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ABSTRACT

Background. The ability to provide accurate prognostic

and predictive information to patients is becoming in-

creasingly important as clinicians enter an era of

personalized medicine. For a disease as heterogeneous as

epithelial ovarian cancer, conventional algorithms become

too complex for routine clinical use. This study therefore

investigated the potential for an artificial intelligence

model to provide this information and compared it with

conventional statistical approaches.

Methods. The authors created a database comprising 668

cases of epithelial ovarian cancer during a 10-year period

and collected data routinely available in a clinical envi-

ronment. They also collected survival data for all the

patients, then constructed an artificial intelligence model

capable of comparing a variety of algorithms and classifiers

alongside conventional statistical approaches such as lo-

gistic regression.

Results. The model was used to predict overall survival

and demonstrated that an artificial neural network (ANN)

algorithm was capable of predicting survival with high

accuracy (93 %) and an area under the curve (AUC) of

0.74 and that this outperformed logistic regression. The

model also was used to predict the outcome of surgery and

again showed that ANN could predict outcome (complete/

optimal cytoreduction vs. suboptimal cytoreduction) with

77 % accuracy and an AUC of 0.73.

Conclusions. These data are encouraging and demonstrate

that artificial intelligence systems may have a role in pro-

viding prognostic and predictive data for patients. The

performance of these systems likely will improve with in-

creasing data set size, and this needs further investigation.

Prognostic information has always been important to

patients and clinicians, but with the advent of a greater

range of treatment options for patients, prediction has be-

come increasingly important as well. This is particularly

true with ovarian cancer, which is an extremely heteroge-

neous disease. Patients present at various stages of the

disease, and the tumors not only are of varying grades but

also display a range of histologic subtypes.

Currently, outside of clinical trials, patients are treated

with surgical cytoreduction followed by platinum-based

chemotherapy.1 Whereas age,2 stage,3 grade,4 histologic

type,5 preoperative CA125 levels,6 and result of surgery7

all have been associated with overall survival, multivariate

analysis consistently shows only stage and result of surgery

to be independent prognostic factors.8

However, studies have shown new treatment options

including antiangiogenic treatment,9 poly(ADP-ribose)

polymerase (PARP) inhibitor therapy,10 and hormonal

therapy11 to be effective for at least some subgroups of

patients with ovarian cancer. Although biomarkers are

being developed to identify patients likely to respond to

each of these treatments,12–14 it is unclear how these

treatments should be scheduled and prioritized. Further-

more, although the role of surgery in ovarian cancer is well

established, it is clear that not all patients benefit from

surgery, and for some patients, the morbidity of the pro-

cedure outweighs any potential benefit. It is therefore
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important to develop more powerful prognostic and pre-

dictive tools that allow patients and clinicians to plan

treatment both optimally and realistically.

Artificial intelligence (AI) systems are in common ev-

eryday use and provide many benefits including ability to

handle enormous amounts of data, to cope with missing

data items, and to evolve in the presence of new data. In

general, they attempt to find better solutions rather than the

absolutely best or correct solution.15

Simplistically, AI systems comprise an algorithm and a

classifier. Several different algorithms and classifiers have

been developed, all of which have relative merits. Further

information regarding these is given in the supplementary

materials.

This study therefore investigated the role of AI systems

in creating a prognostic and predictive tool for ovarian

cancer. We generated a historical data set from patients

treated at our institution and extracted data that would be

readily available after initial surgery and staging, mim-

icking the clinical situation, as well as overall survival

data. We then used a systems-based approach to investigate

the optimal method for determining a range of outcomes.

METHODS

The Data Set

The Newcastle ovarian cancer tissue and data set has

been described previously.16 Briefly, the data set comprises

668 cases of epithelial ovarian cancer. All patients under-

went maximal-effort primary cytoreductive surgery

followed by platinum-based chemotherapy either with or

without paclitaxel between 1995 and 2005 at the Northern

Gynaecological Oncology Centre, Gateshead, UK. No pa-

tient received intraperitoneal chemotherapy during the

study period.

For each tumor sample, all histology reports and patient

records were retrieved wherever possible, and data were

extracted after ethical approval. Data were extracted from

the patient record, including age, International Federation

of Gynecology and Obstetrics (FIGO) stage, grade, histo-

logic subtype, preoperative CA125, and outcome of

surgery (Table 1, supplementary materials). All these data

items are available to a clinician immediately after staging

surgery. In fact, given the increased use of pretreatment

biopsy and the routine use of cross-sectional imaging, these

data items all can be provided to a clinician before any

treatment is mandated. These data items were termed

‘‘features’’ for the purpose of this study. Although other

features could have been considered for inclusion in the

study, the aforementioned list was considered the minimum

data set that would be available to all clinicians.

An important trend during the study period was the in-

crease in complete cytoreduction rates from 30 % in 1995

to 55 % in 2005. Overall survival (all-cause mortality) also

was recorded as an end point. Median survival increased

from 25 months in 1995 to 35 months in 2005.

Generation of the AI System

A system then was created to generate overall patient

survival as the output. The system was developed on a

Java-based platform capable of analyzing multiple pa-

rameters using any of three algorithms [decision tree (DT),

artificial neural network (ANN), and Bayesian network

(BN)] and any of three classifiers [support vector machines

(SVM), naı̈ve Bayes (NB), and K-nearest neighbor (KNN)]

(for further information, see the supplementary materials).

The system was thus capable of making multiple com-

parisons between different combinations of algorithms and

classifiers using the data set as described earlier. Each

analysis was stored and compared with the percentage

performance of each technique on the appropriate data sets

and sub-data sets.

Experimental Methodology

To compare different machine learning techniques and

data sets, we first generated a process definition (Fig. 1).

Briefly, the data set was first randomized. The initial

training and evaluation of the model started with 190 cases

randomly selected from the data set. Sequentially, 18 new

cases then were added to the data set until all 668 available

cases were included. This process allowed investigation of

the model’s performance by increasing the number of data

items and allowed discovery of the optimal stop-training

point. Ultimately, this means that for each outcome in-

vestigated, a total of 7668 analyses were performed.

Each interval of the process contained both a training

process and an evaluation process. The tenfold cross-

validation was used to estimate the performance

prediction.17

Survival was used as the end point in all analyses. The

survival period of the patients in the data set ranged from 1

to 116 months. In each analysis, the median survival period

for that particular cohort was calculated, and the accuracy

of the system was calculated by the ability of the system to

predict survival more or less than the median for that co-

hort. Patients for whom follow-up data were not available

to at least the median time point were excluded from the

analysis. Other performance indicators used were accuracy,

recall, mean absolute error (MAE), root mean squared error

(RMSE), and area under the curve (AUC), reviewed in the

study of Cort and Kenji.18
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RESULTS

Artificial Neural Networks Have the Highest Accuracy

for Prognosis

Ability to Predict More or Less Than Median Survival.

The model was used to predict survival, dichotomized

around the median survival of the cohort. As outlined

earlier, the model was tested initially with a random set of

190 cases and validated with the remainder. In this test,

ANN outperformed the Bayesian networks and the decision

tree, which had only limited predictive capacity (Fig. 2),

and gave an overall predictive accuracy of 89 %. The AUC

for the receiver operating characteristic curve (ROC) was

0.74, suggesting good prediction, and the MAE and RMSE

had low scores of 0.16 and 0.30, respectively. Thereafter,

all analyses were performed using ANNs.

When the number of cases in the validation set was

increased in steps of 18 cases, the accuracy of the system

also improved slightly to 92 % when the maximum 658

cases were used for test cases and the remaining 10 were

used as validation cases.

Ability to Determine Prognosis for Smaller and Smaller

Groups. The ability to determine survival to more or less

than a single time point is of limited clinical value. We

therefore wanted to investigate the performance of the

system to determine prognosis in increasing numbers of

categories. We therefore divided the cohort into quartiles

and then into 8, 16, 32, and ultimately, 64 categories.

As expected, the accuracy of the model decreased,

whereas the MAE and RMSE increased in relation to

prediction of survival with increasing numbers of cate-

gories from 89 % for 2 categories to just 6 % for 64

categories (Fig. 3).

Ability to Predict 5-Year Survival. Overall survival can

be defined in terms of median survival or 5-year survival
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rates. To allow comparison of our model against other

published data, we therefore calculated the accuracy of our

system in predicting 5-year (60-month) survival. The ac-

curacy of the model in predicting 5-year survival was

93 %. The error rate values were relatively small, with an

MAE of 0.16 and RMSE of 0.30. The area under the ROC

curve (AUC) of 0.74 indicated that the model performed

well.

AI Can be Used to Provide Predictive Information

Regarding Surgical Resection

In addition to use of the model as a prognostic tool, we

tested its ability to predict outcome. We chose to evaluate

the ability of the system to test outcome of surgery because

this is arguably one of the most important treatment deci-

sions needing to be made with a patient.19 The features

used were age, stage, grade, histologic type, and preop-

erative Ca125. All these features would be available to a

surgeon after a biopsy but before performance of a

laparotomy.

The accuracy of the model to predict complete, optimal,

or suboptimal cytoreduction was 59.75 %, with an MAE

value of 0.34 and an RMSE value of 0.42. The AUC for

complete cytoreduction curve was 0.75. The AUC for op-

timal cytoreduction was 0.66, and the AUC for suboptimal

cytoreduction was 0.71 (Fig. 4).

The question then was further refined to give a predic-

tion of ‘‘complete and optimal’’ as the one category and

‘‘suboptimal’’ as the other category. In this situation, the

performance of the model improved to give an accuracy of

77.7 % associated with an MAE of 0.29 and an RMSE of

0.38.

Comparison of the AI System with Conventional

Statistics

To have a complete comparison between models, lo-

gistic regression models as standard conventional statistical

prediction models were developed. The results of the lo-

gistic regression models then were compared against the

ANN results.

Although Cox proportional hazards models are more

commonly used for survival analysis and can be applied to

predict survival probabilities, such models are better suited

for making comparisons between two different treatment

arms (comparing the hazards between each). Given that

this study aimed to develop prediction for an individual

patient, logistic regression models were more appropriate.

The model, using ANN as the algorithm, consistently

outperformed logistic regression in its ability to predict

survival more or less than the median for each cohort. In

5998 (75 %) of 7998 analyses, ANN had a greater accuracy

than logistic regression (Fig. 5).

Using AUC to make a direct comparison, the AUC for

logistic regression was 0.62 compared with the AUC of

0.72 for ANN. Compared with logistic regression, ANN

also was associated with lower MAE and RMSE scores.

DISCUSSION

This report describes the development of an AI model

capable of providing prognostic and predictive information

in ovarian cancer. The model uses readily available data

items as input variables. We have measured success of the

model in predicting overall survival, which is the most

clinically important outcome measure. Thus, this tool may

have direct clinical relevance for patients and their treating

physicians. It also may be of use in the research setting in

which reliable outcome data must be obtained without long

follow-up periods.

With the system optimized, we are able to predict sur-

vival for patients in our cohort with an accuracy of 93 %
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compared with the median survival of the group (AUC,

0.72). Clearly, the ability to predict whether a patient will

survive to more or less than a single time point has limited

clinical use, but given the size of this data set, we believe

that these are encouraging results. The ability of the system

to predict survival with more outcome categories de-

creased, but even when 64 outcome categories were used

(which is almost equivalent to predicting survival by

month), the system could accurately predict survival in 6 %

of cases.

We also used the model to provide predictive informa-

tion and chose outcome of surgery (the ability to identify

patients likely to end up with suboptimal cytoreduction) as

an important clinical question.19 To date, conventional

predictive systems have had limited accuracy.20 Although

our model also had only limited accuracy (77 %), this was

based on data easily available to all clinicians and did not

take into account any findings from radiologic investiga-

tions or comorbidities of the patient. Such features can

easily be incorporated into an AI system, and future

investigations will examine whether incorporating such

features improves the accuracy of the model further. These

results are consistent with those of Jefferson et al.,21 who

showed that neural networks can outperform logistic re-

gression in predicting surgical outcome in lung cancer.

Our results suggest that the model described in this re-

port is a better predictor of outcome than a system based on

conventional statistics. Two systems based on conventional

statistics have been described for use in ovarian cancer:

Gerestein et al.22 developed a nomogram using three or five

parameters that has a c statistic of 0.67, whereas Teramukai

et al.23 developed a similar nomogram, which has subse-

quently been validated in a UK-based population of

patients.24 Both of these models are finite (i.e., their per-

formance is fixed and will not improve with time). In

contrast, a systems-based approach, such as the one de-

scribed in this report, can be iterative, and performance is

likely to improve as the data set enlarges. In this report, we

demonstrated modest increases in performance as the

number of cases was increased, which supports this con-

cept. It also is likely that as the number of cases in the data

set increases, the relative weightings of some of the input

parameters will change. Thus, we will continue to input as

many data items as are available and monitor the perfor-

mance of the system to test this further.

Ovarian cancer is an extremely heterogeneous disease

with a variety of different histologic subtypes and a wide

range of responses to treatment. By developing a model in

this disease, we are confident that similar models also can

be developed in more homogeneous cancers. Artificial in-

telligence systems also have other significant advantages

over conventional models. In particular, they can cope with

missing data items and will incorporate algorithms to

overcome this (see supplementary data). Their greatest

advantage, however, is that they are iterative, and perfor-

mance improves as the data sets increase in size and

relevance. Therefore, although this model has been tested

in only one center, it could be adapted for use in multiple
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centers but would need to ‘‘learn’’ how to predict in each

center given that the outcomes (e.g., for surgery) are likely

to be different.

Current research in ovarian cancer is focused on de-

veloping new treatments, many of which will be biomarker

driven (i.e., a test will be available that will dictate whether

the patient is likely to respond to the treatment in question).

Such a model is already standard care in breast cancer, with

a test that identifies the presence of the HER2 receptor and

dictates whether a patient receives herceptin treatment.

Therefore, within a relatively short time, we likely will

have a multitude of new treatments available, all associated

with a particular biomarker test. The challenge for the

clinician will be to prioritize these treatments and deter-

mine the optimal treatment strategy. Because conventional

algorithms probably will not be capable of handling such

complex interactions as are likely to exist, the development

of AI systems will become paramount. We hope that the

system described in this report can be the basis for the

development of these more complex models.

Future work will include increasing the size of the data

set to increase the performance of the system and validat-

ing it further on other external data sets of patients.
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