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ABSTRACT 
Background. For many tumors, radiomics provided a rel-
evant prognostic contribution. This study tested whether the 
computed tomography (CT)-based textural features of intra-
hepatic cholangiocarcinoma (ICC) and peritumoral tissue 
improve the prediction of survival after resection compared 
with the standard clinical indices.
Methods. All consecutive patients affected by ICC who 
underwent hepatectomy at six high-volume centers (2009–
2019) were considered for the study. The arterial and portal 
phases of CT performed fewer than 60 days before surgery 
were analyzed. A manual segmentation of the tumor was 
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performed (Tumor-VOI). A 5-mm volume expansion then 
was applied to identify the peritumoral tissue (Margin-VOI).
Results. The study enrolled 215 patients. After a median 
follow-up period of 28 months, the overall survival (OS) 
rate was 57.0%, and the progression-free survival (PFS) rate 
was 34.9% at 3 years. The clinical predictive model of OS 
had a C-index of 0.681. The addition of radiomic features 
led to a progressive improvement of performances (C-index 
of 0.71, including the portal Tumor-VOI, C-index of 0.752 
including the portal Tumor- and Margin-VOI, C-index of 
0.764, including all VOIs of the portal and arterial phases). 
The latter model combined clinical variables (CA19-9 and 
tumor pattern), tumor indices (density, homogeneity), mar-
gin data (kurtosis, compacity, shape), and GLRLM indices. 
The model had performance equivalent to that of the postop-
erative clinical model including the pathology data (C-index 
of 0.765). The same results were observed for PFS.
Conclusions. The radiomics of ICC and peritumoral tissue 
extracted from preoperative CT improves the prediction of 
survival. Both the portal and arterial phases should be con-
sidered. Radiomic and clinical data are complementary and 
achieve a preoperative estimation of prognosis equivalent to 
that achieved in the postoperative setting.

Keywords Intrahepatic cholangiocarcinoma · Prognosis · 
Survival · Liver surgery · Radiomics · Computed 
tomography · Peritumoral tissue

Intrahepatic cholangiocarcinoma (ICC) is the second 
most common primary liver tumor, but its incidence is 
rapidly increasing.1,2 Systemic therapies are evolving sig-
nificantly, passing from the limited effectiveness of stand-
ard chemotherapy to the promising results of new targeted 
treatments (anti-FGFR2 and anti-IDH1 drugs).3,4 To date, 
the standard treatment is liver resection, which is associated 
with 5-year survival rates ranging between 25 and 40%.5,6

Currently, the most relevant prognostic factors are 
tumor size, number and distribution of lesions, CA19-9 
value, N and R status, and vascular invasion.2,7–9 New 
biomarkers in the peritumoral tissue, such as the immune 
infiltrate, have been outlined.10–12 However, available 
prognosticators do not adequately fulfil clinicians’ needs 
for at least two reasons. First, most cannot be appropri-
ately estimated by standard imaging methods and can be 
assessed a posteriori only at the final pathology evalu-
ation. Second, they do not allow a reliable selection of 
candidates for surgery, especially among patients with 
high tumor burden.

In recent years, advanced imaging techniques and quan-
titative analysis have gained traction in clinical research. 
Among the different approaches, radiomics has been one 
of the most studied, thanks to its easy application and high 

reproducibility.13–15 It has been associated with pathology 
data and the prognosis of several tumors.14,16–18

With regard to ICC, some data, almost exclusively 
reported by Eastern centers, are already available. The tex-
tural features extracted from both computed tomography 
(CT) and magnetic resonance imaging (MRI) can predict 
overall survival (OS) and progression-free survival (PFS) 
with high accuracy, improving the performances of standard 
clinical models.18–22 However, most studies have adopted 
radiomic signatures that optimize prediction but compromise 
the reproducibility and interpretability of data. In addition, 
robust confirmations by Western centers are lacking.

This multicentric study aimed to build a prognostic model 
combining the radiomic indices of the tumor and peritu-
moral tissue extracted from preoperative CT together with 
the preoperative clinical variables (model development).

MATERIAL AND METHODS

The study was conducted according to the Declaration of 
Helsinki and its later amendments. The local ethics commit-
tee of each center approved the study protocol (coordinat-
ing center approval: protocol no. 142/21-17/03/2021). No 
informed consent was required because of the retrospective 
study design.

All consecutive patients affected by mass-forming ICC 
who underwent hepatic resection between January 2009 and 
December 2019 at six high-volume hepatobiliary centers 
were considered for the study. The participating centers are 
listed in Table S1.

The study was a retrospective analysis based on prospec-
tively maintained clinical databases. The inclusion criteria 
specified age of 18 years or older, preoperative contrast-
enhanced CT imaging available for analysis, and tumor 
larger than 10 mm. The exclusion criteria ruled out mixed 
hepatocellular carcinoma-ICC, imaging performed more 
than 60 days before surgery, inadequate CT (inadequate 
phases, movements, or artifacts), and locoregional treatment 
of ICC before liver resection.

If the patients had preoperative chemotherapy, the imag-
ing after the end of treatment was analyzed. If a preoperative 
portal vein embolization was performed, the CT performed 
before embolization was analyzed.

The primary end points of the study were to identify 
the radiomic indices of the tumor and peritumoral tissue 
extracted from the portal and arterial phases of the CT that 
were associated with overall survival (OS), to build a prog-
nostic model combining radiomic and preoperative clinical 
variables, and to compare the performance of the combined 
clinical-radiomic model with that of a pure preoperative 
clinical model. The secondary end points were to analyze 
the contribution of radiomic features to prediction of PFS, 
to elucidate the contribution of radiomics to a clinical model 
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based on the pre- and postoperative variables, and to evalu-
ate the stability of the prognostic role of radiomic features 
across the participating centers. The study followed the TRI-
POD guidelines (Table S2).

Segmentation and Extraction of Radiomic Features

First, the portal phase of the selected CT was analyzed. 
For patients with multiple ICCs, only the largest lesion was 
considered. The technique of tumor and peritumoral tissue 
segmentation has been previously reported.23 In brief, an 
expert radiologist performed a manual tumor segmentation 
in each center to generate the first volume of interest (Tumor-
VOI). The segmentation was performed using the LifeX 
software (CEA, Paris, France) in all centers. The peritu-
moral tissue was segmented by applying an automatic 5-mm 
expansion to the Tumor-VOI (Margin-VOI). The radiologist 
checked the Margin-VOI and manually removed any por-
tions of tissue other than liver parenchyma. The VOIs then 
were copied into the arterial phase, and their positioning was 
manually adjusted if needed. The segmentation technique 
was standardized across centers as follows: (1) the authors 
shared criteria and technical features during meetings held 
before the data collection, and (2) the tumor segmentation of 
the first two included patients was performed by the radiolo-
gist of each center under remote tutoring by the coordinating 
center.

The radiomic features were automatically extracted by the 
LifeX software.24 The indices considered in the analyses are 
summarized in Table S3.

Statistical Analyses

Table S4 reports the analyzed pre- and postoperative vari-
ables. The ICC distribution pattern was classified according 
to Baheti et al.25 The eighth edition of the American Joint 
Committee on Cancer (AJCC) TNM classification was used 
for all the patients.26

The data from different centers were managed as follows: 
(1) after merging of the databases, queries were sent to par-
ticipating centers about any outliers; (2) the patients with 
incomplete radiomic analyses (missing indices) or incom-
plete follow-up data (status [dead/alive], recurrence [yes/no], 
OS, PFS) were excluded; (3) for any variables with a propor-
tion of missing data less than 15% of cases, multiple impu-
tation was performed using the Python Miceforest program 
(MIT, Cambridge, US) with the ImputationKernel function.

Both OS and PFS were computed with the Kaplan-
Meier method and compared using the log-rank test. 
Follow-up data were updated to 31 March 2021. A Cox 
proportional hazard model was used to identify independ-
ent prognosticators. The following clinical variables were 
selected for inclusion in the model: categorical clinical 

variables with a p value lower than 0.10 in the univariate 
analysis, all continuous clinical variables, and the prog-
nosticators reported in the literature.2,7–9

Radiomic features were selected through a correlation 
analysis. When two features had a correlation greater than 
0.85, one of the two was removed. Tumor-VOI and Mar-
gin-VOI radiomic indices underwent selection separately.

The textural features were standardized and included 
in the model as continuous variables. A stepwise algo-
rithm was used to select the variables to be retained in 
the final model. The concordance index (C-index) and its 
corresponding standard error (SE) were computed for each 
model. First, the best model without consideration of the 
enrolling center was found (i.e., patients were considered 
independently of the enrolling center). Then, the center 
effect was analyzed by fitting a shared frailty model.27 The 
variables in the model were those identified for the best 
Cox model. The Commongens–Andersen test for heteroge-
neity was used to verify the presence of the center effect.

The p value was considered significant if it was lower 
than 0.05. The authors used the STATA (StataCorp LLC, 
College Station, US), R (R core team (2023), Vienna , 
Austria), and Python software.

Predictive Models

For each outcome (OS/PFS), we considered eight dif-
ferent predictive models. Four models were based on the 
following preoperative clinical data: (1) clinical data alone 
(Model OS/PFS_pre#1), (2) clinical data plus the portal-
phase Tumor-VOI radiomics (Model OS/PFS_pre#2), (3) 
clinical data plus the portal-phase Tumor- and Margin-VOI 
radiomics (Model_OS/PFS_pre#3), and (4) clinical data 
plus the Tumor- and Margin-VOI radiomics extracted from 
both the portal and arterial phases of the CT (Model OS/
PFS_pre#4). Four analogous models were built, includ-
ing the postoperative and pathology data (Model OS/
PFS_post#1 to 4).

RESULTS

The study enrolled 215 of the 266 patients selected 
from the six centers (median, 37 patients; interquartile 
range [IQR] 29–74 patients; Fig. 1). Table 1 summarizes 
the patients’ characteristics. After a median follow-up 
period of 28 months (range 1–146 months), 105 (48.8%) of 
the patients were alive, and 54 patients (25.1% of the total 
series) were without recurrence. At 3 years, the OS rate 
was 57.0% (median OS, 47.4 months), and the PFS rate 
was 34.9% (median PFS, 13.7 months). The association 
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of the clinical variables with OS and PFS is summarized 
in Table S5. 

Preoperative Predictive Models of OS

The prognostic model based on the preoperative clinical 
variables (Model_OS_pre#1) had a C-index of 0.681 (SE, 
0.029) and retained the four following variables: age, CA19-
9, tumor pattern, and major hepatectomy (Table S6). Addi-
tion of the radiomic features to the clinical model led to a 
performance improvement (Fig. 2), but the same four clinical 
variables were retained in all the combined clinical-radiomic 
models. The model including the Tumor-VOI radiomic fea-
tures extracted from the portal phase (Model_OS_pre#2) had 
a C-index of 0.71 (SE, 0.028). Two radiomic features were 
retained (shape compacity and GLRLM_SRHGE; Table S6). 
The model based on the clinical data and the portal-phase 
Tumor- and Margin-VOI radiomics (Model_OS_pre#3) had 
a C-index of 0.752 (SE, 0.026). It included three Tumor-VOI 
features (GLRLM_SRHGE, GLCM ContrastVariance, and 
Humin), and three Margin-VOI features (shape_compacity, 
skewness, and GLRLM_SRHGE) (Fig. 3a). The last model 
combined the clinical variables and the radiomic analysis of 
Tumor- and Margin-VOI in both the portal and the arterial 
phases (Model_OS_pre#4). It had a C-index of 0.764 (SE, 
0.026) and included four clinical variables, six portal-phase 
radiomic indices (four of the Tumor-VOI and two of the 
Margin-VOI), and four arterial phase features (two and two, 
respectively) (Fig. 3b).

Preoperative Predictive Models of PFS

The prognostic model based on the preoperative clinical 
variables (Model_PFS_pre#1) had a C-index of 0.657 (SE, 
0.025) and retained the following variables: CA 19-9, tumor 

number, and tumor size (Table S7). The inclusion of the 
radiomic indices led to a performance improvement (Fig. 2). 
Two clinical variables (CA 19-9 value and the number of 
tumors) were retained in all the models. The model combin-
ing the clinical variables and the portal-phase Tumor-VOI 
indices (Model_PFS_pre#2) had a C-index of 0.669 (SE, 
0.025). Five radiomic features (two Hounsfield units-related 
features, entropy, NGLDM_Busyness, and GLZLM_LGZE) 
were retained (Table S7). The model that also included the 
portal-phase Margin-VOI radiomic indices (Model_PFS_
pre#3) had a C-index of 0.700 (SE, 0.022). It retained five 
Tumor-VOI features (Humin, GLCM_ContrastVariance, 
GLRLM_LGRE, NGLDM_Busyness, and GLZLM_LZE) 
and three Margin-VOI features (two GLZLM features and 
Entropy) (Fig. 4a). The model including the clinical varia-
bles as well as the Tumor- and Margin-VOI radiomic indices 
extracted from both the portal and arterial phases (Model_
PFS_pre#4) had a C-index of 0.719 (SE, 0.023) and included 
five portal-phase radiomic features (three of the Tumor-VOI 
and two of the Margin-VOI features), and two arterial-phase 
radiomic features (both of the Margin-VOI; Fig. 4b).

Postoperative Predictive Models

Considering OS, the clinical model including pre- and 
postoperative data (Model_OS_post#1) had a C-index 
of 0.765 (SE, 0.023). It had the same performance as the 
model that combined the preoperative clinical data and radi-
omic features (C-index, 0.764). When the radiomic features 
were added to the postoperative model, the performance 
progressively improved. The models including the portal-
phase Tumor-VOI radiomics, the portal-phase Tumor- and 
Margin-VOI radiomics, and the arterial- and portal-phase 
Tumor- and Margin-VOI radiomics (Model_OS_post#2-4) 
had a C-index of 0.777 (SE, 0.022), 0.789 (SE, 0.024), and 
0.803 (SE, 0.023), respectively.

Considering PFS, the clinical model including pre- and 
postoperative data (Model_PFS_post#1) had a C-index of 
0.681 (SE, 0.026). Its performance was slightly inferior to 
the one based on preoperative clinical data and radiomic 
features (C-index, 0.719). When the radiomic features 
were added to the postoperative model, the performance 
progressively improved. The models including the portal-
phase Tumor-VOI radiomics, the portal-phase Tumor- and 
Margin-VOI radiomics, and the arterial- and portal-phase 
Tumor- and Margin-VOI radiomics (Model_PFS_post#2-4) 
had C-indices of 0.702 (SE, 0.023), 0.749 (SE, 0.020), and 
0.750 (SE, 0.021), respectively. Tables S8 and S9 summarize 
the models, and Fig. 2 summarizes their performances.

266 ICC patients
Liver resection 2009-2019
Available preoperative CT

22 missing
outcome data

29 Arterial phase
not available

244 patients
complete follow-up data

215 included patients

FIG. 1  Flow diagram showing the process for selection of the 
included patients
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Stability of the Models Across Centers

The performance of the models was tested by intro-
ducing the variable “center.” The p values of the test 
(p = 0.654 for OS; p = 0.865 for RFS) demonstrated 

no statistical evidence of heterogeneity across centers. 
Moreover, the estimated coefficients including the vari-
able “center” were equal to those obtained with the Cox 
model. For the sake of simplicity and parsimony, the Cox 

TABLE 1  Patient’s 
characteristics

HBV hepatitis B virus, HCV hepatitis C virus, CA19-9 carbohydrate antigen 19-9

Characteristic n (%) Missing 
number

Demographic data
Median age: years (range) 67.5 (25–86) –
Sex (male:female) 107 (49.8):108 (50.2) –
HBV infection 18 (8.4) 1
HCV infection 25 (11.7) 1
Liver cirrhosis 24 (11.2) –
Tumor characteristics and preoperative treatment
Median tumor diameter: mm (range) 55 (10–270) –
Solitary tumor 179 (83.3) –
Tumor pattern –
 Type 1 53 (24.7) –
 Type 2 30 (14) –
 Type 3 0 –

Median CA19-9: U/mL (range) 29.3 (0.2–67456.3) 27
CA19-9 ≥ 55 U/mL 66 (35.1) 27
Preoperative chemotherapy 23 (10.7) –
 Partial response 11/23 (47.8) –

Intraoperative data and operative outcome
Major hepatectomy 110 (51.2) –
Associated resection 8 (3.7) –
90-Day mortality 10 (4.7) –
Severe morbidity 42 (19.5) –
Median hospital stay: days (range) 10 (2–104) –
Pathology data and postoperative treatment
T stage –
 T1a 44 (20.5) –
 T1b 21 (9.8) –
 T2 104 (48.4) –
 T3 39 (18.1) –
 T4 7 (3.3) –

N stage –
 N0 101 (47) –
 Nx 63 (29.3) –
 N1 51 (23.7) –

M staging, M1 5 (2.3) –
Tumor grading, G3 68 (31.6) –
R status, R0 145 (67.4) –
Microscopic vascular invasion 117 (54.4) –
Perineural infiltration 79 (41.1) 23
Satellite nodules 58 (27) –
Adjuvant chemotherapy 87 (42.6) 11
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model without the enrolling centers was considered the 
definitive one.

DISCUSSION

This study demonstrated that the CT-based radiomic fea-
tures extracted from ICC and its peri-tumoral tissue improve 
estimation of the prognosis for patients undergoing hepa-
tectomy. Analyzing both the portal and the arterial phases 
contributes to prognostication. Radiomic features and clini-
cal data are complementary, and their combination allows a 
preoperative non-invasive prediction of survival equivalent 
to the one achieved in the postoperative setting when the 
pathology data are available.

For ICC patients, an accurate estimation of the tumor 
biology would be crucial for an adequate selection of candi-
dates for surgery, but it is a clinically unmet need for several 
reasons: the pathology data, which are major determinants 
of prognosis, are not predictable by standard preoperative 
imaging;18 standard chemotherapy has limited disease con-
trol that precludes its adoption as a selection tool for resect-
able patients;1,3 and genetic data are not part of the clinical 
practice to date.

Radiomic features extracted from different imaging meth-
ods proved a tight association, with pathology data and prog-
nosis for several tumors. Regarding ICC, preliminary studies 

not only demonstrated that the textural features of the tumor 
are associated with both OS and PFS, but also that they may 
lead to a better outcome prediction than standard clinical 
data.18–22 Similar data were observed in the current series, 
with clinical-radiomic models performing better than clini-
cal models.

A further result was as evident in our analysis as in the 
literature: all models retained standard clinical predictors 
(e.g., tumor pattern and CA19-9) together with the radiomic 
indices, reaffirming that the latter carries information com-
plementary to clinical data. However, the available literature 
has some major limitations that might reduce the reproduc-
ibility of results and clinical applicability of radiomics: most 
studies have been conducted by Eastern authors, have used 
in-house software for radiomics extraction, and have adopted 
signatures or scores (mathematical combinations of radiomic 
features) to optimize prediction.

The current analysis was a large multicenter analysis 
encompassing six Western referral hepato-pancreato-biliary 
(HPB) centers and collecting a large number of patients 
(n = 215). Radiomic features, extracted by a free online 
software, were separately included in the model, leading to 
complete replicability of the data.

The interpretability of radiomic data remains an issue, but 
some hypotheses can be advanced. Higher tumor homogene-
ity and lower intensity in the portal phase corresponded to a 

0.800

Overall survival
Before surgery After surgery

Progression-free survival
Before surgery After surgery

0.700 0.682
0.710

0.752 0.764 0.765 0.777 0.789 0.803

0.657 0.670
0.700

0.719
0.684

0.710
0.749 0.750
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0.200
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0.000

FIG. 2  Performances of the predictive models
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more favorable prognosis. In a standard radiologic evalua-
tion, both characteristics (homogeneity and delayed enhance-
ment) were associated with a less aggressive tumor.28 Mar-
gin compacity had a protective effect. This parameter could 
depict the tumor growth pattern. As observed for colorectal 
liver metastases,29,30 an infiltrative tumor profile is expected 
to be associated with a more aggressive disease. Finally, in 

both the arterial and portal phases, the GLZLM and GLRLM 
indices were clinically relevant. Again, they may reflect 
tumor heterogeneity, vascularization, and necrosis.

Three further results deserve consideration. Regarding 
the first result, both the tumor and the peritumoral tissue 
contributed to the survival prediction. At least two papers 
reported similar data, one analyzing magnetic resonance 
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FIG. 3  Predictive model of overall survival. a Model based on pre-
operative clinical data and radiomics extracted from the Tumor-VOI 
and Margin-VOI outlined in the portal phases of the preoperative 

computed tomography (CT). b Model based on preoperative clini-
cal data and radiomics extracted from the arterial and portal phases 
(Tumor-VOI and Margin-VOI)
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 imaging20 and another analyzing positron emission tomog-
raphy (PET)-CT.31 The liver-tumor interface is the niche 
of relevant biomarkers that can be unveiled by radiomics, 
as suggested by the association between the textural fea-
tures and peritumoral immune infiltrate reported by Yugawa 
et al.32 Concerning the second result, the current study 
demonstrated that radiomics extracted from the arterial 
phase improves the performance of the predictive models. 
This reflects the radiologic presentation of ICC: its arte-
rial enhancement pattern (peripheral, partial, or complete) 

has a prognostic relevance.27,33–36 Finally, the prediction 
of survival achieved by the preoperative clinical-radiomic 
model was non-inferior to that achieved by the postoperative 
clinical model based on the pathology data. As observed for 
other liver diseases,14,16,17 radiomics not only optimizes but 
also anticipates the assessment of tumor biology and the 
prediction of survival.

The current data are therefore clinically relevant. First, 
clinicians may have an accurate preoperative prediction of 
post-surgical survival using easy-to-apply and standardized 
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FIG. 4  Predictive model of progression-free survival. a Model based 
on preoperative clinical data and radiomics extracted from the Tumor-
VOI and Margin-VOI outlined in the portal phase of the preoperative 

computed tomography (CT). b Model based on preoperative clini-
cal data and radiomics extracted from the arterial and portal phases 
(Tumor-VOI and Margin-VOI)
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software. This could be the basis for a more effective selec-
tion of candidates for surgery and an indication for preop-
erative systemic therapy. In the near future, radiomics could 
identify patients who, even if technically deemed resectable, 
do not benefit from surgery, and, as previously reported for 
colorectal metastases,16,37 could help in deciding the sys-
temic treatment regimen according to the estimated efficacy. 
Of course, such decisions must rely on robust evidence and 
certified protocols.38 Second, even when the pathology data 
are available, radiomic features may refine the prediction of 
the outcome. Indications for adjuvant treatment and follow-
up schedules could be adapted accordingly. Finally, even if 
clinicians still are uncertain, the tight association of radi-
omic data with tumor biology paves the way to their adop-
tion as biomarkers and corroborates the hypothesis of a role 
in tumor heterogeneity assessment.

Some limitations of this study could be argued. First, the 
models were not externally validated, even if the homogene-
ity of results among centers anticipated the reproducibility 
of data. Second, an easy-to-apply user-friendly application 
still is lacking. However, in the near future, artificial intel-
ligence protocols will enable easy inclusion of radiomic 
features into clinical practice. Third, although a significant 
number of patients were collected, some subgroups were 
not adequately represented and require further explorations. 
This may be not an easy task to accomplish because we had 
to merge the series of six high-volume HPB referral centers 
across 10 years to collect 215 patients with a rare disease and 
high-quality preoperative CT suitable for radiomic analy-
ses. Fourth, the late phase of CT also should be considered 
for possible informative value. Finally, a prospective design 
with a standardized CT protocol would provide more reliable 
evidence. Nevertheless, this explorative retrospective analy-
sis supports a clinically relevant concept (i.e., the usability 
of radiomics in a real-life setting).

Future studies are crucial to fill the gap between pre-
liminary evidence on radiomics and its integration into 
clinical practice. Multicenter international trials merg-
ing Eastern and Western series are needed to collect “big 
data” and elucidate any geographic heterogeneity. At the 
same time, prospective trials with standardized protocols 
for imaging acquisition are essential to unveil the true 
potential of radiomics. The sample size remains an issue, 
but the new statistical approaches developed for artificial 
intelligence-based analyses offer promising solutions.39,40

A further research focus should be the combined anal-
ysis of radiomics and genetics. Radiogenomics analyzes 
the associations between radiomic and genetic data,41 but 
we believe that the two may have a complementary role: 
genetics elucidates the mechanisms underlying tumor biol-
ogy, whereas radiomics provides a broader overview of the 
neoplasm, capturing its heterogeneity.42 Exploring further 
the combination of an extended range of “omics” features, 

including radiomics, genomics, pathomics, and even sur-
gomics, should be considered to maximize our ability to 
predict patients’ survival, optimize treatment allocation, 
and design personalized treatment strategies.43

In conclusion, the radiomic analysis of ICC and peritu-
moral tissue refines the prediction of long-term results for 
patients undergoing liver resection. Radiomics should be 
considered part of the standard preoperative assessment of 
ICC patients. It is a further step toward precision medical 
and surgical oncology, refining the choice of the treatment 
protocol and surgical indications.
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