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Abstract
The present study aimed to develop and optimize solidified supersaturated self-nanoemulsifying drug delivery systems 
(SNEDDS) for the combined administration of antihypertensive, antihyperglycemic, and antihyperlipidemic drugs to enhance 
their solubility and dissolution during the treatment of metabolic syndrome. Various SNEDDS formulations were prepared 
and subjected to pharmaceutical assessment. The solubility of candesartan (CC), glibenclamide (GB), and rosuvastatin (RC) 
in SNEDDS and supersaturated SNEDDS formulations was evaluated. The optimized formulation was solidified using Syloid 
adsorbent at different ratios. Pharmaceutical characterization of the formulations included particle size, zeta potential, in-
vitro dissolution, PXRD, FTIR, and SEM analysis. The prepared optimized formulation  (F6) was able to form homogeneous 
nanoemulsion droplets without phase separation, which is composed of Tween 20: PEG-400: Capmul MCM (4: 3: 3). It 
was mixed with 5% PVP-K30 to prepare a supersaturated liquid SNEDDS formulation (F9). In addition, it was found that 
the addition of PVP-K30 significantly increased solubility CC and GB from 20.46 ± 0.48 and 6.73 ± 0.05 to 27.67 ± 1.72 
and 9.45 ± 0.32 mg/g, respectively. In-vitro dissolution study revealed that liquid and solid SNEDD formulations remark-
ably improved the dissolution rates of CC, GB, and RC compared to pure drugs. XRPD and FTIR analysis revealed that all 
drugs present in an amorphous state within prepared solidified supersaturated SNEDDS formulation. SEM images showed 
that liquid SNEDDS formulation was successfully adsorbed on the surface of Syloid. Overall, optimized F9 and solidified 
supersaturated SNEDDS formulations showed superior performance in enhancing drug solubility and dissolution rate. The 
present study revealed that the proposed triple combination therapy of metabolic syndrome holds a promising strategy during 
the treatment of metabolic syndrome. Further in-vivo studies are required to evaluate the therapeutic efficacy of prepared 
solidified supersaturated SNEDDS formulation.
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Introduction

Metabolic syndrome, known as syndrome X, encompasses 
a collection of abnormal metabolic disorders, including ele-
vated blood pressure, insulin resistance, hyperlipidemia, and 
central abdominal obesity [1]. These metabolic disturbances 
contribute to the manifestation of various medical condi-
tions, notably type II diabetes mellitus, and coronary vas-
cular disease [2]. The incidence of metabolic syndrome has 
promptly escalated in recent decades, particularly in modern 
countries. This surge is primarily attributed to increased diet 

intake rich in calorie content and low physical activity due 
to the availability of mechanical transportation and motion-
less activities [3, 4]. Furthermore, smoking, alcohol con-
sumption, and stress conditions exacerbate the occurrence 
of metabolic syndrome [5]. Therefore, lifestyle modification 
should be implemented in terms of consuming a diet with 
a high fiber content and increasing physical activity [2, 6].

The National Institutes of Health (NIH) recommends 
starting combinational administration of pharmacotherapies 
to lower blood pressure, glucose, and lipid level [7]. There-
fore, combinational therapeutic molecules, including antihy-
pertensive agent (angiotensin-converting enzyme inhibitors 
or angiotensin receptor blockers), antihyperglycemic agent 
(sulfonylurea), and antihyperlipidemic agent (statins), are 
usually prescribed to maintain normal level of blood pres-
sure, glucose, and lipid levels, respectively [8, 9].
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Candesartan is a potent long-lasting antihypertensive 
agent that exerts its pharmacological action through block-
ing the angiotensin II receptor [10, 11]. It has been reported 
that angiotensin II receptor could have a superior edge over 
angiotensin-converting enzyme inhibitors in the protection 
of systemic organs [12]. A clinical study showed that cande-
sartan was able to restore blood pressure to normal level in 
diabetic patients with a protective effect against renal injury 
[13]. Moreover, the angiotensin II receptor present in adipose 
tissue triggers insulin resistance and glucose intolerance. 
Therefore, the administration of angiotensin II receptor like 
candesartan enhances normal metabolic body activities [14].

Glibenclamide (GB) is an antihyperglycemic drug that 
belongs to the sulfonylurea group [15, 16]. GB exerts its 
antidiabetic activity through increasing insulin secretion. 
This is achieved following the inhibition of ATP-dependent 
potassium channels present in the beta cell of the pancreas 
[17]. Franco et al. found that early treatment with GB in 
pre-diabetic obese male rats prevented the onset of obesity, 
reduced fat tissue accumulation, and lowered glycemia [18].

Rosuvastatin reduces cholesterol blood levels through 
competitive inhibition of 3-hydroxy-3-methylglutaryl CoA 
reductase [19, 20]. Various clinical studies showed that rosu-
vastatin has a superior antihyperlipidemic activity over other 
statins for patients diagnosed with metabolic syndrome [21, 
22]. Furthermore, Bostan et al. reported that rosuvastatin 
exhibited notable positive impacts on atherogenic dyslipi-
demia, inflammatory biomarkers, and oxidative stress among 
individuals diagnosed with Metabolic Syndrome [23].

However, the major limitation of multiple administra-
tions of medication pills is low adherence of patients and 
compliance which could result in ineffective therapy [24]. 
Consequently, mixing the three therapeutic agents in a sin-
gle pharmaceutical dosage form could resolve the aforemen-
tioned limitation of multiple pill administration. Moreover, 
the absolute oral bioavailability of candesartan, glibencla-
mide, and rosuvastatin are about 40, 45, and 20%, respec-
tively [25–27]. Therefore, triple metabolic syndrome therapy 
should be formulated using a drug delivery system that is 
able to enhance drugs solubility and bioavailability [28, 29].

Different classes of drug delivery systems have been 
designed to boost the oral bioavailability of poorly water-
soluble drugs [30]. Among them, a self-nano-emulsifying 
drug delivery system (SNEDDS) was extensively employed 
to overcome the limited solubility of lipophilic drugs. This 
can be ascribed to its durable colloidal stability, enhanced 
drug permeability through the mucosal membrane, improved 
drug bioavailability, and applicability in manufacturing and 
scaling up [31, 32].

The present study aimed to prepare SNEDDS formulation 
loaded with triple therapy to enhance therapeutic outcomes 

and patient compliance. To achieve this, various formula-
tions were prepared and assessed in terms of emulsification 
and drug solubility. Furthermore, supersaturated SNEDDS 
formulation was prepared to enhance drug loading capacity 
and subjected to solidification using Syloid adsorbent. After 
that, solidified supersaturated SNEDDS formulation was 
subjected to in-vitro dissolution, PXRD, SEM, and FTIR 
studies for pharmaceutical characterization.

Materials and Methods

Materials

Candesartan cilexetil and Glibenclamide were generously 
provided by Riyadh Pharma (Riyadh, Saudi Arabia) and 
SPIMACO (Qassim, KSA), respectively. Rosuvastatin 
calcium was acquired from Beijing Mesochem Technol-
ogy Co., Ltd. (Beijing, China). Kolliphor-EL (K-EL, sur-
factant), Kollidon® K30 (PVP-K30), and Kollisolv PEG 
400 (PEG-400, co-surfactant) were acquired from BASF 
(Ludwigshafen, Germany). Tween-20 (T-20, surfactant) was 
supplied by BDH (England). Span-80 (S-80, co-surfactant) 
was purchased from Merck (Darmstadt, Germany). Capmul 
MCM (CMCM, oil) was obtained from Abitec Corporation 
(Janesville, USA). Oleic acid (OA, oil) was acquired from 
Avonchem (Cheshire, UK).

Preparation of SNEDDS Formulation

Table I shows the excipient composition used to prepare 
drug-free SNEDDS formulations. The mentioned ingredi-
ents were added and then subjected to vigorous agitation 
using a vortex mixer to ensure the homogeneity of SNEDDS 
components [33]. Subsequently, the resulting SNEDDS 
formulations were assessed using diverse characterization 
procedures to identify the most promising formulations for 
subsequent pharmaceutical testing.

Preparation of Supersaturated SNEDDS 
(Sup‑SNEDDS) Formulation

A preliminary solubility screening of different types of 
polymers (Poloxamer 407, PVP-K30, and HPMC) was per-
formed to select the optimum precipitation inhibitor. Firstly, 
100 mg of the used polymer was blended with 1900 mg of 
the SNEDDS in a 10 mL glass beaker to prepare a final con-
centration of 5 w/w%. The prepared mixture was exposed to 
mixing at 1000 rpm using a magnetic stirrer for 24 h. Finally, 
the soluble polymer was chosen depending on the clarity of 
SNEDDS' physical appearance.
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Preparation of Solidified Supersaturated SNEDDS

To prepare the drug-loaded liquid supersaturated SNEDDS 
formulation, 8 mg of candesartan cilexetil, 2.5 mg of gliben-
clamide, and 5 mg of rosuvastatin calcium were accurately 
weighed and dissolved in every 500 mg of the SNEDDS for-
mulation. After that, solidified supersaturated SNEDDS was 
formulated utilizing Syloid adsorbent. Drug-loaded liquid 
supersaturated SNEDDS formulation was mixed with Syloid 
at various ratios (1:0.5, 1:0.75, 1:1, and 1:1.25) to prepare 
S1, S2 and S3 formulations, respectively [34].

Miscibility test

This test was performed to observe the incident of phase 
separation and check the miscibility of SNEDDS compo-
nents. Following SNEDDS preparation, it was exposed to 
centrifugation for 10 min at a speed of 14,000 rpm at a con-
trolled room temperature (22.0 ± 2.0°C). This accelerates 
the separation of immiscible components from each other. 
Following the centrifugation process, the SNEDDS formu-
lations in the Eppendorf tubes were visually inspected to 
evaluate their uniformity [35].

Emulsification Test

An emulsification test was performed to ensure the ability 
of the surfactant and co-surface to form an emulsification 
system without oil separation. This is attained following the 
dilution of SNEDDS with water (1:1000) and mixing with 
a magnetic stirrer for 5 min at 250 rpm. After that, a visual 
inspection of the dispersed system was checked to assess its 
physical appearance [36].

Physicochemical Characterization

The physicochemical properties of the SNEDDS formula-
tions were assessed through various analyses. The particle 

size and zeta potential of the dispersed formulations were 
determined using a Zetasizer instrument. The results were 
reported as the average of three measured values for each 
formulation [37].

Solubility Test

A solubility test was conducted to investigate the solubility 
of each drug individually in the SNEDDS formulations. 
During the experiment, excess amounts of CC, GB, and 
RC were gradually added to the SNEDDS formulations 
(F2, F6, and Sup-F6) in a 4 mL glass vial. The mixture was 
then stirred using a magnetic stirrer at 1000 rpm for 24 h. 
Afterward, the mixture was centrifuged at 14,000 rpm 
for 10 min to precipitate the undissolved drug. An accu-
rately weighed amount from the supernatant was carefully 
weighed in an Eppendorf tube. Acetonitrile was added to 
the formulation and exposed to sonication, guaranteeing 
the ability to extract the drug. The extracted solution was 
appropriately diluted and analyzed against a constructed 
calibration curve to determine the drug concentration [35].

In‑Vitro Dissolution Study

The dissolution behavior of the drugs was determined by 
utilizing USP apparatus II. The condition of the test was 
adjusted using phosphate buffer pH 6.8 with a fixed tem-
perature of 37 ± 0.5°C. The paddle was rotated at 75 rpm. 
An amount equivalent to 2.5 mg GB, 5 mg RC, and 8 mg 
of CC was calculated for the selected liquid SNEDD, and 
the solidified formulations. At preplanned times of 5, 15, 
30, and 60 min, 5 ml samples were withdrawn and ana-
lyzed using the UPLC method [38].

PXRD

Assessment of crystallinity of the three tested drugs in their 
solidified SNEDDS formula was evaluated using XRPD 

Table I  Composition of Drug-
free SNEDDS Formulations

Formulation 
code

Surfactant Co-surfactant Oil

Kolliphor-EL Tween-20 PEG-400 Span-80 Oleic acid Capmul MCM

F1 400 300 300
F2 400 300 300
F3 400 300 300
F4 400 300 300
F5 400 300 300
F6 400 300 300
F7 400 300 300
F8 400 300 300
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studies. Briefly, an Ultima IV x-ray diffractometer (Rigaku 
Inc., Tokyo, Japan) was used. The diffractometer operated 
Cu Kα radiation for X-ray measurements. The XRPD spectra 
were attained by scanning the samples over a range of 2θ 
range of 5–60° to allow the detection of diffraction peaks 
related to the crystallographic structures present in the sam-
ples [39].

FTIR

The FTIR scans for the individual APIs, Syloid and the 
solidified SNEDD formul were performed by using FTIR 
spectrophotometer instrument (Perkin Elmer, MA, USA). 
Solid powder samples were mixed with potassium bromide 
(a spectroscopic grade), and compressed by hydraulic press 
into disks, which were then subjected to scanning from 4000 
to 400   cm−1. The data were then analyzed using Perkin 
Elmer software (Spectrum V5.3.1) [35].

SEM

The pure APIs and optimum solidified SNEDDS formula 
were investigated for their surface properties and their 
globule size after solidification using scanning electron 
microscopic (SEM). Regarding SEM analytical measures, 
the powder sample was sputter-coated with a thin layer 
of gold–palladium. Thereafter, the coated samples were 
scanned at a voltage of 60 mV in order to confirm appropri-
ate imaging settings and permit obtaining comprehensive 
information for the particles’ surface morphology [40].

Results and Discussion

Evaluation of Drug‑Free SNEDDS Formulation

Table II presents the results obtained from the miscibility 
and emulsification test of the developed formulations. The 
present results showed that the used components are misci-
ble with each other with no sign of phase separation. How-
ever, the F1 formulation was incapable of being dispersed 
in the medium, resulting in the development of aggregated 
particles, as shown in Fig. 1. Furthermore, upon dispersion 
of F3-F5, F7, and F8 formulations, it was observed that the 
oil failed to be incorporated into the dispersed emulsion, 
and macroparticles were clearly observed by the eye in the 
medium (Fig. 1). In contrast, only the F2 and F6 formula-
tions were able to form nanoemulsion droplets with a trans-
parent appearance and without any signs of phase separa-
tion (Fig. 1). This could be explained by the optimal HLB 
values between combined SNEDDS components that form 
nanoemulsion droplets. Regarding surfactants, Tween 20 
and Kolliphor-EL have HLB values between 14 – 17 [41]. 

For oils, capmul MCM has an HLB value of 4.7 [42], while 
oleic acid has an HLB value of 1.2 [43]. Therefore, it could 
be observed that HLB value of capmul MCM was closer 
to HLB of surfactants than oleic acid. This enhances the 
emulsification tendency of the dispersed system containing 
capmul MCM compared to its counterpart containing oleic 
acid. Regarding co-surfactant, the SNEDDS formulation 
containing PEG-400 successfully formed a nanoemulsion 
owing to its reported emulsifying properties, which reduce 
the interfacial tension between the surfactant and oil [44]. 
Therefore, F2 and F6 were selected due to the visualized 
transparent physical appearance of the dispersed system in 
Fig. 1.

The particle size, PDI, and zeta potential of the success-
ful SNEDDS formulations (F2, and F6) were measured and 
reported in Table III. The results showed that F2 and F6 for-
mulations were able to form a nano-dispersion system with 
a negative zeta potential value. The current findings showed 
that the prepared SNEDDS could enhance the bioavailabil-
ity of the incorporated drug molecules [45–47]. Addition-
ally, the presence of residual fatty acids in oils could be 
responsible for the measured negative zeta potential value, 
which aligns with previously published data [48]. Fur-
thermore, various studies showed that negatively charged 
nanoparticles enhanced the oral bioavailability of payload 
drugs [49, 50]. Therefore, prepared SNEDDS formulation 
is anticipated to significantly boost the oral bioavailability 
of loaded triple therapy during the treatment of metabolic 
syndrome.

Solubility study was conducted to investigate the loading 
capacity of triple therapy in F2 and F6 formulations. The 
solubility of CC, GB, and RC in F2 and F6 formulations 
was determined to be (20.14 ± 0.54 and 20.46 ± 0.48 mg/g), 
(6.23 ± 0.04 and 6.73 ± 0.05 mg/g), and (198.89 ± 4.03 and 
269.78 ± 11.38 mg/g) respectively, as illustrated in Fig. 2. 
These results indicate that F6 significantly enhances the 
solubility of GB and RC while having no significant impact 
on CC solubility when compared to F2. Therefore, F6 for-
mulation was picked as the leading formulation.

Table II  Evaluation of Drug-free SNEDDS Formulation

Formula-
tion code

Miscibility Physical appearance of dis-
persed SNEDDS formulation

Evaluation

F1 ✓ Indispensable system x
F2 ✓ Transparent ✓
F3 ✓ Phase separation x
F4 ✓ Phase separation x
F5 ✓ Phase separation x
F6 ✓ Transparent ✓
F7 ✓ Phase separation x
F8 ✓ Phase separation x
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Fig. 1  Physical Appearance of 
Dispersed SNEDDS Formula-
tions

Table III  Particle size, PDI, 
and Zeta Potential Values of 
SNEDDS Formulations

Formulation code Particle size (nm) PDI Zeta potential (mV)

F2 138.7 ± 3.2 0.513 ± 0.017 - 18.3 ± 1.3
F6 148.0 ± 3.2 0.531 ± 0.026 - 30.8 ± 1.2
F9 (F6 supersaturated with PVP) 123.9 ± 2.4 0.512 ± 0.015 -22.5 ± 0.3
Drugs-loaded F9 99.5 ± 10.2 0.593 ± 0.011 - 30.4 ± 2.4
S1 (Solidified Drugs-loaded F9) 99.3 ± 0.8 0.583 ± 0.14 -29.7 ± 2.2

Fig. 2  Solubility of Candesartan cilexetil, Glibenclamide, and Rosuvastatin calcium in F2, F6, and Sup-F6 formulations
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Evaluation of Supersaturated‑SNEDDS Formulation

To enhance the solubility of CC and GB in F6 formula-
tion, the solubility of various polymers (poloxamer 407, 
PVP K30, and HPMC) was investigated to prepare super-
saturated SNEDDS. The current results showed that all 
polymers, except for PVP-K30, were unsuccessfully dis-
solved in SNEDDS formulations. This could be attrib-
uted to the capability of PVP to form bonds with used 
SNEDDS components, which facilitate its solubilization. 
Consequently, PVP-K30 was chosen to prepare supersatu-
rated SNEDDS. Table III shows that the addition of PVP-
K30 to the F6 formulation reduces the particle size of the 
dispersed F9 (F6 supersaturated with PVP) formulation 
from 148.0 to 123.9 nm. In addition, the solubility study 
revealed that the prepared F9 exhibited significantly higher 
solubility for CC and GB compared to the counterpart F6 
(Fig. 2). The solubility of CC increased from 20.46 ± 0.48 to 
27.67 ± 1.72 mg/g, while the solubility of GB increased from 
6.73 ± 0.05 to 9.45 ± 0.32 mg/g. On the contrary, the solubil-
ity of RC was significantly decreased from 269.78 ± 11.38 
to 193.03 ± 7.69 mg/g. This could be attributed to the incre-
ment in formulation viscosity owing to the presence of pre-
cipitation inhibitor polymer. Furthermore, dissolved RC 
during the experiment increased the viscosity of SNEDDS 
formulation. Both factors could hinder the movement of the 
stirrer during the solubility study and hinder the drug from 
dissolving. However, the remarkable measured value of RC 
solubility (193.03 mg/g), as well as the significant increase 
in CC and GB solubility in the F9 formulation, make it supe-
rior to the F6 formulation.

The F9 formulation was loaded with three drugs to pre-
pare the Drugs-loaded F9 formulation. The emulsification 
test showed that the addition of the drug led to a significant 
decrease in particle size from 123.9 to 99.5 nm and zeta 
potential value from—22.5 to—30.4 mV. Even though most 
studies showed that drug loading increases dispersed nanoe-
mulsion size, various studies have agreed with our findings. 
The previously published studies showed that drug addition 
to SNEDDS formulation resulted in the formation of smaller 
nanoemulsion droplets [51–53]. The observed change in par-
ticle size could be assigned to the interaction between loaded 
drugs and components within SNEDDS, which is in coordi-
nation with formerly published data in the literature [54]. In 
addition, the observed reduction in zeta potential value could 
be ascribed to possible interactions between the surfactant 
and one or more loaded drugs, with the drugs present on 
the surface of the dispersed nanoemulsion droplets [55]The 
detected change in zeta potential value is aligned with the 
particle size results, which indicate the presence of drug on 
the surface of dispersed nanoemulsion droplets. However, 
the dispersed system from the solidified Drug-Loaded F9 
formulation has no significant alteration in the measured 

particle size and zeta potential values from the counterpart 
liquid formulation (Drug-loaded F9).

In‑Vitro Dissolution

The dissolution profiles for CC, GB, and RC are presented 
in Fig. 3. The obtained results revealed that the percent 
of CC dissolved at the end of the experiment from liquid 
SNEDDS was significantly increased from 5.92 ± 1.49 to 
60.79 ± 3.48% compared with the pure drug (Fig. 3a). The 
detected increase in the dissolution profile of CC from super-
saturated liquid SNEDDS is ascribed to the solubilization 
effect produced by PVP and its capability to inhibit the pre-
cipitation of the drug [56]. The observed reduction in CC 
release from solidified SNEDDS could result from the reten-
tion of the drug in the porous structure of the adsorbent. This 
could be attributed to the precipitation of the drug within 
the pores of the adsorbent [57]. In contrast, the dissolution 
profile of GB and RC from solidified SNEDDS was almost 
similar to liquid SNEDDS, as seen in Fig. 3b and c, respec-
tively. This could be ascribed to the intrinsic solubility of 
both drugs within SNEDDS components during the adsorp-
tion process. Therefore, nanoemulsion droplets with small 
particle sizes are freely formed owing to the exposure of 
a large surface area of solidified SNEDDS to dissolution 
media [58].

The percentage of GB dissolved from liquid SNEDDs at 
the end of the dissolution study was significantly increased 
to 60% compared to the pure API. For RC, the dissolution 
from both liquid and solidified SNEDDS is comparable to 
the pure RC, possibly due to the ionization of RC in the alka-
line media. RC is a weak acid drug with high ionization in 
alkaline pH; thus, a high dissolution rate could be expected 
[59]. The initial dissolution rate after 5 min showed the 
superiority of liquid SNEDDS (89.24%) over the pure RC 
(72.12%). Among the solidified SNEDDS, formulation S3 
has the highest dissolution rate over S1 and S2. This could 
be ascribed to the large surface area provided by adsorb-
ing the drug on a higher ratio of Syloid, which leads to the 
detected increase in the dissolution rate of the drug. In addi-
tion, increasing the ratio of syloid could positively affect 
the powder's flowability and reduce the chance of powder 
caking and aggregation [34]. However, the S1 formula-
tion was selected as the optimized formulation owing to its 
superiority in reducing the total dosage of the administered 
formulation.

PXRD

The crystalline natures of the three tested APIs (RC, GB, 
and CC) in their SNEDDS solidified by Syloid formula 
were traced by using XRPD spectra in comparison to the 
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diffraction spectra of the individual components. The PXRD 
results are demonstrated in Fig. 4. The XRPD profile RC 
indicated the presence of a single diffraction peak at a 2θ 
degree of 31.8, revealing the lower crystallinity form of the 

drug powder. In addition, different diffraction peaks with 
characteristic diffraction peaks appearing at diffraction 
angles of 2θ at 12.1, 18.9, 20.9, 23.2, 26.8, and 28.3 Å were 
detected in the spectrum of GB, indicating the existence of 
the drug in a crystalline form. Moreover, the spectrum of CC 
proves the crystallinity of the drug because of the presence 
of several diffraction peaks at 9.9, 17.3, 20.3, and 23.3 Å. 
In contrast, the SNEDDS solidifier (Syloid XDP 3050) 
indicated the absence of any diffraction peak in the X-ray 
spectrum. In the case of the solidified SNEDDS formula, 
all characteristic diffraction peaks of the tested drugs could 
not be detected in the XRPD spectra, specifying the disper-
sion of these APIs in the globules of the SNEDDS [60, 61].

FTIR

Figure 5 shows the FTIR spectra of the SNEDDS formula 
containing the three APIs (RC, GB, and CC) that was solidi-
fied with Syloid XDP 3050 (in a ratio of 1: 1.25) compared 
to the individual ingredients. The FTIR spectrum of RC 
showed a band a 3327  cm−1 that corresponds to carboxylic 
O–H stretching, a band at 2967  cm−1 for C-H stretching, 
and a band at 1545  cm−1 for C = O carbonyl stretching. GB 
FTIR spectrum denotes a forked intense band at 3362 and 
3307  cm−1, conforming to secondary N–H stretching. In 
addition, other bands were noticed at 1108  cm−1, 1338  cm−1, 
1711  cm−1, and 2853  cm−1, matching to the symmetric SO2 
stretching, asymmetric SO2 stretching, C = O amide, and 

Fig. 3  Dissolution profiles of Candesartan, Glibenclamide, and Rosuvastatin

Fig. 4  XRPD spectra of SNEDDS formula containing RC, GB and 
CC and solidified with Syloid XDP 350 compared to the individual 
components



 AAPS PharmSciTech          (2024) 25:209   209  Page 8 of 11

C-H, respectively. Moreover, the FTIR spectrum of CC indi-
cated a strong -C-H stretching absorption band at 2939 cm-1, 
corresponding to the carbonyl C = O stretching at 1711 cm 
-1 and Strong C = O carbonyl stretching at 1751  cm−1. The 
FTIR bands of the three APIs were in accordance of the 
reported data [62, 63]. In addition, the FTIR spectrum of 
Syloid XDP 3050 indicated an intense absorption band at 
1067  cm−1 that corresponds to the Si–O stretching, which 
is in accordance with the reported data [64]. Regarding the 
solidified SNEDDS formula, the resultant FTIR spectrum 
revealed the appearance of a broad band around 3400  cm−1, 
indicating superimposed bands of carboxylic O–H stretching 
of RC and the secondary N–H stretching band of GB. Also, 
The C = O carbonyl stretching band of CC was shifted from 
1751 cm-1 to 1751 cm-1, and a decrease in the intensity of 
the C = O stretching band of RC at 1545  cm−1 was observed. 
Additionally, a wide and broadband that corresponds to 
Syloid XDP 3050 was detected at its original position but 
covering the C-H bands of the tested compounds.

SEM

The scanning electron microscopy (SEM) images of the 
APIs powders (RC, GB, and CC) and the solidifier (Syloid 
XDP 3050), as well as the solidified SNEDDS formula, are 
depicted in Fig. 6 at high magnification power to investigate 
their surfaces’ properties. The results showed evidence of the 
low crystallinity of RC and the crystalline nature of both GB 
and CC, which is in accordance with the data obtained in the 
PXRD section. Syloid XDP 3050 particles were noticed at a 
size range of around 30 µm, with smooth surfaces. The SEM 
of the solidified SNEDDS formula indicated the presence of 
the solidified SNEDDS particles on the surfaces of Syloid, 
and upon more magnification (10,000 x) small irregular par-
ticles in the nanosize range around were observed scattered 
on the surfaces of Syloid particles, indicating SNEDDS 
globules solidified with Syloid. The obtained results are in 
agreement with FTIR and PXRD data confirming the pres-
ence of drugs in the amorphous state [65].

Fig. 5  FTIR spectra of 
SNEDDS formula containing 
RC, GB and CC and solidified 
with Syloid XDP 350 compared 
to the individual components
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Conclusion

The present study shows that the prepared solidified super-
saturated SNEDDS formulation is considered as an effective 
delivery system for CC, GB, and RC. The incorporation of 
PVP-K30 as a supersaturated agent in the SNEDDS formu-
lation boosts the solubility of poorly water-soluble drugs, 
which could ensure better therapeutic efficacy. Overall, the 
proposed triple combination therapy using solid supersatu-
rated SNEDDS holds open a new opportunity to enhance 
therapeutic outcomes in patients diagnosed with metabolic 
syndrome. Further in-vivo studies are vital to assess the 

influence of prepared formulation on the oral bioavailability 
and therapeutic efficacy of loaded triple therapy.
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