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ABSTRACT

Background. Pathological response to neoadjuvant

chemotherapy (NAC) is critical in prognosis and selection

of systemic treatments for patients with triple-negative

breast cancer (TNBC). The aim of this study is to identify

gene expression-based markers to predict response to

NAC.

Patients and Methods. A survey of 43 publicly available

gene expression datasets was performed. We identified a

cohort of TNBC patients treated with NAC (n = 708).

Gene expression data from different studies were renor-

malized, and the differences between pretreatment (pre-

NAC), on-treatment (post-C1), and surgical (Sx) specimens

were evaluated. Euclidean statistical distances were cal-

culated to estimate changes in gene expression patterns

induced by NAC. Hierarchical clustering and pathway

enrichment analyses were used to characterize relation-

ships between differentially expressed genes and affected

gene pathways. Machine learning was employed to refine a

gene expression signature with the potential to predict

response to NAC.

Results. Forty nine genes consistently affected by NAC

were involved in enhanced regulation of wound response,

chemokine release, cell division, and decreased pro-

grammed cell death in residual invasive disease. The

statistical distances between pre-NAC and post-C1 signif-

icantly predicted pathological complete response [area

under the curve (AUC) = 0.75; p = 0.003; 95% confidence

interval (CI) 0.58–0.92]. Finally, the expression of

CCND1, a cyclin that forms complexes with CDK4/6 to

promote the cell cycle, was the most informative feature in

pre-NAC biopsies to predict response to NAC.

Conclusions. The results of this study reveal significant

transcriptomic changes induced by NAC and suggest that

chemotherapy-induced gene expression changes observed

early in therapy may be good predictors of response to

NAC.

Triple-negative breast cancer (TNBC) accounts for

10–20% of breast cancer and is characterized by the

absence of expression of estrogen receptor (ER), proges-

terone receptor (PgR), and human epidermal growth factor

receptor 2 (HER2).1 Due to the absence of therapeutic

targets, anthracycline- and taxane-based neoadjuvant
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chemotherapy (NAC) has become part of the standard of

care for patients with stage I–III TNBC. However, 60–70%

of TNBC patients who receive NAC will not have patho-

logical complete response (pCR), which is associated with

higher risk of recurrence and shorter overall survival (OS).2

The remaining viable tumor cells may be inherently

refractory or have acquired resistance to chemotherapy.

Additionally, NAC may exert a selective pressure that

promotes drug resistance, which enhances the ability of

tumor cells to metastasize.3,4 However, clinical–demo-

graphic and molecular features that predict poor response

are yet to be characterized.

Seminal attempts to characterize informative biomarkers

have focused on the study of molecular features of pre-

treatment biopsies (pre-NAC).5,6 Yet, this strategy does not

consider the impact of molecular alterations induced by

therapeutic agents. Studies comparing paired pre-NAC and

post-NAC specimens showed significant gene expression

changes influenced by chemotherapeutic agents.7–11

Therefore, the identification of molecular features after

early exposure to NAC would provide critical information

to aid clinical decision-making. This has been investigated

in patients with hormone receptor-positive breast cancers

treated with neoadjuvant endocrine therapy (NET), where

changes in proliferation markers (i.e., Ki-67)12,13 or gene

expression signatures14,15 between pre-NET and on-treat-

ment biopsies were shown to be better predictors than

evaluation of pre-NET specimens alone. However, infor-

mative gene expression-based markers predictive of

response to NAC in TNBC patients remain poorly

developed.

Here, we explored three approaches to assess gene

expression patterns to more efficiently predict the response

to NAC in TNBC patients. First, we compared changes to

gene expression programs induced by NAC. Second, we

investigated the utility of assessing the gene expression

changes after a single cycle of NAC to predict pCR.

Finally, using machine learning, we constructed and vali-

dated classifiers to identify patients who are likely to

respond to treatment using pre-NAC specimens.

PATIENTS AND METHODS

Patients, Samples, and Clinical Data

We identified 4341 patients from 43 publicly available

gene expression datasets from Gene Expression Omnibus

(GEO; https://www.ncbi.nlm.nih.gov/geo/) and European

Genome-phenome Archive (EGA; https://www.ebi.ac.uk/e

ga/home) including specimens from breast cancer patients.

Patients with non-TNBC (n = 1964), no NAC administered

(n = 82), or absence of hormone receptor [estrogen

receptor (ER), progesterone receptor (PgR)] and/or human

receptor growth factor-2 (HER2) statuses (n = 883) were

excluded. Patients without information about NAC regi-

mens (n = 165), samples without pathologic response

evaluation (n = 102), and duplicated samples (n = 74)

were also excluded. NAC regimens in the datasets are

summarized in Supplementary Tables 1 and 2. pCR was

defined as absence of invasive disease in the breast and

lymph nodes (ypT0/is, ypN0),2,16 while presence of inva-

sive disease was considered residual disease (RD).

Specimens were evaluated at different time points: pre-

NAC, after the first and fourth NAC cycles (post-C1 and

post-C4, respectively), and at surgery (Sx) in patients with

RD. Specimens included in gene expression profiling were

subjects of pathologist-guided microdissection or tumor

enrichment processes. In addition, effective tumor purity of

samples based on gene expression patterns was assessed

using the ESTIMATE() v1.0.13 R package.

Data Access and Normalization

The raw intensity data (i.e., CEL files) were obtained for

each GEO accession number using functions within the

GEOquery() v2.50.5 R/Bioconductor package.17 Samples

were normalized using the rma() function in the oligo

v1.46.0R/Bioconductor package.18

Gene Expression Analyses

To identify gene expression changes influenced by

NAC, paired TNBC specimens (GSE32603, GSE18728,

and GSE21974; n = 102)7,8,10 were evaluated to identify

differences between pre-NAC and during NAC. Paired

TNBC specimens (GSE3260 and GSE18728; n = 88) were

evaluated to determine differences between pre-NAC and

Sx. Paired pre-NAC and post-C1 biopsies (GSE3260 and

GSE18728; n = 25) were employed to generate the Eucli-

dean metric distances using the expression of all genes

(Supplementary Information), by applying the hierarchical

clustering (HCL) function of the MeV v4.9.0 software.

These distances were used to generate phylogenetic trees

with the FigTree v1.4.3 software.

Classifier Construction to Predict Pathologic Response

from Pretreatment Specimens

We employed gene expression profiles from pre-NAC

TNBC biopsies from 16 datasets (Supplementary Table 2)

to construct and validate machine learning-based tran-

scriptomic classifiers to predict pCR. All samples were

combined by microarray platform and normalized, result-

ing in three separate datasets. These three datasets were

then merged, resulting in a final dataset with 708 pre-NAC
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samples with clinical annotation of response to NAC. To

avoid potential biases related to different evaluation plat-

forms, we performed a correction for batch effects from the

various platforms and arrays (Supplementary Fig. 1). The

batch-corrected dataset was used to construct a predictive

model to distinguish patients who achieved pCR from

those with RD after NAC, using the pre-NAC specimens.

This cohort was split into training (80% of patients) and

validation (20% of patients) datasets to train a random

forest (RF) model.

Bioinformatics Analyses

Gene expression levels were compared between the

groups using Student’s t test for unidimensional analyses.

Genes with absolute fold change (fc) C 2 and corrected

false discovery rate (FDR) of p\ 0.05 were considered

significantly differentially expressed. Hierarchical cluster-

ing analyses using significant genes were employed to

identify multidimensional associations between genes and

specimens. Pathway enrichment analysis was performed to

identify significant molecular functions affected by NAC

using the Kyoto Encyclopedia of Genes and Genomes

(KEGG), gene ontology (GO) molecular functions, and

Reactome using GeneMania.19 The mean Euclidean dis-

tance between patients who reached pCR and patients who

presented RD after completed NAC treatment were eval-

uated using Student’s t test.

RESULTS

Neoadjuvant Chemotherapy Induces Gene Expression

Changes in TNBC Tumors

We analyzed paired tissue specimens before (pre-NAC),

during (post-C1 or post-C4), and after (Sx) NAC from

three different datasets to identify gene expression changes

induced by chemotherapeutic agents in TNBC patients

(n = 102; Fig. 1a). We identified 547 and 181 differentially

expressed genes (p\ 0.05) between pre-NAC and Sx tis-

sues, and 972 differentially expressed genes (p\ 0.05)

between pre-NAC and post-C4 (Fig. 1b). Of these, 49

genes were consistently altered in at least two independent

studies (Fig. 1c). Interestingly, the pathway enrichment

analyses identified that NAC induced an enhanced regu-

lation of wound response, chemokine release, cell division,

and decreased programmed cell death (hypergeometric test,

p\ 0.05; Fig. 1d).

Transcriptomic Variations During Neoadjuvant

Chemotherapy are Associated with Pathological

Response

Based on the premise that TNBC tumors responding to

NAC will experience early changes in gene expression

patterns, we utilized the Euclidean statistical distance

between paired pre-NAC, post-C1, and Sx as a method for

assessing the impact of NAC (Fig. 2a). We observed that

post-C1 biopsies were generally located between the pre-

NAC and the Sx specimens, but the distances between pre-

NAC and post-C1 were variable among the patients

(Supplementary Fig. 2). Notably, we identified that a larger

Euclidean distance between the pre-NAC and post-C1

biopsies was significantly associated with pCR to NAC

(n = 25; Student’s t test; p = 0.02; Fig. 2b), and showed

significantly good accuracy in predicting pCR (AUC =

0.75; p = 0.003; 95% CI 0.58–0.92; Fig. 2c). We addi-

tionally identified 21 genes that had a unique expression

pattern in each time point of the treatment [one-way

analysis of variance (ANOVA); p\ 0.01; Fig. 2d, Sup-

plementary Table 3]. Phylogenetic trees using the 21-gene

signature showed a separation of the specimens according

to tissue types that resemble the time points of tissue col-

lection during NAC treatment (Fig. 2e).

Gene Expression-Based Classifiers Predict pCR to NAC

Using Pretreatment Specimens

To expand the prediction performance of the transcrip-

tomic profiling, we evaluated a large collection of pre-NAC

biopsies from TNBC patients with and without pCR at

NAC completion (n = 708; Fig. 3a, Supplementary

Table 2). Using random forest, a machine learning algo-

rithm, we constructed a gene expression classifier using a

training cohort of patients and evaluated the ability to

predict response to NAC using an independent validation

cohort (baseline characteristics of both cohorts are sum-

marized in Table 1). Of note, the overall accuracy of

predicting pCR was 81% (95% CI 74–88%), with sensi-

tivity of 63% and specificity of 89%. The most informative

genes of this classifier were CCND1, SCD5, and ILF2

(Fig. 3b) and differed significantly in expression between

pre-NAC tumor biopsies from patients with pCR and

patients with RD (Fig. 3c). Using the top 200 most infor-

mative genes, we generated gene network analyses and

identified significant enrichments of the G1/S transition in

mitosis, DNA strand elongation in DNA replication, and

response to transforming growth factor (TGF)-b processes

(Fig. 3d, Supplementary Table 4). These gene pathways,

frequently involved in oncogenic processes, may offer

additional insights regarding the mechanisms behind the

poor response to NAC in TNBC patients.
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DISCUSSION

To date, there are no efficient predictors of overall

outcome in TNBC other than the evaluation of pathological

response after NAC. Our study shows that NAC induces

significant changes in gene expression patterns, some of

which specifically affect tumor-related pathways that may

influence response to this treatment. Data presented here

indicate that transcriptomic profiling can accurately predict

pCR, both before initiation of treatment and after a single

cycle of NAC, offering additional information to guide

treatment decision-making.

Evaluation of gene expression changes in paired sam-

ples collected before and on treatment has been shown to

be a useful predictor of response to NAC in patients with

breast cancer. Korde et al. identified 45 gene pathways in

which the change in expression after one cycle of doc-

etaxel/capecitabine significantly differed between

responders and non-responders.7 Stickeler et al. found that

upregulation of HER4 after four cycles of epirubicin/cy-

clophosphamide was associated with pCR,8 and Magbanua

et al. observed a significant downregulation of proliferation

and immune-related genes after one cycle of anthracycline-

based chemotherapy.10 Our study explored gene expression
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10537 171
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FIG. 1 Neoadjuvant chemotherapy induces transcriptomic changes.

a Diagram describing patient selection criteria and treatment

regimens of each dataset (n = 102). b Hierarchical clustering

analysis indicating differential gene expression between the paired

specimens within each dataset. c Venn diagrams representing genes

with consistent differential expression (n = 49 genes). d Molecular

functions determined to be affected by NAC using pathway

enrichment analysis
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changes induced by NAC specifically in TNBC patients,

and identified alterations of cellular functions, including

wound healing response, chemokine release, cell division,

and decreased programmed cell death, mechanisms that are

involved in TNBC drug resistance. For example, enhanced

regulation of wound response, which involves matrix

remodeling and angiogenesis, has been shown to be asso-

ciated with worse prognosis, especially in patients with

basal-like breast tumors.20

While the vast majority of transcriptomic studies have

considered all breast cancer subtypes in pre-NAC speci-

mens,5,6,21–23 here we explored global gene expression

variations in TNBC tumors during NAC treatment. This

approach, based on a simple and unbiased statistical

comparison (Euclidean distances), allowed us to establish a

new approach to predict response to NAC early in the

treatment regimen. Upon validation of this novel method in

an expanded prospective cohort, we believe that this could

be used to monitor, in real time, the response to specific

therapeutic interventions, since a lack of early response

may suggest that changes should be made to the

chemotherapy regimen, or anticipate surgical procedures in

patients with operable TNBC.

Implementation of machine learning approaches

allowed us to further refine gene expression signatures in

TNBC tissues before NAC that can efficiently predict the

pathological response to NAC. In addition to reducing the

number of genes that need to be assessed, while enhancing

the predictive potential, this method allows for the design

of cost-effective laboratory assays. Indeed, therein lies the

clinical applicability of this classifier. As we have previ-

ously shown for breast cancer patients with brain

metastases, the most informative genes can be evaluated

through polymerase chain reaction (PCR).24 Thus, this
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approach, combined with the assessment of the Euclidean

distances, can significantly contribute to comprehensive

monitoring of treatment efficacy. In addition to the pre-

dictive potential of the machine learning-based classifiers,

the most informative genes (CCND1, SCD5, and ILF2)

have previously been associated with chemotherapy resis-

tance.25–27 Interestingly, genes involved in cell-cycle

control, such as CCND1, are associated with response to

NAC,28 which has prompted investigations into markers of

sensitivity for response to CDK4/6 inhibitors in preclinical

studies.29

While the large number of specimens evaluated allowed

us to identify significant transcriptomic changes, the dif-

ferences in individual study design involving time points of

sampling, methods for examining gene expression, and the

different chemotherapy regimens utilized in each study

limit definitive conclusions. This issue was specifically

reflected in the data batch effects that required a renor-

malization of the raw data to unify different gene

expression platforms. While, in general, the cohorts eval-

uated allowed for the identification of statistically

significant changes, sample size was limited in the analysis

of paired pre-NAC and post-C1 biopsies (n = 25). How-

ever, these data generated significant and promising results
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FIG. 3 Transcriptome-based classifier model of NAC

response using pre-treatment specimens. a Diagram showing the

sample filtering strategy used to generate the 708 TNBC samples

used to build and test the random forest-based classifier model. b The

top 20 most informative features in the final trained classifier model.
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of gene expression for the top three most informative genes.
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indicate genes identified in the network analysis that are not features
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TABLE 1 Pretreatment

characteristics
Baseline characteristic Training cohort Validation cohort Total p valuea

No. (%) 568 (80.2%) 140 (19.8%) 708 (100%)

Age (years) 0.30

B 50 296 (52.1) 80 (57.1) 376 (53.1)

[ 50 224 (39.4) 48 (34.3) 272 (38.4)

NA 48 (8.5) 12 (8.6) 60 (8.5)

Race 0.95

African American 24 (4.2) 5 (3.6) 29 (4.1)

Asian 2 (0.4) 0 (0) 2 (0.3)

Hispanic 32 (5.6) 7 (5) 39 (5.5)

White 65 (11.4) 17 (12.1) 82 (11.6)

NA 445 (78.3) 111 (79.3) 556 (78.5)

T stage, n (%) 0.07

T1 27 (4.8) 2 (1.4) 29 (4.1)

T2 265 (46.7) 73 (52.1) 338 (47.7)

T3 155 (27.3) 43 (30.7) 198 (28)

T4 75 (13.2) 11 (7.9) 86 (12.1)

NA 46 (8.1) 11 (7.9) 57 (8.1)

Lymph node status, n (%) 0.71

Negative 131 (23.1) 27 (19.3) 158 (22.3)

Positive 274 (48.2) 64 (45.7) 338 (47.7)

NA 163 (28.7) 49 (35) 212 (29.9)

AJCC stage, n (%) 0.61

I 13 (2.3) 1 (0.7) 14 (2)

II 217 (38.2) 55 (39.3) 272 (38.4)

III 292 (51.4) 73 (52.1) 365 (51.6)

NA 46 (8.1) 11 (7.9) 57 (8.1)

Histology, n (%) 0.26

IDC 119 (21) 27 (19.3) 146 (20.6)

IDC/ILC 3 (0.5) 0 (0) 3 (0.4)

ILC 0 (0) 1 (0.7) 1 (0.1)

NA 446 (78.5) 112 (80) 558 (78.8)

Grade, n (%) 0.19

I 4 (0.7) 1 (0.7) 5 (0.7)

II 72 (12.7) 10 (7.1) 82 (11.6)

III 299 (52.6) 76 (54.3) 375 (53)

NA 193 (34) 53 (37.9) 246 (34.7)

PAM50 subtype, n (%) 0.17

Basal-like 327 (57.6) 78 (55.7) 405 (57.2)

HER2-enriched 45 (7.9) 8 (5.7) 53 (7.5)

Luminal A 71 (12.5) 15 (10.7) 86 (12.1)

Luminal B 79 (13.9) 31 (22.1) 110 (15.5)

Normal-like 46 (8.1) 8 (5.7) 54 (7.6)

Neoadjuvant regimen, n (%) 0.48

Anthracycline only 112 (19.7) 31 (22.1) 143 (20.2)

Anthracyclines ? ixabepilone 48 (8.5) 16 (11.4) 64 (9)

Anthracyclines ? taxanes 339 (59.7) 76 (54.3) 415 (58.6)

Anthracyclines or taxanes 20 (3.5) 5 (3.6) 25 (3.5)

Platinum salts only 34 (6) 11 (7.9) 45 (6.4)

Taxane alone 15 (2.6) 1 (0.7) 16 (2.3)
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that would justify additional and specific validation studies,

mainly focused on specific chemotherapy regimens.

Despite these limitations, the results presented in this study

provide additional approaches to assess the impact of NAC

in TNBC tumors and novel insights about the variable, and

still unpredictable response to NAC.

CONCLUSIONS

Our study shows that neoadjuvant chemotherapy indu-

ces changes in gene expression patterns in TNBC that can

be employed to predict the pathological response employ-

ing pretreatment and early on-treatment tumor biopsies.

Validation of both the Euclidean metric distances and the

machine learning-based classifiers will provide the basis

for clinical assays that can aid clinical decision-making.
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