𝛼−𝒟1𝜁,

𝑈 = 𝒟1𝛾 − 𝛽,

(45)

as it is easy to verify by substituting the expressions for the Sagnac combinations into the above
equations. Their physical interpretations are schematically shown in Figure 6.

2

2

 P,Q,R (          )

Beacon

 E,F,G (          )

Monitor

2

2

3

3

1

1 1

1

3

3

 X,Y,Z (         )

Unequal−arm Michelson

Relay

 U,V,W (           )

Figure 6: Schematic diagrams of the unequal-arm Michelson, Monitor, Beacon, and Relay combinations.
These TDI combinations rely only on four of the six one-way Doppler measurements, as illustrated here.

In the case of the combination 𝑋, in particular, by writing it in the following form [2],

𝑋 = [(𝜂1′ +𝒟2𝜂3) +𝒟2𝒟2(𝜂1 +𝒟3𝜂2)]− [(𝜂1 +𝒟3𝜂2′) +𝒟3𝒟3(𝜂1′ +𝒟2𝜂3)] , (46)

one can notice (as pointed out in [49] and [45]) that this combination can be visualized as the
difference of two sums of phase measurements, each corresponding to a specific light path from
a laser onboard spacecraft 1 having phase noise 𝜑1. The first square-bracket term in Eq. (46)
represents a synthesized light-beam transmitted from spacecraft 1 and made to bounce once at
spacecraft 2 and 3, respectively. The second square-bracket term instead corresponds to another
beam also originating from the same laser, experiencing the same overall delay as the first beam,
but bouncing off spacecraft 3 first and then spacecraft 2. When they are recombined they will
cancel the laser phase fluctuations exactly, having both experienced the same total delay (assuming
stationary spacecraft). The 𝑋 combinations should therefore be regarded as the response of a zero-
area Sagnac interferometer.
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5 Time-Delay Interferometry with Moving Spacecraft

The rotational motion of the LISA array results in a difference of the light travel times in the two
directions around a Sagnac circuit [44, 7]. Two time delays along each arm must be used, say 𝐿

′

𝑖

and 𝐿𝑖 for clockwise or counter-clockwise propagation as they enter in any of the TDI combinations.
Furthermore, since 𝐿𝑖 and 𝐿

′

𝑖 not only differ from one another but can be time dependent (they
“flex”), it was shown that the “first generation” TDI combinations do not completely cancel the
laser phase noise (at least with present laser stability requirements), which can enter at a level
above the secondary noises. For LISA, and assuming 𝐿̇𝑖 ≃ 10 m/s [21], the estimated magnitude of
the remaining frequency fluctuations from the laser can be about 30 times larger than the level set
by the secondary noise sources in the center of the frequency band. In order to solve this potential
problem, it has been shown that there exist new TDI combinations that are immune to first order
shearing (flexing, or constant rate of change of delay times). These combinations can be derived
by using the time-delay operators formalism introduced in the previous Section 4, although one
has to keep in mind that now these operators no longer commute [58].

In order to derive the new, “flex-free” TDI combinations we will start by taking specific combi-
nations of the one-way data entering in each of the expressions derived in the previous Section 4.
Note, however, that now the expressions for the 𝜂-measurements assume the following form

𝜂1 = 𝒟3𝜑2 − 𝜑1 , 𝜂1′ = 𝒟2′𝜑3 − 𝜑1 , (47)

𝜂2 = 𝒟1𝜑3 − 𝜑2 , 𝜂2′ = 𝒟3′𝜑1 − 𝜑2 , (48)

𝜂3 = 𝒟2𝜑1 − 𝜑3 , 𝜂3′ = 𝒟1′𝜑2 − 𝜑3 , (49)

where the 𝜑𝑖, 𝑖 = 1, 2, 3 measurements are as given in Eq. (38).

The new TDI combinations are chosen in such a way so as to retain only one of the three noises
𝜑𝑖, 𝑖 = 1, 2, 3, if possible. In this way we can then implement an iterative procedure based on
the use of these basic combinations and of time-delay operators, to cancel the laser noises after
dropping terms that are quadratic in 𝐿̇/𝑐 or linear in the accelerations. This iterative time-delay
method, to first order in the velocity, is illustrated abstractly as follows. Given a function of time
Ψ = Ψ(𝑡), time delay by 𝐿𝑖 is now denoted either with the standard comma notation [2] or by
applying the delay operator 𝒟𝑖 introduced in the previous Section 4,

𝒟𝑖Ψ = Ψ,𝑖 ≡ Ψ(𝑡− 𝐿𝑖(𝑡)) . (50)

We then impose a second time delay 𝐿𝑗(𝑡):

𝒟𝑗𝒟𝑖Ψ = Ψ;𝑖𝑗 ≡ Ψ(𝑡− 𝐿𝑗(𝑡)− 𝐿𝑖(𝑡− 𝐿𝑗(𝑡)))

≃ Ψ(𝑡− 𝐿𝑗(𝑡)− 𝐿𝑖(𝑡) + 𝐿̇𝑖(𝑡)𝐿𝑗)

≃ Ψ,𝑖𝑗 + Ψ̇,𝑖𝑗𝐿̇𝑖𝐿𝑗 . (51)

A third time delay 𝐿𝑘(𝑡) gives

𝒟𝑘𝒟𝑗𝒟𝑖Ψ = Ψ;𝑖𝑗𝑘 = Ψ(𝑡− 𝐿𝑘(𝑡)− 𝐿𝑗(𝑡− 𝐿𝑘(𝑡))− 𝐿𝑖(𝑡− 𝐿𝑘(𝑡)− 𝐿𝑗(𝑡− 𝐿𝑘(𝑡))))

≃ Ψ,𝑖𝑗𝑘 + Ψ̇,𝑖𝑗𝑘

[︁
𝐿̇𝑖(𝐿𝑗 + 𝐿𝑘) + 𝐿̇𝑗𝐿𝑘

]︁
, (52)

and so on, recursively; each delay generates a first-order correction proportional to its rate of
change times the sum of all delays coming after it in the subscripts. Commas have now been
replaced with semicolons [45], to remind us that we consider moving arrays. When the sum of
these corrections to the terms of a data combination vanishes, the combination is called flex-free.
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Also, note that each delay operator 𝒟𝑖 has a unique inverse 𝐷−1
𝑖 , whose expression can be

derived by requiring that 𝐷−1
𝑖 𝒟𝑖 = 𝐼, and neglecting quadratic and higher order velocity terms.

Its action on a time series Ψ(𝑡) is

𝐷−1
𝑖 Ψ(𝑡) ≡ Ψ(𝑡+ 𝐿𝑖(𝑡+ 𝐿𝑖)) . (53)

Note that this is not like an advance operator one might expect, since it advances not by 𝐿𝑖(𝑡) but
rather 𝐿𝑖(𝑡+ 𝐿𝑖).

5.1 The unequal-arm Michelson

The unequal-arm Michelson combination relies on the four measurements 𝜂1, 𝜂1′ , 𝜂2′ , and 𝜂3.
Note that the two combinations 𝜂1 + 𝜂2′,3, 𝜂1′ + 𝜂3,2′ represent the two synthesized two-way data
measured onboard spacecraft 1, and can be written in the following form (see Eqs. (47), (48), and
(49) for deriving the following synthesized two-way measurements)

𝜂1 + 𝜂2′,3 = (𝒟3𝒟3′ − 𝐼)𝜑1 , (54)

𝜂1′ + 𝜂3,2′ = (𝒟2′𝒟2 − 𝐼)𝜑1 , (55)

where 𝐼 is the identity operator. Since in the stationary case any pairs of these operators commute,
i.e., 𝒟𝑖𝒟𝑗′ − 𝒟𝑗′𝒟𝑖 = 0, from Eqs. (54) and (55) it is easy to derive the following expression for
the unequal-arm interferometric combination 𝑋 which eliminates 𝜑1:

𝑋 = [𝒟2′𝒟2 − 𝐼] (𝜂1 + 𝜂2′,3)− [(𝒟3𝒟3′ − 𝐼)] (𝜂1′ + 𝜂3,2′) . (56)

If, on the other hand, the time-delays depend on time, the expression of the unequal-arm Michelson
combination above no longer cancels 𝜑1. In order to derive the new expression for the unequal-arm
interferometer that accounts for “flexing”, let us first consider the following two combinations of
the one-way measurements entering into the 𝑋 observable given in Eq. (56):

[(𝜂1′ + 𝜂3;2′) + (𝜂1 + 𝜂2′;3);22′ ] = [𝐷2′𝐷2𝐷3𝐷3′ − 𝐼]𝜑1 , (57)

[(𝜂1 + 𝜂2′;3) + (𝜂1′ + 𝜂3;2′);3′3] = [𝐷3𝐷3′𝐷2′𝐷2 − 𝐼]𝜑1 . (58)

Using Eqs. (57) and (58), we can use the delay technique again to finally derive the following
expression for the new unequal-arm Michelson combination 𝑋1 that accounts for the flexing effect:

𝑋1 = [𝐷2′𝐷2𝐷3𝐷3′ − 𝐼] [(𝜂1 + 𝜂2′;3′) + (𝜂1′ + 𝜂3;2′);3′3]

− [𝐷3𝐷3′𝐷2′𝐷2 − 𝐼] [(𝜂1′ + 𝜂3;2′) + (𝜂1 + 𝜂2′;3);22′ ] . (59)

As usual, 𝑋2 and 𝑋3 are obtained by cyclic permutation of the spacecraft indices. This expression
is readily shown to be laser-noise-free to first order of spacecraft separation velocities 𝐿̇𝑖: it is
“flex-free”.

5.2 The Sagnac combinations

In the above Section 5.1, we have used the same symbol 𝑋 for the unequal-arm Michelson com-
bination for both the rotating (i.e., constant delay times) and stationary cases. This emphasizes
that, for this TDI combination (and, as we will see below, also for all the combinations including
only four links) the forms of the equations do not change going from systems at rest to the ro-
tating case. One needs only distinguish between the time-of-flight variations in the clockwise and
counter-clockwise senses (primed and unprimed delays).
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In the case of the Sagnac variables (𝛼, 𝛽, 𝛾, 𝜁), however, this is not the case as it is easy to
understand on simple physical grounds. In the case of 𝛼 for instance, light originating from
spacecraft 1 is simultaneously sent around the array on clockwise and counter-clockwise loops, and
the two returning beams are then recombined. If the array is rotating, the two beams experience
a different delay (the Sagnac effect), preventing the noise 𝜑1 from canceling in the 𝛼 combination.

In order to find the solution to this problem let us first rewrite 𝛼 in such a way to explicitly
emphasize what it does: attempts to remove the same fluctuations affecting two beams that have
been made to propagated clockwise and counter-clockwise around the array,

𝛼 = [𝜂1′ +𝒟2′𝜂3′ +𝒟1′𝒟2′𝜂2′ ]− [𝜂1 +𝒟3𝜂2 +𝒟1𝒟3𝜂2] , (60)

where we have accounted for clockwise and counter-clockwise light delays. It is straight-forward to
verify that this combination no longer cancels the laser and optical bench noises. If, however, we
expand the two terms inside the square-brackets on the right-hand side of Eq. (60) we find that
they are equal to

[𝜂1′ +𝒟2′𝜂3′ +𝒟1′𝒟2′𝜂2′ ] = [𝒟2′𝒟1′𝒟3′ − 𝐼]𝜑1 (61)

[𝜂1 +𝒟3𝜂2 +𝒟1𝒟3𝜂2] = [𝒟3𝒟1𝒟2 − 𝐼]𝜑1 . (62)

If we now apply our iterative scheme to the combinations given in Eq. (62) we finally get the
expression for the Sagnac combination 𝛼1 that is unaffected by laser noise in presence of rotation,

𝛼1 = [𝒟3𝒟1𝒟2 − 𝐼] [𝜂1′ +𝒟2′𝜂3′ +𝒟1′𝒟2′𝜂2′ ]− [𝒟2′𝒟1′𝒟3′ − 𝐼] [𝜂1 +𝒟3𝜂2 +𝒟1𝒟3𝜂2] . (63)

If the delay-times are also time-dependent, we find that the residual laser noise remaining into the
combination 𝛼1 is actually equal to

𝜑̇1,1231′2′3′

[︁(︁
𝐿̇1 + 𝐿̇2 + 𝐿̇3

)︁(︁
𝐿

′

1 + 𝐿
′

2 + 𝐿
′

3

)︁
−
(︁
𝐿̇

′

1 + 𝐿̇
′

2 + 𝐿̇
′

3

)︁
(𝐿1 + 𝐿2 + 𝐿3)

]︁
. (64)

Fortunately, although first order in the relative velocities, the residual is small, as it involves the
difference of the clockwise and counter-clockwise rates of change of the propagation delays on the
same circuit. For LISA, the remaining laser phase noises in 𝛼𝑖, 𝑖 = 1, 2, 3, are several orders of
magnitude below the secondary noises.

In the case of 𝜁, however, the rotation of the array breaks the symmetry and therefore its
uniqueness. However, there still exist three generalized TDI laser-noise-free data combinations
that have properties very similar to 𝜁, and which can be used for the same scientific purposes [54].
These combinations, which we call (𝜁1, 𝜁2, 𝜁3), can be derived by applying again our time-delay
operator approach.

Let us consider the following combination of the 𝜂𝑖, 𝜂𝑖′ measurements, each being delayed only
once [2]:

𝜂3,3 − 𝜂3′,3 + 𝜂1,1′ = [𝐷3𝐷2 −𝐷1′ ]𝜑1 , (65)

𝜂1′,1 − 𝜂2,2′ + 𝜂2′,2′ = [𝐷3′𝐷2′ −𝐷1]𝜑1 , (66)

where we have used the commutativity property of the delay operators in order to cancel the 𝜑2

and 𝜑3 terms. Since both sides of the two equations above contain only the 𝜑1 noise, 𝜁1 is found
by the following expression:

𝜁1 = [𝐷3′𝐷2′ −𝐷1] (𝜂3,3 − 𝜂3′,3 + 𝜂1,1′)− [𝐷2𝐷3 −𝐷1′ ] (𝜂1′,1 − 𝜂2,2′ + 𝜂2′,2′) . (67)

If the light-times in the arms are equal in the clockwise and counter-clockwise senses (e.g., no
rotation) there is no distinction between primed and unprimed delay times. In this case, 𝜁1 is
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related to our original symmetric Sagnac 𝜁 by 𝜁1 = 𝜁,23 − 𝜁,1. Thusm for the LISA case (arm
length difference < 1%), the SNR of 𝜁1 will be the same as the SNR of 𝜁.

If the delay-times also change with time, the perfect cancellation of the laser noises is no longer
achieved in the (𝜁1, 𝜁2, 𝜁3) combinations. However, it has been shown in [58] that the magnitude of
the residual laser noises in these combinations are significantly smaller than the LISA secondary
system noises, making their effects entirely negligible.

The expressions for the Monitor, Beacon, and Relay combinations, accounting for the rotation
and flexing of the LISA array, have been derived in the literature [58] by applying the time-delay
iterative procedure highlighted in this section. The interested reader is referred to that paper for
details.

5.3 Algebraic approach to second-generation TDI

In this subsection we present a mathematical formulation of the “second-generation” TDI, which
generalizes the one presented in Section 4 for stationary LISA. Although a full solution as in the
case of stationary LISA seems difficult to obtain, significant progress can be made.

There is, however, a case in between the 1st and 2nd generation TDI, called modified first-
generation TDI, in which only the Sagnac effect is considered [7, 44]. In this case the up-down
links are unequal while the delay-times remain constant. The mathematical formulation of Section 4
can be extended in a straight-forward way where now the six time-delays 𝒟𝑖 and 𝒟𝑖′ must be taken
into account. The polynomial ring still remains commutative but it is now in six variables. The
corresponding module of syzygies can be constructed over this larger polynomial ring [41].

When the arms are allowed to flex, that is, the operators themselves are functions of time, the
operators no longer commute. One must then resort to non-commutative algebra. We outline the
procedure below. Since lot of the discussion has been covered in the previous subsections we just
describe the algebraic formulation. The equation Eq. (26) generalizes in two ways: (1) we need to
consider now six operators 𝒟𝑖 and 𝒟𝑖′ , and (2) we need to take into account the non-commutativity
of the operators – the order of the operators is important. Accordingly Eq. (26) generalizes to,

𝑞1 + 𝑞′1 − 𝑞′2𝒟3′ − 𝑞3𝒟2 = 0 ,

𝑞2 + 𝑞′2 − 𝑞′3𝒟1′ − 𝑞1𝒟3 = 0 ,

𝑞3 + 𝑞′3 − 𝑞′1𝒟2′ − 𝑞2𝒟1 = 0 .

(68)

Eliminating 𝑞1 and 𝑞2 from the three Eqs. (68) while respecting the order of the variables we
get:

𝑞3(1−𝒟2𝒟3𝒟1) + 𝑞′1(𝒟2′ −𝒟3𝒟1) + 𝑞′2(𝒟3′𝒟3 − 1)𝒟1 + 𝑞′3(𝒟1′𝒟1 − 1) = 0 . (69)

The polynomial ring 𝒬(𝒟𝑖,𝒟𝑖′) ≡ 𝒦, is non-commutative, of polynomials in the six variables
𝒟𝑖,𝒟𝑖′ and coefficients in the rational field 𝒬. The polynomial vectors (𝑞𝑖, 𝑞

′
𝑖) satisfying the above

equations form a left module over 𝒦. A left module means that one can multiply a solution (𝑞𝑖, 𝑞
′
𝑖)

from the left by any polynomial in 𝒦, then it is also a solution to the Eqs. (68) and, therefore, in
the module – the module of noise-free TDI observables. For details see [9].

When the operators do not commute, the algebraic problem is far more complex. If we fol-
low on the lines of the commutative case, the first step would be to find a Gröbner basis for
the ideal generated by the coefficients appearing in Eq. (69), namely, the set of polynomials
{1 − 𝒟2𝒟3𝒟1,𝒟2′ − 𝒟3𝒟1, (𝒟3′𝒟3 − 1)𝒟1,𝒟1′𝒟1 − 1}. Although we may be able to apply non-
commutative Gröbner basis methods, the general solution seems quite difficult. However, simpli-
fications are possible because of the inherent symmetries in the problem and so the ring 𝒦 can be
quotiented by a certain ideal, simplifying the algebraic problem. One then needs to deal with a
‘smaller’ ring, which may be easier to deal with. We describe below how this can achieved with
the help of certain commutators.
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In general, a commutator of two operators 𝑋,𝑌 is defined as the operator [𝑋,𝑌 ] ≡ 𝑋𝑌 −𝑌 𝑋.
In our situation𝑋 and 𝑌 are strings of operators built up of the operators𝐷1, 𝐷2, 𝐷3, 𝐷1′ , 𝐷2′ , 𝐷3′ .
For example, in the Sagnac combination the following commutator [12] occurs:

[𝐷1𝐷2𝐷3, 𝐷1′𝐷2′𝐷3′ ] ≡ 𝐷1𝐷2𝐷3𝐷1′𝐷2′𝐷3′ −𝐷1′𝐷2′𝐷3′𝐷1𝐷2𝐷3 . (70)

Here 𝑋 = 𝐷1𝐷2𝐷3 and 𝑌 = 𝐷1′𝐷2′𝐷3′ . This commutator leads to the residual noise term given
in Eq. (64) and which happens to be small. In the context of the reasonably optimized model of

LISA say given in [12], the residual noise term is small. For this model, we have 𝐿̈ ∼ 10−6 m/s
2

and thus, even if one considers say 20 successive optical paths, that is, about Δ𝑡 ∼ 330 s of light
travel time, Δ𝑡2𝐿̈ ∼ 0.1 m. This is well below few meters and thus can be neglected in the residual
laser noise computation. Moreover, 𝐿̇2 terms (and higher order) can be dropped since they are of
the order of . 10−15 (they come with a factor 1/𝑐2), which is much smaller than 1 part in 108,
which is the level at which the laser frequency noise must be canceled. Thus, we keep terms only
to the first degree in 𝐿̇ and also neglect higher time derivative terms in 𝐿.

The result for the Sagnac combination can be generalized. In order to simplify notation we
write 𝑥𝑘 or 𝑦𝑚 for the time-delay operators, where 𝑘,𝑚 = 1, 2, . . . , 𝑛 and 𝑛 ≥ 2, that is, 𝑥𝑘 or 𝑦𝑚
are any of the operators 𝐷1, 𝐷2, 𝐷3, 𝐷1′ , 𝐷2′ , 𝐷3′ . Then a commutator is:

[𝑥1𝑥2 . . . 𝑥𝑛, 𝑦1𝑦2 . . . 𝑦𝑛] = 𝑥1𝑥2 . . . 𝑥𝑛𝑦1𝑦2 . . . 𝑦𝑛 − 𝑦1𝑦2 . . . 𝑦𝑛𝑥1𝑥2 . . . 𝑥𝑛 . (71)

Up to the order of approximation we are working in we compute the effect of the commutator on
the phase 𝜑(𝑡):

[𝑥1𝑥2 . . . 𝑥𝑛, 𝑦1𝑦2 . . . 𝑦𝑛] 𝜑(𝑡)

=

(︃
𝑛∑︁

𝑘=1

𝐿𝑥𝑘

𝑛∑︁
𝑚=1

𝐿̇𝑦𝑚
−

𝑛∑︁
𝑚=1

𝐿𝑦𝑚

𝑛∑︁
𝑘=1

𝐿̇𝑥𝑘

)︃
𝜑̇

(︃
𝑡−

𝑛∑︁
𝑘=1

𝐿𝑥𝑘
−

𝑛∑︁
𝑚=1

𝐿𝑦𝑚

)︃
. (72)

Note that the LHS acts on 𝜑(𝑡), while the right-hand side multiplies 𝜑̇ at an appropriately
delayed time. For the Sagnac combination this is readily seen from Eq. (64). Also the notation on
the RHS is obvious: if for some 𝑘, we have, 𝑥𝑘 = 𝒟2′ say, then 𝐿𝑥𝑘

= 𝐿′
2 and so on; the same holds

for 𝑦𝑚 for a given 𝑚. From this equation it immediately follows that if the operators 𝑦1, 𝑦2, . . . , 𝑦𝑛
are a permutation of the operators 𝑥1, 𝑥2, . . . , 𝑥𝑛, then the commutator,

[𝑥1𝑥2 . . . 𝑥𝑛, 𝑦1𝑦2 . . . 𝑦𝑛] = 0 , (73)

up to the order we are working in. We can understand this by the following argument. If 𝑦1 . . . 𝑦𝑛
is a permutation of 𝑥1 . . . 𝑥𝑛 then both polynomials trace the same links, except that the nodes
(spacecraft) of the links are taken in different orders. If the armlengths were constant, the path-
lengths would be identical and the commutator would be zero. But here, by neglecting 𝐿̈ terms
and those of higher orders, we have effectively assumed that 𝐿̇s are constant, so the increments
also cancel out, resulting in a vanishing commutator.

These vanishing commutators (in the approximation we are working in) can be used to simplify
the algebra. We first construct the ideal 𝒰 generated by the commutators such as those given by
Eq. (73). Then we quotient the ring 𝒦 by 𝒰 , thereby constructing a smaller ring 𝒦/𝒰 ≡ 𝒦̄. This
ring is smaller because it has fewer distinct terms in a polynomial. Although, this reduces the
complexity of the problem, a full solution to the TDI problem is still lacking.

In the following Section 5.4, we will consider the case where we have only two arms of LISA in
operation, that is one arm is nonfunctional. The algebraic problem simplifies considerably and it
turns out to be tractable.
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5.4 Solutions with one arm nonfunctional

We must envisage the possibility that not all optical links of LISA can be operating at all times
for various reasons like technical failure for instance or even the operating costs. An analysis
covering the scientific capabilities achievable by LISA in the eventuality of loosing one and two
links has been discussed in [62]. Here we obtain the TDI combinations when one entire arm
becomes dysfunctional. See [11] for a full discussion. The results of this section are directly usable
by the eLISA/NGO mission.

We arbitrarily choose the non-functional arm to be the one connecting S/C 2 and S/C 3.
This means from our labeling that the polynomials are now restricted to only the four operators
𝒟2,𝒟2′ ,𝒟3,𝒟3′ and we can set the polynomials 𝑞2 = 𝑞′3 = 0. This simplifies the Eqs. (68) consid-
erably because the last two equations reduce to 𝑞′2 = 𝑞1𝒟3 and 𝑞3 = 𝑞′1𝒟2′ . Substituting these in
the first equation gives just one equation:

𝑞1(1−𝒟3𝒟3′) + 𝑞′1(1−𝒟2′𝒟2) = 0 , (74)

If we can solve this equation for 𝑞1, 𝑞
′
1 then the full polynomial vector can be obtained because

𝑞′2 = 𝑞1𝒟3 and 𝑞3 = 𝑞′1𝒟2′ . It is clear that solutions are of the Michelson type. Also notice that the
coefficients of this equation has the operators 𝑎 = 𝒟3𝒟3′ and 𝑏 = 𝒟2′𝒟2 occurring in them. So the
solutions 𝑞1, 𝑞

′
1 too will be in terms of 𝑎 and 𝑏 only. Physically, the operators 𝑎 and 𝑏 correspond

to round trips.
One solution has already been given in the literature [1, 61]. This solution in terms of 𝑎, 𝑏 is:

𝑞1 = 1− 𝑏− 𝑏𝑎+ 𝑎𝑏2 ,

𝑞′1 = −(1− 𝑎− 𝑎𝑏+ 𝑏𝑎2) . (75)

Writing,
Δ = 𝑞1(1− 𝑎) + 𝑞′1(1− 𝑏) , (76)

we get for Eq. (75), Δ = [𝑏𝑎, 𝑎𝑏], which is a commutator that vanishes since 𝑎𝑏 is a permutation of
𝑏𝑎. Thus, it is an element of 𝒰 and Eq. (75) is a solution (over the quotient ring).

What we would like to emphasize is that there are more solutions of this type – in fact there are
infinite number of such solutions. The solutions are based on vanishing of commutators. In [11]
such commutators are enumerated and for each such commutator there is a corresponding solution.
Further an algorithm is given to construct such solutions.

We briefly mention some results given in [11]. We start with the solutions 𝑞1, 𝑞
′
1 of Eq. (75).

Note that these are of degree 3 in 𝑎 and 𝑏. The commutator corresponding to this solution is
Δ = [𝑏𝑎, 𝑎𝑏] = 𝑏𝑎2𝑏− 𝑎𝑏2𝑎 and is of degree 4. There is only one such commutator at degree 4 and
therefore one solution. The next higher degree solutions are found when the commutators have
degree 8. The solutions 𝑞1, 𝑞

′
1 are of degree 7. There are three such commutators at degree 8. We

list the solutions and the commutators below. One solution is:

𝑞1 = 1− 𝑏− 𝑏𝑎+ 𝑎𝑏2 − 𝑏𝑎2𝑏+ 𝑎𝑏2𝑎𝑏+ 𝑎𝑏2𝑎𝑏𝑎− 𝑏𝑎2𝑏𝑎𝑏2 ,

𝑞′1 = −(1− 𝑎− 𝑎𝑏+ 𝑏𝑎2 − 𝑎𝑏2𝑎+ 𝑏𝑎2𝑏𝑎+ 𝑏𝑎2𝑏𝑎𝑏− 𝑎𝑏2𝑎𝑏𝑎2) , (77)

whose commutator is:
Δ = [𝑎𝑏2𝑎, 𝑏𝑎2𝑏] . (78)

The second solution is:

𝑞1 = 1 + 𝑎− 𝑏2 − 𝑏2𝑎− 𝑏2𝑎2 − 𝑏2𝑎3 + 𝑎2𝑏4 + 𝑎2𝑏4𝑎

= (1− 𝑏2 − 𝑏2𝑎2 + 𝑎2𝑏4)(1 + 𝑎) ,

𝑞′1 = −(1 + 𝑏− 𝑎2 − 𝑎2𝑏− 𝑎2𝑏2 − 𝑎2𝑏3 + 𝑏2𝑎4 + 𝑏2𝑎4𝑏)

= −(1− 𝑎2 − 𝑎2𝑏2 + 𝑏2𝑎4)(1 + 𝑏) , (79)
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whose commutator is Δ = [𝑏2𝑎2, 𝑎2𝑏2].
The third solution corresponds to the commutator [𝑏𝑎𝑏𝑎, 𝑎𝑏𝑎𝑏]. This solution is given by:

𝑞1 = 1− 𝑏+ 𝑎𝑏− 𝑏𝑎𝑏− 𝑏𝑎𝑏𝑎+ 𝑎𝑏𝑎𝑏2 − 𝑏𝑎𝑏𝑎2𝑏+ 𝑎𝑏𝑎𝑏2𝑎𝑏 ,

𝑞′1 = −(1− 𝑎+ 𝑏𝑎− 𝑎𝑏𝑎− 𝑎𝑏𝑎𝑏+ 𝑏𝑎𝑏𝑎2 − 𝑎𝑏𝑎𝑏2𝑎+ 𝑏𝑎𝑏𝑎2𝑏𝑎) . (80)

Higher degree solutions can be constructed. An iterative algorithm has been described in [11]
for this purpose. The degrees of the commutators are in multiples of 4. If we call the degree of
the commutators as 4𝑛 where 𝑛 = 1, 2, . . ., then the solutions 𝑞1, 𝑞

′
1 are of degree 4𝑛 − 1. The

cases mentioned above, correspond to 𝑛 = 1 and 𝑛 = 2. The general formula for the number of
commutators of degree 4𝑛 is 2𝑛−1𝐶𝑛−1. So at 𝑛 = 3 we have 10 commutators and so as many
solutions 𝑞1, 𝑞

′
1 of degree 11.

These are the degrees of polynomials of 𝑞1, 𝑞
′
1 in the operators 𝑎, 𝑏. But for the full polynomial

vector, which has 𝑞′2 and 𝑞3, we need to go over to the operators expressed in terms of 𝒟𝑖,𝒟𝑖′ .
Then the degree of each of the 𝑞1, 𝑞

′
1 is doubled to 8𝑛−2, while 𝑞′2 and 𝑞3 are each of degree 8𝑛−1.

Thus, for a general value of 𝑛, the solution contains polynomials of maximum degree 8𝑛− 1 in the
time-delay operators.

From the mathematical point of view there is an infinite family of solutions. Note that no
claim is made on exhaustive listing of solutions. However the family of solutions is sufficiently rich,
because we can form linear combinations of these solutions and they also are solutions.

From the physical point of view, since terms in 𝐿̈ and 𝐿̇2 and higher orders have been neglected,
a limit on the degree of the polynomial solutions arises. That is up to certain degree of the
polynomials, we can safely assume the commutators to vanish. But as the degree of the polynomials
increases it is not possible to neglect these higher order terms any longer and then such a limit
becomes important. The limit is essentially set by 𝐿̈. We now investigate this limit and make
a very rough estimate of it. As mentioned earlier, the LISA model in [12] gives 𝐿̈ ∼ 10−6 m/s

2
.

From 𝐿̈ we compute the error in 𝐿, namely, Δ𝐿 ∼ 1
2Δ𝑡2𝐿̈. If we allow the error to be no more

than say 10 meters, then we find Δ𝑡 ∼ 4500 s. Since each time-delay is about 16.7 s for LISA, the
number of successive time-delays is about 270. This is the maximum degree of the polynomials.
This means one can go up to 𝑛 . 30. If we set the limit more stringently at Δ𝐿 ∼ 1 m, then
the highest degree of the polynomial reduces to about 80, which means one can go up to 𝑛 = 10.
Thus, there are a large number of TDI observables available to do the physics.

Some remarks are in order:

∙ A geometric combinatorial approach was adopted in [61] where several solutions were pre-
sented. Our approach is algebraic where the operations are algebraic operations on strings of
operators. The algebraic approach has the advantage of easy manipulation of data streams,
although some geometrical insight could be at a premium.

∙ Another important aspect is the GW response of such TDI observables. The GW response to
a TDI observable may be calculated in the simplest way by assuming equal arms (the possible
differences in lengths would be sensitive to frequencies outside the LISA bandwidth). This
leads in the Fourier domain to polynomials in the same phase factor from which the signal
to noise ratio can be found. A comprehensive and generic treatment of the responses of
second-generation TDI observables can be found in [30].
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6 Optimal LISA Sensitivity

All the above interferometric combinations have been shown to individually have rather different
sensitivities [15], as a consequence of their different responses to gravitational radiation and system
noises. Since LISA has the capability of simultaneously observing a gravitational-wave signal with
many different interferometric combinations (all having different antenna patterns and noises), we
should no longer regard LISA as a single detector system but rather as an array of gravitational-
wave detectors working in coincidence. This suggests that the LISA sensitivity could be improved
by optimally combining elements of the TDI space.

Before proceeding with this idea, however, let us consider again the so-called “second-generation”
TDI Sagnac observables: (𝛼1, 𝛼2, 𝛼3). The expressions of the gravitational-wave signal and the
secondary noise sources entering into 𝛼1 will in general be different from those entering into 𝛼, the
corresponding Sagnac observable derived under the assumption of a stationary LISA array [2, 15].
However, the other remaining, secondary noises in LISA are so much smaller, and the rotation
and systematic velocities in LISA are so intrinsically small, that index permutation may still be
done for them [58]. It is therefore easy to derive the following relationship between the signal and
secondary noises in 𝛼1, and those entering into the stationary TDI combination 𝛼 [45, 58],

𝛼1(𝑡) ≃ 𝛼(𝑡)− 𝛼(𝑡− 𝐿1 − 𝐿2 − 𝐿3), (81)

where 𝐿𝑖, 𝑖 = 1, 2, 3, are the unequal-arm lengths of the stationary LISA array. Equation (81)
implies that any data analysis procedure and algorithm that will be implemented for the second-
generation TDI combinations can actually be derived by considering the corresponding “first-
generation” TDI combinations. For this reason, from now on we will focus our attention on the
gravitational-wave responses of the first-generation TDI observables (𝛼, 𝛽, 𝛾, 𝜁).

As a consequence of these considerations, we can still regard (𝛼, 𝛽, 𝛾, 𝜁) as the generators of
the TDI space, and write the most general expression for an element of the TDI space, 𝜂(𝑓), as a

linear combination of the Fourier transforms of the four generators (̃︀𝛼, ̃︀𝛽, ̃︀𝛾, ̃︀𝜁),
𝜂(𝑓) ≡ 𝑎1(𝑓, 𝜆⃗) ̃︀𝛼(𝑓) + 𝑎2(𝑓, 𝜆⃗) ̃︀𝛽(𝑓) + 𝑎3(𝑓, 𝜆⃗) ̃︀𝛾(𝑓) + 𝑎4(𝑓, 𝜆⃗) ̃︀𝜁(𝑓), (82)

where the {𝑎𝑖(𝑓, 𝜆⃗)}4𝑖=1 are arbitrary complex functions of the Fourier frequency 𝑓 , and of a

vector 𝜆⃗ containing parameters characterizing the gravitational-wave signal (source location in the
sky, waveform parameters, etc.) and the noises affecting the four responses (noise levels, their
correlations, etc.). For a given choice of the four functions {𝑎𝑖}4𝑖=1, 𝜂 gives an element of the
functional space of interferometric combinations generated by (𝛼, 𝛽, 𝛾, 𝜁). Our goal is therefore
to identify, for a given gravitational-wave signal, the four functions {𝑎𝑖}4𝑖=1 that maximize the
signal-to-noise ratio SNR2

𝜂 of the combination 𝜂,

SNR2
𝜂 =

∫︁ 𝑓u

𝑓l

⃒⃒⃒
𝑎1 ̃︀𝛼s + 𝑎2 ̃︀𝛽s + 𝑎3 ̃︀𝛾s + 𝑎4̃︀𝜁s ⃒⃒⃒2⟨⃒⃒⃒
𝑎1 ̃︀𝛼n + 𝑎2 ̃︀𝛽n + 𝑎3 ̃︀𝛾n + 𝑎4 ̃︀𝜁n ⃒⃒⃒2⟩ 𝑑𝑓. (83)

In Eq. (83) the subscripts s and n refer to the signal and the noise parts of (̃︀𝛼, ̃︀𝛽, ̃︀𝛾, ̃︀𝜁), respec-
tively, the angle brackets represent noise ensemble averages, and the interval of integration (𝑓l, 𝑓u)
corresponds to the frequency band accessible by LISA.

Before proceeding with the maximization of the SNR2
𝜂 we may notice from Eq. (44) that the

Fourier transform of the totally symmetric Sagnac combination, ̃︀𝜁, multiplied by the transfer
function 1−𝑒2𝜋𝑖𝑓(𝐿1+𝐿2+𝐿3) can be written as a linear combination of the Fourier transforms of the
remaining three generators (̃︀𝛼, ̃︀𝛽, ̃︀𝛾). Since the signal-to-noise ratio of 𝜂 and (1−𝑒2𝜋𝑖𝑓(𝐿1+𝐿2+𝐿3))𝜂
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are equal, we may conclude that the optimization of the signal-to-noise ratio of 𝜂 can be performed
only on the three observables 𝛼, 𝛽, 𝛾. This implies the following redefined expression for SNR2

𝜂:

SNR2
𝜂 =

∫︁ 𝑓u

𝑓l

⃒⃒⃒
𝑎1 ̃︀𝛼s + 𝑎2 ̃︀𝛽s + 𝑎3 ̃︀𝛾s ⃒⃒⃒2⟨⃒⃒⃒
𝑎1 ̃︀𝛼n + 𝑎2 ̃︀𝛽n + 𝑎3 ̃︀𝛾n ⃒⃒⃒2⟩ 𝑑𝑓. (84)

The SNR2
𝜂 can be regarded as a functional over the space of the three complex functions {𝑎𝑖}3𝑖=1,

and the particular set of complex functions that extremize it can of course be derived by solving
the associated set of Euler–Lagrange equations.

In order to make the derivation of the optimal SNR easier, let us first denote by x(s) and x(n)

the two vectors of the signals (̃︀𝛼s, ̃︀𝛽s, ̃︀𝛾s) and the noises (̃︀𝛼n, ̃︀𝛽n, ̃︀𝛾n), respectively. Let us also define
a to be the vector of the three functions {𝑎𝑖}3𝑖=1, and denote with C the Hermitian, non-singular,
correlation matrix of the vector random process xn,

(C)𝑟𝑡 ≡
⟨
x(𝑛)
𝑟 x

(𝑛)*
𝑡

⟩
. (85)

If we finally define (A)𝑖𝑗 to be the components of the Hermitian matrix x
(s)
𝑖 x

(s)*
𝑗 , we can rewrite

SNR2
𝜂 in the following form,

SNR2
𝜂 =

∫︁ 𝑓u

𝑓l

a𝑖A𝑖𝑗a
*
𝑗

a𝑟C𝑟𝑡a*𝑡
𝑑𝑓, (86)

where we have adopted the usual convention of summation over repeated indices. Since the noise
correlation matrix C is non-singular, and the integrand is positive definite or null, the stationary
values of the signal-to-noise ratio will be attained at the stationary values of the integrand, which
are given by solving the following set of equations (and their complex conjugated expressions):

𝜕

𝜕a𝑘

[︂
a𝑖A𝑖𝑗a

*
𝑗

a𝑟C𝑟𝑡a*𝑡

]︂
= 0, 𝑘 = 1, 2, 3. (87)

After taking the partial derivatives, Eq. (87) can be rewritten in the following form,

(C−1)𝑖𝑟 (A)𝑟𝑗 (a
*)𝑗 =

[︂
a𝑝A𝑝𝑞a

*
𝑞

a𝑙C𝑙𝑚a*𝑚

]︂
(a*)𝑖, 𝑖 = 1, 2, 3, (88)

which tells us that the stationary values of the signal-to-noise ratio of 𝜂 are equal to the eigenvalues
of the the matrix C−1 ·𝐴. The result in Eq. (87) is well known in the theory of quadratic forms,
and it is called Rayleigh’s principle [36, 42].

In order now to identify the eigenvalues of the matrix C−1 ·𝐴, we first notice that the 3 × 3
matrix A has rank 1. This implies that the matrix C−1 ·A has also rank 1, as it is easy to verify.
Therefore two of its three eigenvalues are equal to zero, while the remaining non-zero eigenvalue
represents the solution we are looking for.

The analytic expression of the third eigenvalue can be obtained by using the property that the
trace of the 3 × 3 matrix C−1 ·A is equal to the sum of its three eigenvalues, and in our case to
the eigenvalue we are looking for. From these considerations we derive the following expression for
the optimized signal-to-noise ratio SNR2

𝜂 opt:

SNR2
𝜂 opt =

∫︁ 𝑓u

𝑓l

x
(s)*
𝑖 (C−1)𝑖𝑗 x

(s)
𝑗 𝑑𝑓. (89)

We can summarize the results derived in this section, which are given by Eqs. (84) and (89), in
the following way:
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1. Among all possible interferometric combinations LISA will be able to synthesize with its four
generators 𝛼, 𝛽, 𝛾, 𝜁, the particular combination giving maximum signal-to-noise ratio can
be obtained by using only three of them, namely (𝛼, 𝛽, 𝛾).

2. The expression of the optimal signal-to-noise ratio given by Eq. (89) implies that LISA
should be regarded as a network of three interferometer detectors of gravitational radiation
(of responses (𝛼, 𝛽, 𝛾)) working in coincidence [20, 40].

6.1 General application

As an application of Eq. (89), here we calculate the sensitivity that LISA can reach when observing
sinusoidal signals uniformly distributed on the celestial sphere and of random polarization. In order
to calculate the optimal signal-to-noise ratio we will also need to use a specific expression for the
noise correlation matrix C. As a simplification, we will assume the LISA arm lengths to be equal
to their nominal value 𝐿 = 16.67 s, the optical-path noises to be equal and uncorrelated to each
other, and finally the noises due to the proof-mass noises to be also equal, uncorrelated to each
other and to the optical-path noises. Under these assumptions the correlation matrix becomes real,
its three diagonal elements are equal, and all the off-diagonal terms are equal to each other, as it
is easy to verify by direct calculation [15]. The noise correlation matrix C is therefore uniquely
identified by two real functions 𝑆𝛼 and 𝑆𝛼𝛽 in the following way:

C =

⎛⎝𝑆𝛼 𝑆𝛼𝛽 𝑆𝛼𝛽

𝑆𝛼𝛽 𝑆𝛼 𝑆𝛼𝛽

𝑆𝛼𝛽 𝑆𝛼𝛽 𝑆𝛼

⎞⎠ . (90)

The expression of the optimal signal-to-noise ratio assumes a rather simple form if we diag-
onalize this correlation matrix by properly “choosing a new basis”. There exists an orthogonal
transformation of the generators (̃︀𝛼, ̃︀𝛽, ̃︀𝛾), which will transform the optimal signal-to-noise ratio
into the sum of the signal-to-noise ratios of the “transformed” three interferometric combinations.
The expressions of the three eigenvalues {𝜇𝑖}3𝑖=1 (which are real) of the noise correlation matrix
C can easily be found by using the algebraic manipulator Mathematica, and they are equal to

𝜇1 = 𝜇2 = 𝑆𝛼 − 𝑆𝛼𝛽 , 𝜇3 = 𝑆𝛼 + 2𝑆𝛼𝛽 . (91)

Note that two of the three real eigenvalues, (𝜇1, 𝜇2), are equal. This implies that the eigenvector
associated to 𝜇3 is orthogonal to the two-dimensional space generated by the eigenvalue 𝜇1, while
any chosen pair of eigenvectors corresponding to 𝜇1 will not necessarily be orthogonal. This
inconvenience can be avoided by choosing an arbitrary set of vectors in this two-dimensional space,
and by ortho-normalizing them. After some simple algebra, we have derived the following three
ortho-normalized eigenvectors:

v1 =
1√
2
(−1, 0, 1) v2 =

1√
6
(1,−2, 1) v3 =

1√
3
(1, 1, 1). (92)

Equation (92) implies the following three linear combinations of the generators (̃︀𝛼, ̃︀𝛽, ̃︀𝛾):
𝐴 =

1√
2
(̃︀𝛾 − ̃︀𝛼) 𝐸 =

1√
6

(︁̃︀𝛼− 2̃︀𝛽 + ̃︀𝛾)︁ 𝑇 =
1√
3

(︁̃︀𝛼+ ̃︀𝛽 + ̃︀𝛾)︁ , (93)

where 𝐴, 𝐸, and 𝑇 are italicized to indicate that these are “orthogonal modes”. Although the
expressions for the modes 𝐴 and 𝐸 depend on our particular choice for the two eigenvectors
(v1,v2), it is clear from our earlier considerations that the value of the optimal signal-to-noise ratio
is unaffected by such a choice. From Eq. (93) it is also easy to verify that the noise correlation
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matrix of these three combinations is diagonal, and that its non-zero elements are indeed equal to
the eigenvalues given in Eq. (91).

In order to calculate the sensitivity corresponding to the expression of the optimal signal-
to-noise ratio, we have proceeded similarly to what was done in [2, 15], and described in more
detail in [56]. We assume an equal-arm LISA (𝐿 = 16.67 s), and take the one-sided spectra of
proof mass and aggregate optical-path-noises (on a single link), expressed as fractional frequency
fluctuation spectra, to be 𝑆 proof mass

𝑦 = 2.5 × 10−48[𝑓/1 Hz]−2 Hz−1 and 𝑆 optical path
𝑦 = 1.8 ×

10−37[𝑓/1 Hz]2 Hz−1, respectively (see [15, 5]). We also assume that aggregate optical path noise
has the same transfer function as shot noise.

The optimum SNR is the square root of the sum of the squares of the SNRs of the three
“orthogonal modes” (𝐴,𝐸, 𝑇 ). To compare with previous sensitivity curves of a single LISA
Michelson interferometer, we construct the SNRs as a function of Fourier frequency for sinusoidal
waves from sources uniformly distributed on the celestial sphere. To produce the SNR of each of
the (𝐴,𝐸, 𝑇 ) modes we need the gravitational-wave response and the noise response as a function
of Fourier frequency. We build up the gravitational-wave responses of the three modes (𝐴,𝐸, 𝑇 )
from the gravitational-wave responses of (𝛼, 𝛽, 𝛾). For 7000 Fourier frequencies in the ∼ 10−4 Hz
to ∼ 1 Hz LISA band, we produce the Fourier transforms of the gravitational-wave response of
(𝛼, 𝛽, 𝛾) from the formulas in [2, 56]. The averaging over source directions (uniformly distributed
on the celestial sphere) and polarization states (uniformly distributed on the Poincaré sphere) is
performed via a Monte Carlo method. From the Fourier transforms of the (𝛼, 𝛽, 𝛾) responses at
each frequency, we construct the Fourier transforms of (𝐴,𝐸, 𝑇 ). We then square and average to
compute the mean-squared responses of (𝐴,𝐸, 𝑇 ) at that frequency from 104 realizations of (source
position, polarization state) pairs.

We adopt the following terminology: We refer to a single element of the module as a data
combination, while a function of the elements of the module, such as taking the maximum over
several data combinations in the module or squaring and adding data combinations belonging to
the module, is called as an observable. The important point to note is that the laser frequency
noise is also suppressed for the observable although it may not be an element of the module.

The noise spectra of (𝐴,𝐸, 𝑇 ) are determined from the raw spectra of proof-mass and optical-
path noises, and the transfer functions of these noises to (𝐴,𝐸, 𝑇 ). Using the transfer functions
given in [15], the resulting spectra are equal to

𝑆𝐴(𝑓) = 𝑆𝐸(𝑓) = 16 sin2(𝜋𝑓𝐿) [3 + 2 cos(2𝜋𝑓𝐿) + cos(4𝜋𝑓𝐿)]𝑆 proof mass
𝑦 (𝑓)

+8 sin2(𝜋𝑓𝐿) [2 + cos(2𝜋𝑓𝐿)]𝑆 optical path
𝑦 (𝑓), (94)

𝑆𝑇 (𝑓) = 2[1 + 2 cos(2𝜋𝑓𝐿)]2
[︀
4 sin2(𝜋𝑓𝐿)𝑆 proof mass

𝑦 + 𝑆 optical path
𝑦 (𝑓)

]︀
. (95)

Let the amplitude of the sinusoidal gravitational wave be ℎ. The SNR for, e.g., 𝐴, SNR𝐴, at each
frequency 𝑓 is equal to ℎ times the ratio of the root-mean-squared gravitational-wave response
at that frequency divided by

√︀
𝑆𝐴(𝑓)𝐵, where 𝐵 is the bandwidth conventionally taken to be

equal to 1 cycle per year. Finally, if we take the reciprocal of SNR𝐴/ℎ and multiply it by 5
to get the conventional SNR = 5 sensitivity criterion, we obtain the sensitivity curve for this
combination, which can then be compared against the corresponding sensitivity curve for the
equal-arm Michelson interferometer.

In Figure 7 we show the sensitivity curve for the LISA equal-arm Michelson response (SNR = 5)
as a function of the Fourier frequency, and the sensitivity curve from the optimum weighting of the

data described above: 5ℎ/
√︁

SNR2
𝐴 + SNR2

𝐸 + SNR2
𝑇 . The SNRs were computed for a bandwidth of

1 cycle/year. Note that at frequencies where the LISA Michelson combination has best sensitivity,
the improvement in signal-to-noise ratio provided by the optimal observable is slightly larger than√
2.
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Figure 7: The LISA Michelson sensitivity curve (SNR = 5) and the sensitivity curve for the optimal
combination of the data, both as a function of Fourier frequency. The integration time is equal to one
year, and LISA is assumed to have a nominal armlength 𝐿 = 16.67 s.

Figure 8: The optimal SNR divided by the SNR of a single Michelson interferometer, as a function of
the Fourier frequency 𝑓 . The sensitivity gain in the low-frequency band is equal to

√
2, while it can get

larger than 2 at selected frequencies in the high-frequency region of the accessible band. The integration
time has been assumed to be one year, and the proof mass and optical path noise spectra are the nominal
ones. See the main body of the paper for a quantitative discussion of this point.
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Figure 9: The SNRs of the three combinations (𝐴,𝐸, 𝑇 ) and their sum as a function of the Fourier
frequency 𝑓 . The SNRs of 𝐴 and 𝐸 are equal over the entire frequency band. The SNR of 𝑇 is significantly
smaller than the other two in the low part of the frequency band, while is comparable to (and at times
larger than) the SNR of the other two in the high-frequency region. See text for a complete discussion.

In Figure 8 we plot the ratio between the optimal SNR and the SNR of a single Michelson
interferometer. In the long-wavelength limit, the SNR improvement is

√
2. For Fourier frequencies

greater than or about equal to 1/𝐿, the SNR improvement is larger and varies with the frequency,
showing an average value of about

√
3. In particular, for bands of frequencies centered on integer

multiples of 1/𝐿, SNR𝑇 contributes strongly and the aggregate SNR in these bands can be greater
than 2.

In order to better understand the contribution from the three different combinations to the
optimal combination of the three generators, in Figure 9 we plot the signal-to-noise ratios of
(𝐴,𝐸, 𝑇 ) as well as the optimal signal-to-noise ratio. For an assumed ℎ = 10−23, the SNRs of the
three modes are plotted versus frequency. For the equal-arm case computed here, the SNRs of 𝐴
and 𝐸 are equal across the band. In the long wavelength region of the band, modes 𝐴 and 𝐸 have
SNRs much greater than mode 𝑇 , where its contribution to the total SNR is negligible. At higher
frequencies, however, the 𝑇 combination has SNR greater than or comparable to the other modes
and can dominate the SNR improvement at selected frequencies. Some of these results have also
been obtained in [40].

6.2 Optimization of SNR for binaries with known direction but with
unknown orientation of the orbital plane

Binaries are important sources for LISA and therefore the analysis of such sources is of major
importance. One such class is of massive or super-massive binaries whose individual masses could
range from 103𝑀⊙ to 108𝑀⊙ and which could be up to a few Gpc away. Another class of interest
are known binaries within our own galaxy whose individual masses are of the order of a solar
mass but are just at a distance of a few kpc or less. Here the focus will be on this latter class of
binaries. It is assumed that the direction of the source is known, which is so for known binaries in
our galaxy. However, even for such binaries, the inclination angle of the plane of the orbit of the
binary is either poorly estimated or unknown. The optimization problem is now posed differently:
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The SNR is optimized after averaging over the polarizations of the binary signals, so the results
obtained are optimal on the average, that is, the source is tracked with an observable which is
optimal on the average [40]. For computing the average, a uniform distribution for the direction
of the orbital angular momentum of the binary is assumed.

When the binary masses are of the order of a solar mass and the signal typically has a frequency
of a few mHz, the GW frequency of the binary may be taken to be constant over the period of
observation, which is typically taken to be of the order of an year. A complete calculation of the
signal matrix and the optimization procedure of SNR is given in [39]. Here we briefly mention the
main points and the final results.

A source fixed in the Solar System Barycentric reference frame in the direction (𝜃B, 𝜑B) is
considered. But as the LISA constellation moves along its heliocentric orbit, the apparent direction
(𝜃L, 𝜑L) of the source in the LISA reference frame (𝑥L, 𝑦L, 𝑧L) changes with time. The LISA
reference frame (𝑥L, 𝑦L, 𝑧L) has been defined in [39] as follows: The origin lies at the center of the
LISA triangle and the plane of LISA coincides with the (𝑥L, 𝑦L) plane with spacecraft 2 lying on
the 𝑥L axis. Figure (10) displays this apparent motion for a source lying in the ecliptic plane,
that is with 𝜃B = 90∘ and 𝜑B = 0∘. The source in the LISA reference frame describes a figure of
8. Optimizing the SNR amounts to tracking the source with an optimal observable as the source
apparently moves in the LISA reference frame.
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Figure 10: Apparent position of the source in the sky as seen from LISA frame for (𝜃B = 90∘, 𝜑B = 0∘).
The track of the source for a period of one year is shown on the unit sphere in the LISA reference frame.

Since an average has been taken over the orientation of the orbital plane of the binary or equiv-
alently over the polarizations, the signal matrix A is now of rank 2 instead of rank 1 as compared
with the application in the previous Section 6.1. The mutually orthogonal data combinations 𝐴,
𝐸, 𝑇 are convenient in carrying out the computations because in this case as well, they simulta-
neously diagonalize the signal and the noise covariance matrix. The optimization problem now
reduces to an eigenvalue problem with the eigenvalues being the squares of the SNRs. There are
two eigen-vectors which are labeled as 𝑣⃗+,× belonging to two non-zero eigenvalues. The two SNRs
are labelled as SNR+ and SNR×, corresponding to the two orthogonal (thus statistically indepen-
dent) eigenvectors 𝑣⃗+,×. As was done in the previous Section 6.1 F the two SNRs can be squared
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and added to yield a network SNR, which is defined through the equation

SNR2
network = SNR2

+ + SNR2
×. (96)

The corresponding observable is called the network observable. The third eigenvalue is zero and
the corresponding eigenvector orthogonal to 𝑣⃗+ and 𝑣⃗× gives zero signal.

The eigenvectors and the SNRs are functions of the apparent source direction parameters
(𝜃L, 𝜑L) in the LISA reference frame, which in turn are functions of time. The eigenvectors opti-
mally track the source as it moves in the LISA reference frame. Assuming an observation period of
an year, the SNRs are integrated over this period of time. The sensitivities are computed according
to the procedure described in the previous Section 6.1. The results of these findings are displayed
in Figure 11.

It shows the sensitivity curves of the following observables:

1. The Michelson combination 𝑋 (faint solid curve).

2. The observable obtained by taking the maximum sensitivity among 𝑋, 𝑌 , and 𝑍 for each
direction, where 𝑌 and 𝑍 are the Michelson observables corresponding to the remaining two
pairs of arms of LISA [2]. This maximum is denoted by max[𝑋,𝑌, 𝑍] (dash-dotted curve)
and is operationally given by switching the combinations 𝑋, 𝑌 , 𝑍 so that the best sensitivity
is achieved.

3. The eigen-combination 𝑣⃗+ which has the best sensitivity among all data combinations (dashed
curve).

4. The network observable (solid curve).

It is observed that the sensitivity over the band-width of LISA increases as one goes from
Observable 1 to 4. Also it is seen that the max[𝑋,𝑌, 𝑍] does not do much better than 𝑋. This is
because for the source direction chosen 𝜃B = 90∘, 𝑋 is reasonably well oriented and switching to
𝑌 and 𝑍 combinations does not improve the sensitivity significantly. However, the network and
𝑣⃗+ observables show significant improvement in sensitivity over both 𝑋 and max[𝑋,𝑌, 𝑍]. This is
the typical behavior and the sensitivity curves (except 𝑋) do not show much variations for other
source directions and the plots are similar. Also it may be fair to compare the optimal sensitivities
with max[𝑋,𝑌, 𝑍] rather than 𝑋. This comparison of sensitivities is shown in Figure 12, where
the network and the eigen-combinations 𝑣⃗+,× are compared with max[𝑋,𝑌, 𝑍].

Defining

𝜅𝑎(𝑓) =
SNR𝑎(𝑓)

SNRmax[𝑋,𝑌,𝑍](𝑓)
, (97)

where the subscript 𝑎 stands for network or +, ×, and SNRmax[𝑋,𝑌,𝑍] is the SNR of the observable
max[𝑋,𝑌, 𝑍], the ratios of sensitivities are plotted over the LISA band-width. The improvement
in sensitivity for the network observable is about 34% at low frequencies and rises to nearly 90%
at about 20 mHz, while at the same time the 𝑣⃗+ combination shows improvement of 12% at low
frequencies rising to over 50% at about 20 mHz.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2014-6

http://www.livingreviews.org/lrr-2014-6


40 Massimo Tinto and Sanjeev V. Dhurandhar

10
-24

10
-23

10
-22

10
-21

10
-20

10
-4

10
-3

10
-2

10
-1

S
e
n

s
it
iv

it
y

Frequency in Hz

Eigen-observable V+
Network observable

Michelson X
Max[X,Y,Z]

Figure 11: Sensitivity curves for the observables: Michelson, max[𝑋,𝑌, 𝑍], 𝑣⃗+, and network for the source
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7 Experimental Aspects of TDI

It is clear that the suppression of the laser phase fluctuations by more than nine orders of mag-
nitude with the use of TDI is a very challenging experimental task. It requires developing and
building subsystems capable of unprecedented accuracy and precision levels, and test their end-to-
end performance in a laboratory environment that naturally precludes the availability of 5 × 106

km delay lines! In what follows we will address some aspects related to the experimental implemen-
tation of TDI, and derive the performance specifications for the subsystems involved. We will not
address, however, any of the experimental aspects related to the verification of TDI in a laboratory
environment. For that, we refer the interested reader to de Vine et al. [8, 32], Spero et al. [48],
and Mitryk et al. [33].

From simple physical grounds, it is easy to see that a successful implementation of TDI requires:

1. accurate knowledge of the time shifts, 𝐿
′

𝑖(𝑡), 𝐿𝑖(𝑡) 𝑖 = 1, 2, 3, to be applied to the heterodyne

measurements 𝑠𝑖(𝑡), 𝑠
′

𝑖(𝑡), 𝜏𝑖(𝑡), 𝜏
′

𝑖 (𝑡) 𝑖 = 1, 2, 3;

2. accurate synchronization among the three clocks onboard the three spacecraft as these are
used for time-stamping the recorded heterodyne phase measurements;

3. sampling time stability (i.e., clock stability) for successfully suppressing the laser noise to
the desired level;

4. an accurate reconstruction algorithm of the phase measurements corresponding to the re-
quired time delays as these in general will not be equal to integer multiples of the sampling
time;

5. a phase meter capable of a very large dynamic range in order to suppress the laser noise to the
required level while still preserving the phase fluctuations induced by a gravitational-wave
signal in the TDI combinations.

In the following subsections, we will quantitatively address the issues listed above, and provide the
reader with a related list of references where more details can be found.

7.1 Time-delays accuracies

The TDI combinations described in the previous sections (whether of the first- or second-generation)
rely on the assumption of knowing the time-delays with infinite accuracy to exactly cancel the laser
noise. Since the six delays will in fact be known only within the accuracies 𝛿𝐿𝑖 , 𝛿𝐿

′

𝑖 𝑖 = 1, 2, 3,
the cancellation of the laser frequency fluctuations in, for instance, the combinations (𝛼, 𝛽, 𝛾, 𝜁)
will no longer be exact. In order to estimate the magnitude of the laser fluctuations remaining in

these data sets, let us define 𝐿̂𝑖 , 𝐿
′
𝑖 𝑖 = 1, 2, 3 to be the estimated time-delays. They are related

to the true delays 𝐿𝑖 , 𝐿
′

𝑖 𝑖 = 1, 2, 3, and the accuracies 𝛿𝐿𝑖 , 𝛿𝐿
′

𝑖 𝑖 = 1, 2, 3 through the following
expressions

𝐿̂𝑖 = 𝐿𝑖 + 𝛿𝐿𝑖 , 𝑖 = 1, 2, 3 , (98)

and similarly for the primed delays. In what follows we will limit our derivation of the time-
delays accuracies to only the first-generation TDI combinations and treat the three common delays
𝐿𝑖 , 𝑖 = 1, 2, 3 as constants equal to 16.7 light-seconds. We will also assume to know with infinite
accuracies and precisions all the remaining physical quantities (listed at the beginning of Section 7)
that are needed to successfully synthesize the TDI generators.
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If we now substitute Eq. (98) into the expression for the TDI combination 𝛼, for instance,
(Eq. (43)) and expand it to first order in 𝛿𝐿𝑖, it is easy to derive the following approximate
expression for 𝛼̂(𝑡), which now will show a non-zero contribution from the laser noises

𝛼̂(𝑡) ≃ 𝛼(𝑡) + [𝜑̇2,12 − 𝜑̇3,13] 𝛿𝐿1 + [𝜑̇3,2 − 𝜑̇1,123] 𝛿𝐿2 + [𝜑̇1,123 − 𝜑̇2,3] 𝛿𝐿3 , (99)

where the symbol ˙denotes time derivative. Time-delay interferometry can be considered effective if
the magnitude of the remaining fluctuations from the lasers are much smaller than the fluctuations
due to the remaining (proof mass and optical path) noises entering 𝛼(𝑡). This requirement implies
a limit in the accuracies of the measured delays.

Let us assume the laser phase fluctuations to be uncorrelated to each other, their one-sided
power spectral densities to be equal, the three armlengths to differ by a few percent, and the three
armlength accuracies also to be equal. By requiring the magnitude of the remaining laser noises to
be smaller than the secondary noise sources, it is straightforward to derive, from Eq. (99) and the
expressions for the noise spectrum of the 𝛼 TDI combination given in [15], the following constraint
on the common armlength accuracy |𝛿𝐿𝛼|

|𝛿𝐿𝛼| ≪
1√
32𝜋𝑓

√︃
[8 sin2(3𝜋𝑓𝐿) + 16 sin2(𝜋𝑓𝐿)] 𝑆 proof mass(𝑓) + 𝑆 optical path(𝑓)

𝑆𝜑(𝑓)
, (100)

with similar inequalities also holding for 𝛽 and 𝛾. Here 𝑆𝜑, 𝑆
proof mass, 𝑆 optical path are the one-

sided power spectral densities of the relative frequency fluctuations of a stabilized laser, a single
proof mass, and a single-link optical path respectively. If we take them to be equal to the following
functions of the Fourier frequency 𝑓 [53, 15]

𝑆𝜑(𝑓) = 10−28 𝑓−2/3 + 6.3 × 10−37 𝑓−3.4 Hz−1 (101)

𝑆 proof mass(𝑓) = 2.5 × 10−48 𝑓−2 Hz−1 (102)

𝑆 optical path(𝑓) = 1.8 × 10−37𝑓2 Hz−1 (103)

(where 𝑓 is in Hz), we find that the right-hand side of the inequality given by Eq. (100) reaches
its minimum of about 30 meters at the Fourier frequency 𝑓min = 1.0× 10−4 Hz, over the assumed
(10−4, 1) Hz LISA band. This implies that, if the armlength knowledge |𝛿𝐿𝛼| can be made much
smaller than 30 meters, the magnitude of the residual laser noise affecting the 𝛼 combination can
be regarded as negligible over the entire frequency band. This reflects the fact that the armlength
accuracy is a decreasing function of the frequency. For instance, at 10−3 Hz the armlength accuracy
goes up by almost an order of magnitude to about 155 meters.

A perturbation analysis similar to the one described above can be performed for 𝜁, resulting
into the following inequality for the required delay accuracy, |𝛿𝐿𝜁 |

|𝛿𝐿𝜁 | ≪
1

2𝜋𝑓

√︃
4 sin2(𝜋𝑓𝐿) 𝑆 proof mass(𝑓) + 𝑆 optical path(𝑓)

𝑆𝜑(𝑓)
. (104)

Equation (104) implies a minimum of the function on the right-hand side equal to about 16 meters
at the Fourier frequency 𝑓min = 1.0× 10−4 Hz, while at 10−3 Hz the armlength accuracy goes up
to 154 meters.

Armlength accuracies at the centimeters level have already been demonstrated in the labora-
tory [16, 50, 64, 26], making us confident that the required level of time-delays accuracy will be
available.

In relation to the accuracies derived above, it is interesting to calculate the time scales during
which the armlengths will change by an amount equal to the accuracies themselves. This identifies
the minimum time required before updating the armlength values in the TDI combinations.

Living Reviews in Relativity
http://www.livingreviews.org/lrr-2014-6

http://www.livingreviews.org/lrr-2014-6


Time-Delay Interferometry 43

It has been calculated by Folkner et al. [21] that the relative longitudinal speeds between the
three pairs of spacecraft, during approximately the first year of the LISA mission, can be written
in the following approximate form

𝑉𝑖,𝑗(𝑡) = 𝑉
(0)
𝑖,𝑗 sin

(︂
2𝜋𝑡

𝑇𝑖,𝑗

)︂
(𝑖, 𝑗) = (1, 2) ; (1, 3) ; (2, 3) , (105)

where we have denoted with (1, 2), (1, 3), (2, 3) the three possible spacecraft pairs, 𝑉
(0)
𝑖,𝑗 is a constant

velocity, and 𝑇𝑖,𝑗 is the period for the pair (𝑖, 𝑗). In reference [21] it has also been shown that the
LISA trajectory can be selected in such a way that two of the three arms’ rates of change are
essentially equal during the first year of the mission. Following reference [21], we will assume

𝑉
(0)
1,2 = 𝑉

(0)
1,3 ̸= 𝑉

(0)
2,3 , with 𝑉

(0)
1,2 = 1 m/s, 𝑉

(0)
2,3 = 13 m/s, 𝑇1,2 = 𝑇1,3 ≈ 4 months, and 𝑇2,3 ≈ 1

year. From Eq. (105) it is easy to derive the variation of each armlength, for example Δ𝐿3(𝑡), as
a function of the time 𝑡 and the time scale 𝛿𝑡 during which it takes place

Δ𝐿3(𝑡) = 𝑉
(0)
1,2 sin

(︂
2𝜋𝑡

𝑇1,2

)︂
𝛿𝑡 . (106)

Equation (106) implies that a variation in armlength Δ𝐿3 ≈ 10 m can take place during different
time scales, depending on when during the mission this change takes place. For instance, if 𝑡 ≪
𝑇1,2 we find that the armlength 𝐿3 changes by more than its accuracy (≈ 10 m) after a time
𝛿𝑡 = 2.3× 103 s. If however 𝑡 ≃ 𝑇1,2/4, the armlength will change by the same amount after only
𝛿𝑡 ≃ 10 s instead. As this value is less than the one-way-light-time, one might argue that the
measured time-delay will not represent well enough the delay that needs to be applied in the TDI
combinations at that particular time.

One way to address this problem is to treat the delays in the TDI combinations as parameters
to be determined by a non-linear least-squares procedure, in which the minimum of the minimizer
is achieved at the correct delays since that the laser noise will exactly cancel there in the TDI
combinations. Such a technique, which was named time-delay interferometric ranging (TDIR) [60],
requires a starting point in the time-delays space in order to implement the minimization, and it
will work quite effectively jointly with the ranging data available onboard.

7.2 Clocks synchronization

The effectiveness of the TDI data combinations requires the clocks onboard the three spacecraft to
be synchronized. In what follows we will identify the minimum level of off-synchronization among
the clocks that can be tolerated. In order to proceed with our analysis we will treat one of the
three clocks (say the clock onboard spacecraft 1) as the master clock defining the time for LISA,
while the other two to be synchronized to it.

The relativistic (Sagnac) time-delay effect due to the fact that the LISA trajectory is a com-
bination of two rotations, each with a period of one year, will have to be accounted for in the
synchronization procedure and, as has already been discussed earlier, will be accounted for within
the second-generation formulation of TDI.

Here, for simplicity, we will analyze an idealized non-rotating constellation in order to get a
sense of the required level of clocks synchronization. Let us denote by 𝛿𝑡2, 𝛿𝑡3, the time accuracies
(time-offsets) for the clocks onboard spacecraft 2 and 3 respectively. If 𝑡 is the time onboard
spacecraft 1, then what is believed to be time 𝑡 onboard spacecraft 2 and 3 is actually equal to the
following times

𝑡2 = 𝑡+ 𝛿𝑡2 , (107)

𝑡3 = 𝑡+ 𝛿𝑡3 . (108)
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If we now substitute Eqs. (107 and 108) into the TDI combination 𝜁, for instance, and expand it

to first order in 𝛿𝑡𝑖 , 𝑖 = 2, 3, it is easy to derive the following approximate expression for 𝜁(𝑡),
which shows the following non-zero contribution from the laser noises

𝜁(𝑡) ≃ 𝜁(𝑡) + [𝜑̇1,23 − 𝜑̇3,12 + 𝜑̇2,13 − 𝜑̇2,13] 𝛿𝑡2 + [𝜑̇2,13 − 𝜑̇1,23 + 𝜑̇3,12 − 𝜑̇3,12] 𝛿𝑡3 . (109)

By requiring again the magnitude of the remaining fluctuations from the lasers to be smaller than
the fluctuations due to the other (secondary) noise sources affecting 𝜁(𝑡), it is possible to derive an
upper limit for the accuracies of the synchronization of the clocks. If we assume again the three
laser phase fluctuations to be uncorrelated to each other, their one-sided power spectral densities to
be equal, the three armlengths to differ by a few percent, and the two time-offsets’ magnitudes to
be equal, by requiring the magnitude of the remaining laser noises to be smaller than the secondary
noise sources it is easy to derive the following constraint on the time synchronization accuracy |𝛿𝑡𝜁 |

|𝛿𝑡𝜁 | ≪
1

2𝜋𝑓

√︃
12 sin2(𝜋𝑓𝐿) 𝑆 proof mass(𝑓) + 3 𝑆 optical path(𝑓)

4 𝑆𝜑(𝑓)
, (110)

with 𝑆𝜑, 𝑆
proof mass, 𝑆 optical path again as given in Eqs. (101 – 103).

We find that the right-hand side of the inequality given by Eq. (110) reaches its minimum of
about 47 nanoseconds at the Fourier frequency 𝑓min = 1.0 × 10−4 Hz. This means that clocks
synchronized at a level of accuracy significantly better than 47 nanoseconds will result into a
residual laser noise that is much smaller than the secondary noise sources entering into the 𝜁
combination.

An analysis similar to the one described above can be performed for the remaining generators
(𝛼, 𝛽, 𝛾). For them we find that the corresponding inequality for the accuracy in the synchronization
of the clocks is now equal to

|𝛿𝑡𝛼| ≤
1

2𝜋𝑓

√︃
[4 sin2(3𝜋𝑓𝐿) + 8 sin2(𝜋𝑓𝐿)] 𝑆 proof mass(𝑓) + 3 𝑆 optical path(𝑓)

4 𝑆𝜑(𝑓)
, (111)

with equal expressions holding also for 𝛽 and 𝛾. The function on the right-hand side of Eq. (111)
has a minimum equal to 88 nanoseconds at the Fourier frequency 𝑓min = 1.0 × 10−4 Hz. As for
the armlength accuracies, also the timing accuracy requirements become less stringent at higher
frequencies. At 10−3 Hz, for instance, the timing accuracy for 𝜁 and 𝛼, 𝛽, 𝛾 go up to 446 and 500 ns
respectively.

As a final note, a required clock synchronizations of about 40 ns derived in this section trans-
lates into a ranging accuracy of 12 meters, which has been experimentally shown to be easily
achievable [16, 50, 64, 26].

7.3 Clocks timing jitter

The sampling times of all the measurements needed for synthesizing the TDI combinations will
not be constant, due to the intrinsic timing jitters of the onboard measuring system. Among all
the subsystems involved in the data measuring process, the onboard clock is expected to be the
dominant source of time jitter in the sampled data. Presently existing space qualified clocks can
achieve an Allan standard deviation of about 10−13 for integration times from 1 to 10 000 seconds.
This timing stability translates into a time jitter of about 10−13 seconds over a period of 1 second.
A perturbation analysis including the three sampling time jitters due to the three clocks shows
that any laser phase fluctuations remaining in the four TDI generators will also be proportional
to the sampling time jitters. Since the latter are approximately four orders of magnitude smaller
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than the armlength and clocks synchronization accuracies derived earlier, we conclude that the
magnitude of laser noise residual into the TDI combinations due to the sampling time jitters is
negligible.

7.4 Sampling reconstruction algorithm

The derivations of the time-delays and clocks synchronization accuracies highlighted earlier pre-
sumed the availability of the phase measurement samples at the required time-delays. Since this
condition will not be true in general, as the time-delays used by the TDI combinations will not be
equal to integer-multiples of the sampling time, with a sampling rate of, let us say, 10 Hz, the time
delays could be off their correct values by a tenth of a second, way more than the 10 nanoseconds
time-delays and clocks synchronization accuracies estimated above.

Earlier suggestions [27] for addressing this problem envisioned sampling the data at very-
high rates (perhaps of the order of hundreds of MHz), so reducing the additional error to the
estimated time-delays to a few nanoseconds. Although in principle such a solution would allow
us to suppress the residual laser noise to the required level, it would create an insurmountable
problem for transmitting the science data to the ground due to the limited space-to-ground data
rates.

An alternate scheme for obtaining the phase measurement points needed by TDI [59] envisioned
sampling the phase measurements at the required delayed times. This scheme naturally requires
knowledge of the time-delays and synchronization of the clocks at the required accuracy levels
during data acquisition. Although such a procedure could be feasible in principle, it would still
leave open the possibility of irreversible corruption of the TDI combinations in the eventuality of
performance degradation in the ranging and clock synchronization procedures.

Given that the data will need to be sampled at a rate of 10 Hz, an alternative options is to
implement an interpolation scheme for reconstructing the required data points from the sampled
measurements. An analysis [59] based on the implementation of the truncated Shannon [47] for-
mula, however, showed that several months of data were required in order to reconstruct the phase
samples at the estimated time-delays with a sufficiently high accuracy. This conclusion implied
that several months (at the beginning and end) of the entire data records measured by LISA would
be of no use, resulting into a significant mission science degradation.

Although the truncated Shannon formula was proved to be impracticable [59] for reconstructing
phase samples at the required time-delays, it was then recognized that [46] a more efficient and
accurate interpolation technique [31] could be adopted. In what follows, we provide a brief account
of this data processing technique, which is known as “fractional-delay filtering” (FDF).

In order to understand how FDF works, let’s write the truncated Shannon formula for the
delayed sample, 𝑦𝑁 (𝑛−𝐷), which we want to construct by filtering the sampled data 𝑦(𝑛)

𝑦𝑁 (𝑛−𝐷) =
𝑁∑︁

𝑗=−𝑁

𝑦(𝑛+ 𝑗) sinc(𝐷 − 𝑗) , (112)

where, as usual, sinc(𝑥) ≡ sin(𝑥)/𝑥, and 𝑁 is an integer at which the Shannon formula has been
truncated to. As pointed out in [46], although the truncated Shannon formula is optimal in the
least-squares sense, the sinc-function that appears in it is far from being ideal in reconstructing the
transfer function 𝑒2𝜋𝑖𝑓𝐷/𝑓𝑠 , where 𝑓𝑠 is the sampling frequency. In fact, over the LISA observational
band the sinc-function displays significant ringing, which can only be suppressed by taking 𝑁 very
large (as the error, 𝜖, decays slowly as 1/𝑁). It was estimated that, in order to achieve an 𝜖 < 10−8,
an 𝑁 ≥ 108 is needed.

If, however, we give up on the requirement of minimizing the error in the least-squares sense and
replace it with a mini-max criterion error applied to the absolute value of the difference between
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the ideal transfer function (i.e., 𝑒2𝜋𝑖𝑓𝐷/𝑓𝑠) and a modified sinc-function, we will be able to achieve
a rapid convergence while suppressing the ringing effects associated with the sinc function.

One way to achieve this result is to modify the Shannon formula by multiplying the sinc-function
by a window-function, 𝑊 (𝑗), in the following way

𝑦𝑁 (𝑛−𝐷) =
𝑁∑︁

𝑗=−𝑁

𝑦(𝑛+ 𝑗) 𝑊 (𝑗) sinc(𝐷 − 𝑗) , (113)

where 𝑊 (𝑗) smoothly decays to zero at 𝑗 = ±𝑁 . In [46] several windows were tested, and the
resulting values of 𝑁 needed to accurately reconstruct the desired delayed samples were estimated,
both on theoretical and numerically grounds. It was found that, with windows belonging to the
family of Lagrange polynomials [46] a delayed sample could be reconstructed by using 𝑁 ≃ 25
samples while achieving a mini-max error 𝜖 < 10−12 between the ideal transfer function 𝑒2𝜋𝑖𝑓𝐷/𝑓𝑠 ,
and the kernel of the modified truncated Shannon formula.

7.5 Data digitization and bit-accuracy requirement

It has been shown [59] that the maximum of the ratio between the amplitudes of the laser and the
secondary phase fluctuations occurs at the lower end of the LISA bandwidth (i.e., 0.1 mHz) and
it is equal to about 1010. This corresponds to the minimum dynamic range for the phasemeters
to correctly measure the laser fluctuations and the weaker (gravitational-wave) signals simultane-
ously. An additional safety factor of ≈ 10 should be sufficient to avoid saturation if the noises
are well described by Gaussian statistics. In terms of requirements on the digital signal processing
subsystem, this dynamic range implies that approximately 36 bits are needed when combining
the signals in TDI, only to bridge the gap between laser frequency noise and the other noises
and gravitational-wave signals. More bits might be necessary to provide enough information to
efficiently filter the data when extracting weak gravitational-wave signals embedded into noise.

The phasemeters will be the onboard instrument that will perform the phase measurements
containing the gravitational signals. They will also need to simultaneously measure the time-delays
to be applied to the TDI combinations via ranging tones over-imposed on the laser beams exchanged
by the spacecraft. And they will need to have the capability of simultaneously measure additional
side-band tones that are required for the calibration of the onboard Ultra-Stable Oscillator used
in the down-conversion of heterodyned carrier signal [57, 27].

Work toward the realization of a phasemeter capable of meeting these very stringent perfor-
mance and operational requirements has aggressively been performed both in the United States and
in Europe [43, 23, 22, 6, 63], and we refer the reader interested in the technical details associated
with the development studies of such device to the above references and those therein.
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8 Concluding Remarks

In this article we have summarized the use of TDI for canceling the laser phase noise from het-
erodyne phase measurements performed by a constellation of three spacecraft tracking each other
along arms of unequal length. Underlying the TDI technique is the mathematical structure of the
theory of Gröbner basis and the algebra of modules over polynomial rings. These methods have
been motivated and illustrated with the simple example of an unequal-arm interferometer in order
to give a physical insight of TDI. Here, these methods have been rigorously applied to the idealized
case of a stationary interferometer such as the LISA mission. This allowed us to derive the gen-
erators of the module from which the entire TDI data set can be obtained; they can be extended
in a straight-forward way to more than three spacecraft for possible future mission concepts. The
stationary LISA case was used as a propaedeutical introduction to the physical motivation of TDI,
and for further extending it to the realistic LISA configuration of free-falling spacecraft orbiting
around the Sun. The TDI data combinations canceling laser phase noise in this general case are
referred to as second-generation TDI, and they contain twice as many terms as their corresponding
first-generation combinations valid for the stationary configuration.

As a data analysis application we have shown that it is possible to identify specific TDI combi-
nations that will allow LISA to achieve optimal sensitivity to gravitational radiation [38, 40, 39].
The resulting improvement in sensitivity over that of an unequal-arm Michelson interferometer, in
the case of monochromatic signals randomly distributed over the celestial sphere and of random
polarization, is non-negligible. We have found this to be equal to a factor of

√
2 in the low-part of

the frequency band, and slightly more than
√
3 in the high-part of the LISA band. The SNR for

binaries whose location in the sky is known, but their polarization is not, can also be optimized,
and the degree of improvement depends on the location of the source in the sky.

We also addressed several experimental aspects of TDI, and emphasized that it has already
been successfully tested experimentally [8, 32, 48, 33].

As of the writing of this second edition of our living review article, it is very gratifying to see
how much TDI has matured since the publishing of its first version. The purpose of this second
edition review of TDI was to provide the basic mathematical tools and knowledge of the current
experimental results needed for working on future TDI projects. We hope to have accomplished
this goal, and that others will be stimulated to work in this fascinating field of research.
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A Generators of the Module of Syzygies

We require the 4-tuple solutions (𝑞3, 𝑞
′
1, 𝑞

′
2, 𝑞

′
3) to the equation

(1− 𝑥𝑦𝑧) 𝑞3 + (𝑥𝑧 − 𝑦) 𝑞′1 + 𝑥(1− 𝑧2) 𝑞′2 + (1− 𝑥2) 𝑞′3 = 0, (114)

where for convenience we have substituted 𝑥 = 𝒟1, 𝑦 = 𝒟2, 𝑧 = 𝒟3. 𝑞3, 𝑞
′
1, 𝑞

′
2, 𝑞

′
3 are polynomials

in 𝑥, 𝑦, 𝑧 with integral coefficients, i.e., in 𝑍[𝑥, 𝑦, 𝑧].
We now follow the procedure in the book by Becker et al. [3].
Consider the ideal in 𝑍[𝑥, 𝑦, 𝑧] (or 𝒬[𝑥, 𝑦, 𝑧] where 𝒬 denotes the field of rational numbers),

formed by taking linear combinations of the coefficients in Eq. (114), 𝑓1 = 1 − 𝑥𝑦𝑧, 𝑓2 = 𝑥𝑧 − 𝑦,
𝑓3 = 𝑥(1− 𝑧2), 𝑓4 = 1− 𝑥2. A Gröbner basis for this ideal is

𝒢 = {𝑔1 = 𝑧2 − 1, 𝑔2 = 𝑦2 − 1, 𝑔3 = 𝑥− 𝑦𝑧}. (115)

The above Gröbner basis is obtained using the function GroebnerBasis in Mathematica. One can
check that both the 𝑓𝑖, 𝑖 = 1, 2, 3, 4, and 𝑔𝑗 , 𝑗 = 1, 2, 3, generate the same ideal because we can
express one generating set in terms of the other and vice-versa:

𝑓𝑖 = 𝑑𝑖𝑗𝑔𝑗 , 𝑔𝑗 = 𝑐𝑗𝑖𝑓𝑖, (116)

where 𝑑 and 𝑐 are 4× 3 and 3× 4 polynomial matrices, respectively, and are given by

𝑑 =

⎛⎜⎜⎝
−1 −𝑧2 −𝑦𝑧
𝑦 0 𝑧
−𝑥 0 0
−1 −𝑧2 −(𝑥+ 𝑦𝑧)

⎞⎟⎟⎠ , 𝑐 =

⎛⎝ 0 0 −𝑥 𝑧2 − 1
−1 −𝑦 0 0
0 𝑧 1 0

⎞⎠ . (117)

The generators of the 4-tuple module are given by the set 𝐴
⋃︀

𝐵*, where 𝐴 and 𝐵* are the sets
described below:

𝐴 is the set of row vectors of the matrix 𝐼 − 𝑑 · 𝑐 where the dot denotes the matrix product and
𝐼 is the identity matrix, 4× 4 in our case. Thus,

𝑎1 =
(︀
𝑧2 − 1, 0, 𝑥− 𝑦𝑧, 1− 𝑧2

)︀
,

𝑎2 =
(︀
0, 𝑧

(︀
1− 𝑧2

)︀
, 𝑥𝑦 − 𝑧, 𝑦

(︀
1− 𝑧2

)︀)︀
,

𝑎3 =
(︀
0, 0, 1− 𝑥2, 𝑥

(︀
𝑧2 − 1

)︀)︀
,

𝑎4 =
(︀
−𝑧2, 𝑥𝑧, 𝑦𝑧, 𝑧2

)︀
.

(118)

We thus first get four generators. The additional generators are obtained by computing the S-
polynomials of the Gröbner basis 𝒢. The S-polynomial of two polynomials 𝑔1, 𝑔2 is obtained by
multiplying 𝑔1 and 𝑔2 by suitable terms and then adding, so that the highest terms cancel. For
example in our case 𝑔1 = 𝑧2 − 1 and 𝑔2 = 𝑦2 − 1, and the highest terms are 𝑧2 for 𝑔1 and 𝑦2 for
𝑔2. Multiply 𝑔1 by 𝑦2 and 𝑔2 by 𝑧2 and subtract. Thus, the S-polynomial 𝑝12 of 𝑔1 and 𝑔2 is

𝑝12 = 𝑦2𝑔1 − 𝑧2𝑔2 = 𝑧2 − 𝑦2. (119)

Note that order is defined (𝑥 ≫ 𝑦 ≫ 𝑧) and the 𝑦2𝑧2 term cancels. For the Gröbner basis of 3
elements we get 3 S-polynomials 𝑝12, 𝑝13, 𝑝23. The 𝑝𝑖𝑗 must now be re-expressed in terms of the
Gröbner basis 𝒢. This gives a 3 × 3 matrix 𝑏. The final step is to transform to four-tuples by
multiplying 𝑏 by the matrix 𝑐 to obtain 𝑏* = 𝑏 · 𝑐. The row vectors 𝑏*𝑖 , 𝑖 = 1, 2, 3, of 𝑏* form the
set 𝐵*:

𝑏*1 =
(︀
𝑧2 − 1, 𝑦

(︀
𝑧2 − 1

)︀
, 𝑥
(︀
1− 𝑦2

)︀
,
(︀
𝑦2 − 1

)︀ (︀
𝑧2 − 1

)︀)︀
,

𝑏*2 =
(︀
0, 𝑧

(︀
1− 𝑧2

)︀
, 1− 𝑧2 − 𝑥 (𝑥− 𝑦𝑧) , (𝑥− 𝑦𝑧)

(︀
𝑧2 − 1

)︀)︀
,

𝑏*3 =
(︀
−𝑥+ 𝑦𝑧, 𝑧 − 𝑥𝑦, 1− 𝑦2, 0

)︀
.

(120)

Thus, we obtain three more generators, which gives us a total of seven generators of the required
module of syzygies.
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B Conversion between Generating Sets

We list the three sets of generators and relations among them. We first list below 𝛼, 𝛽, 𝛾, 𝜁:

𝛼 = (−1,−𝑧,−𝑥𝑧, 1, 𝑥𝑦, 𝑦),

𝛽 = (−𝑥𝑦,−1,−𝑥, 𝑧, 1, 𝑦𝑧),

𝛾 = (−𝑦,−𝑦𝑧,−1, 𝑥𝑧, 𝑥, 1),

𝜁 = (−𝑥,−𝑦,−𝑧, 𝑥, 𝑦, 𝑧).

(121)

We now express the 𝑎𝑖 and 𝑏*𝑗 in terms of 𝛼, 𝛽, 𝛾, 𝜁:

𝑎1 = 𝛾 − 𝑧𝜁,

𝑎2 = 𝛼− 𝑧𝛽,

𝑎3 = −𝑧𝛼+ 𝛽 − 𝑥𝛾 + 𝑥𝑧𝜁,

𝑎4 = 𝑧𝜁,

𝑏*1 = −𝑦𝛼+ 𝑦𝑧𝛽 + 𝛾 − 𝑧𝜁,

𝑏*2 = (1− 𝑧2)𝛽 − 𝑥𝛾 + 𝑥𝑧𝜁,

𝑏*3 = 𝛽 − 𝑦𝜁.

(122)

Further, we also list below 𝛼, 𝛽, 𝛾, 𝜁 in terms of 𝑋(𝐴):

𝛼 = 𝑋(3),

𝛽 = 𝑋(4),

𝛾 = −𝑋(1) + 𝑧𝑋(2),

𝜁 = 𝑋(2).

(123)

This proves that since the 𝑎𝑖, 𝑏
*
𝑗 generate the required module, the 𝛼, 𝛽, 𝛾, 𝜁 and𝑋(𝐴), 𝐴 = 1, 2, 3, 4,

also generate the same module.
The Gröbner basis is given in terms of the above generators as follows: 𝐺(1) = 𝜁, 𝐺(2) = 𝑋(1),

𝐺(3) = 𝛽, 𝐺(4) = 𝛼, and 𝐺(5) = 𝑎3.
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[16] Esteban, J. J., Garćıa, A. F., Barke, S., Peinado, A.M, Guzmán Cervantes, F., Bykov, I., Heinzel, G.
and Danzmann, K., “Experimental demonstration of weak-light laser ranging and data communication
for LISA”, Opt. Express, 19(17), 15937–15946 (2011). [DOI]. (Cited on pages 42 and 44.)

[17] Faller, J. E. and Bender, P. L., “A possible laser gravitational wave experiment in space”, in Taylor,
B. N. and Phillips, W. D., eds., Precision Measurement and Fundamental Constants II, Proceedings
of the Second International Conference held at the National Bureau of Standards, Gaithersburg, MD,
June 8 – 12, 1981, NBS Special Publication, 617, pp. 689–690, (U.S. Dept. of Commerce / National
Bureau of Standards, Washington, DC, 1984). (Cited on pages 9 and 10.)

[18] Faller, J. E., Bender, P. L., Hall, J. L., Hils, D., Stebbins, R. T. and Vincent, M. A., “An antenna
for laser gravitational-wave observations in space”, Adv. Space Res., 9, 107–111 (1989). [DOI], [ADS].
COSPAR and IAU, 27th Plenary Meeting, 15th Symposium on Relativistic Gravitation, Espoo, Fin-
land, July 18 – 29, 1988. (Cited on page 9.)

[19] Faller, J. E., Bender, P. L., Hall, J. L., Hils, D. and Vincent, M. A., “Space antenna for gravita-
tional wave astronomy”, in Longdon, N. and Melita, O., eds., Kilometric Optical Arrays in Space,
Proceedings of the Colloquium held 23 – 25 October 1984, Cargèse, Corsica, France, ESA Conference
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