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Abstract
Alzheimer’s disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern 
affecting millions. It involves the build-up of amyloid-β (Aβ) and tau proteins, the formation of neuritic plaques and neu-
rofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling 
pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assess-
ment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this 
immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents 
to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, 
biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, 
clinical, and ongoing trials, patents, and marketed AD formulations.
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Introduction

 Alzheimer’s disease (AD) is a type of dementia charac-
terized by cognitive impairment. This disease impacts 
brain regions especially, the hippocampus and entorhinal 
cortex [1]. AD is marked by extracellular plaques contain-
ing amyloid-β (Aβ-40,42) and intracellular neurofibrillary 
tangles(NTs) containing tau protein [2]. Aβ plaques are 
clumps of misshapen proteins that accumulate in the spaces 
between neurons. Whereas, NTs are twisted masses of tau 
protein that form inside nerve cells. Another hallmark of this 
condition is the deterioration of neural connections within 
the brain [3]. Furthermore, the pathology of AD is linked to 
both, abnormal amyloid precursor protein (APP) process-
ing, Tau hyperphosphorylation, generating Aβ peptide and 
aggregation [4].

In addition to this, AD has several forms, including early-
onset, late-onset, and familial AD. Early-onset AD (EoAD) 
is an uncommon form of illness that affects individuals 
below the age of 65, generally between 40 to 50 [5]. Indi-
viduals with EoAD often exhibit more Alzheimer-related 
brain changes, including tangles, plaques, and loss of brain 
volume. EoAD has been associated with a genetic defect 
on chromosome 14 [6]. Late-onset AD (LoAD) is the most 
common form, typically affecting individuals aged 65 or 
older. Researchers have not yet identified a specific gene 
responsible for LoAD. Family AD (FAD) is a less common 
type of AD with a known genetic link [7]. It is associated 
with three genes: APP located on chromosome 21, the gene 
for presenilin 1 (PSEN1) on chromosome 14, and the gene 
for presenilin 2 (PSEN2) on chromosome 1 [8].

The exact cause of AD is not fully understood. Still, some 
researchers suggest that dysfunction in the cholinergic sys-
tem is a significant risk factor for Alzheimer’s, while others 
propose that changes in amyloid β-protein production and 
processing may be the primary trigger [9].

Moreover, genetic variances and a range of health, envi-
ronmental, and lifestyle factors can play a role in the devel-
opment of AD. As AD progresses, individuals may encoun-
ter memory loss, including difficulties recalling their past, 
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diminished awareness of their surroundings, and challenges 
recognizing familiar individuals [10].

While there is no cure for AD, specific medications like 
Donepezil, Galantamine, and Rivastigmine may be pre-
scribed to individuals in the early to mid-stages of the dis-
ease. These cholinesterase inhibitors can help mitigate some 
cognitive and behavioral symptoms by preventing the break-
down of acetylcholine, a crucial brain chemical for memory 
and cognition. In addition to medication, self-care strategies 
can assist in managing AD symptoms.

A report from the Alzheimer’s and Related Disorders 
Society of India (ARDSI) estimates that there are more 
than 5.3 million individuals in India living with dementia, 
with AD being the most prevalent form. Projections indi-
cate that this number may increase to 7.6 million by 2030 
[11]. Furthermore, according to the WHO, At present, the 
population exceeds 55 million individuals worldwide living 
with dementia, and approximately 10 million new cases are 
diagnosed each year [12]. Globally, AD is the most com-
mon cause of dementia, accounting for an estimated 60–70% 
of cases [13]. In the United States, an estimated 6.2 mil-
lion people aged 65 and older are living with Alzheimer’s 
dementia in 2021, and this number is projected to grow to 
nearly 13 million by 2050 [14]. The economic impact of AD 
is substantial, with the global cost of dementia estimated at 
$1.3 trillion in 2019 and expected to rise to $2.8 trillion by 
2030 [15]. This review provides a concise introduction to 
AD, covering its pathogenesis, biomarkers, traditional treat-
ments, the need for novel drug delivery systems (NDDS), 
ongoing clinical trials, and AD-related patents.

Pathophysiology

AD is marked as the gradual accumulation of neuritic 
plaques (NP) & NTs [16] which are present around the 
brain’s meningeal, cerebral, and grey matter regions. These 
plaques and tangles interfere with neurotransmission by 
affecting neuronal cells [17]. NP is defined as round, small 
lesions comprised of an Aβ-peptide core. This peptide origi-
nates from a transmembrane protein called APP [18]. This 
is cut from APP by enzyme proteases: α, β, γ secretase [19]. 
This cleavage further results in the formation of Aβ 42. Fur-
thermore, they can clump together & harm the neuronal cells 
[20]. In addition to this, Aβ 42 also leads to the accumula-
tion of fibrillary amyloid protein clusters instead of normal 
APP degradation [21]. As, a result of this there is hyperphos-
phorylation of the tau protein. This further leads to tau pro-
tein aggregation & forms NTs [22]. These are twisted pairs 
of helical filaments that primally affect the hippocampus & 
cerebral cortex. As a result of this, there is an impairment in 
cognition functions [23].

In addition to this, in AD Acetoacetyl CoA level increases 
which converts into HMG-CoA with the help of HMG-CoA 
reductase [24]. Further, it activates the mevalonate pathway 
which results in the formation of Isopentenyl Pyrophos-
phate (IPP), Geranyl Pyrophosphate (GPP), and Farnesyl 
Pyrophosphate (FPP) [25]. Afterward, FPP leads to the 
formation of geranylgeranyl pyrophosphate (GGPP). This 
further promotes the formation of Ras-related C3 botulinum 
toxin substrate (Rac) and Ras Homologous (Rho). Finally, it 
leads to the oxidation of NADH [26]. This ultimately causes 
mitochondrial dysfunction. As a result of this, there is the 
formation of Reactive oxygen species (ROS) which activates 
microglial & causes neuroinflammation [27].

In addition to this, genetic variations are also one of the 
implicating reasons for the pathogenesis of AD. The genes 
that are mainly affected in AD include AAP on chromosome 
21, Presenilin2 (PSEN2) on chromosome 1, and Presenilin1 
(PSEN1) on chromosome 14 [28]. These genetic alterations 
result in the production and accumulation of Aβ peptide by 
disrupting the functioning of gamma-secretase. These muta-
tions are responsible for approximately 5–10% of AD cases, 
predominantly in EoAD [29]. Besides this, the other genes 
that are altered in AD include Apolipoprotein E (APOE), 
CLU, CR1 (Complement Receptor 1), Bridging Integrator1, 
Sortilin-related Receptor 1, and TREM2 [30]. The genetic 
variation in APOE and CLU genes results in the aggregation 
of Aβ protein. Hence, results in impairment in the function-
ing of the brain [31]. Whereas, alteration in the Bridging 
Integrator 1 gene results inhibition of cellular processes 
such as endocytosis. This leads to a buildup of Aβ protein, 
thereby increasing the susceptibility to AD [32]. Dysregu-
lated endocytosis contributes to the pathogenesis of AD by 
enhancing the production and accumulation of Aβ, disrupt-
ing cellular homeostasis, and impairing neuronal function 
[33]. Similarly, alterations in the SORL1 gene result from an 
impairment in APP processing. Hence, promotes the accu-
mulation of tau proteins and NTs in the brain [34]. Finally, 
leads to an impairment in cognition functions. Whereas, 
alterations in the TREM 2 gene result from an impairment 
in the microglial function and immune response in the brain. 
Overall, these events result in AD (Fig. 1) [35].

Signaling Pathways

AD involves several cells’ signaling systems and metabolic 
pathways (Fig. 2) [36].

The Aβ aggregation pathway is a central process in AD 
development [37]. Decreasing Aβ production, preventing 
its aggregation, or promoting its clearance to change the 
disease’s progression [38]. It starts with APP cleavage into 
Aβ peptides that can aggregate into Aβ fibrils [39]. These 
fibrils contribute to oxidative stress, inflammation, and the 
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formation of NTs) leading to neuronal damage [40]. Aβ 
plaques a characteristic of AD accumulates but smaller Aβ 
aggregates also play a role in disease. Aβ oligomers may 
interact with cell membranes or accumulate at synapses 
affecting synaptic proteins and glutamate receptors [41]. 
Microglia the brain’s primary immune cells surround these 
plaques forming a protective barrier and contributing to Aβ 
fibril clearance [42]. Additionally, degradation of acetylcho-
line (Ach) is accelerated leading to neurotransmitter defi-
ciency and cognitive impairment [43]. Tau hyperphospho-
rylation: The tau protein when excessively phosphorylated 
leads to the destabilization of microtubules, a process linked 
to AD [44]. Tau hyperphosphorylation plays a critical role 
in AD by causing tau proteins to misfold and aggregate into 
NTs [45]. These tangles disrupt neuronal function, impairing 
synaptic communication and leading to cell death, which 
contributes to cognitive decline and memory loss charac-
teristic of AD [46]. Alzheimer’s is marked by the buildup 
of amyloid plaques and tau protein clusters in various brain 
regions. The formation of NTs and neuropil threads results 
in tau phosphorylation [47]. The tau phosphorylation at 
Ser202/Thr205 labeling is used to determine the Braak stage 
based on the presence of NTs [48]. The phosphorylation 
of tau at Tyr18 and Thr231 in the transentorhinal region 
at Braak stage III/IV indicates a progressive increase with 

advancing Braak stages [49]. These insights imply that tau 
hyperphosphorylation could be a key factor in the develop-
ment of AD from its early stages making it a potential target 
for therapeutic strategies [50].

Neurotrophic factor signaling pathway: Brain-derived 
neurotrophic Factor (BDNF) a type of neurotrophic factor 
is pivotal for maintaining synaptic plasticity a process vital 
for memory and learning [51]. Dysregulation of this path-
way contributes to neurodegeneration and cognitive decline, 
highlighting its importance in the development and progres-
sion of AD [52]. This makes it a potential therapeutic mol-
ecule and diagnostic biomarker for AD [53]. BDNF-TrkB 
pathway, a significant signal pathway for BDNF contrib-
utes to neurodegeneration in AD, especially in brain regions 
like the hippocampus where BDNF expression is reduced 
[54]. Furthermore, the ERK/CREB signaling pathway can 
increase BDNF levels mitigating Aβ-induced neuronal loss 
and dendritic atrophy [55]. Silencing BDNF antisense RNA 
can also enhance BDNF, reduce Aβ-induced neurotoxicity, 
and improve cell viability [52]. In AD apoptosis, or pro-
grammed cell death is a key process [56]. The build-up of 
Aβ and hyperphosphorylated tau proteins in AD activates 
apoptotic pathways causing neuronal death [57]. This pro-
cess is controlled by both extrinsic and intrinsic pathways 
involving a variety of proteins such as Bcl-2 family proteins 

Fig. 1   Pathogenesis of AD
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and caspases [58]. These apoptotic components interact with 
growth factors and signaling molecules which include Ras-
ERK, JNK, GSK-3β, BDNF/TrkB/CREB, and PI3K/AKT/
mTOR [59]. Ras-ERK signaling pathway plays a role in cell 
cycle progression and apoptosis, while upregulation of JNK 
pathway in AD leads to a decrease in anti-apoptotic proteins 
[60]. Additionally, the PI3K/Akt/mTOR pathway regulates 
the balance between autophagy and apoptosis, and GSK-3β 
stimulates pro-apoptotic factors, leading to a dysregulation 
of apoptosis [61]. Drugs that target these pathways are being 
developed to modulate the disease condition [62].

ER stress: ER has a significant impact on AD [63]. It 
performs vital cellular functions such as protein folding, 
calcium balance maintenance, and cholesterol synthesis 
[64]. In AD, the build-up of Aβ peptides triggers chronic 
ER stress, leading to oxidative stress, calcium ion imbal-
ance, and mitochondrial dysfunction [65]. This cycle further 
induces ER stress. ER stress response includes unfolded pro-
tein response (UPR), activated by accumulation of misfolded 
proteins like Aβ [66]. The UPR involves three stress sen-
sors: IRE1, PERK, and ATF6 [67]. Prolonged or severe UPR 

activation can lead to pathological apoptotic cell death [68]. 
Furthermore, ER stress can induce neuronal apoptosis, with 
excessive oxidative stress being an ER stress inducer [69]. 
Insulin signaling is a key player in cognitive functions such 
as memory and disrupted in AD [70]. Insulin signaling plays 
a critical role in AD by influencing brain glucose metabo-
lism, amyloid-beta accumulation, and tau phosphorylation 
[71]. Impaired insulin signaling in the brain, often termed 
brain insulin resistance, is associated with cognitive decline 
and the pathogenesis of AD. This disruption often referred 
to as brain insulin resistance explains the increased AD risk 
in diabetic patients [72]. This insulin resistance can lead to 
an increase in Aβ accumulation, tau hyperphosphorylation, 
and inflammation [71]. In AD, there are reduction in PI3K 
subunits and Akt kinase phosphorylation [73]. Enhancing 
PI3K-Akt signaling in the central nervous system through 
intranasal insulin treatment can improve memory [74]. The 
microbiota-gut-brain axis, which is believed to play a 
significant role in neurodegenerative conditions has been 
observed to be dysregulated in AD [75]. This dysregula-
tion can lead to changes in intestinal permeability, resulting 

Fig. 2   Signaling pathways related to AD
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in neuroinflammation and immune dysregulation [76]. This 
further contributes to protein aggregation and neuronal 
death in the brain [77]. Further, gut dysbiosis contributes 
to amyloid-beta aggregation, neuroinflammation, oxidative 
stress, and insulin resistance, all of which are implicated in 
AD [78].

NMDA pathway: NMDARs which are vital for synap-
tic transmission and plasticity are implicated in AD [79]. 
These receptors are essential for memory and learning pro-
cesses [80]. In the early stages of AD, an increase in oli-
gomeric amyloid-beta peptide is observed, which leads to 
NMDAR-dependent synaptic depression and elimination 
of spine [81]. Notch signaling pathway is a key player in 
vascular development and function that has been linked to 
AD [82]. Dysfunctional Notch signaling could contribute to 
the pathophysiology of neurodegenerative diseases like AD 
[83]. Notch intracellular domain (NICD) is released from the 
transmembrane by γ-secretase in signal-receiving cells, lead-
ing to the activation of canonical Notch target genes [84]. 
Notch receptor genes and proteins have been associated with 
aging, cerebrovascular disease, and AD that have potential 
overlapping between age-related vascular and Alzheimer’s 
pathophysiology [85]. The GLUT4 is an insulin-regulated 
glucose transporter found in various tissues including the 
brain, and plays a crucial role in AD [86]. It facilitates the 
movement of glucose from the bloodstream to parenchymal 
cells for metabolism [87]. Alterations in GLUT4 lead to glu-
cose deficiency in the brain that potentially hastens cognitive 
decline [88]. In the hippocampus, GLUT4 translocates to 
the plasma membrane post-memory training [89]. Inhibit-
ing GLUT4-mediated glucose transport can impair memory 
acquisition, with long-term inhibition affecting long-term 
memory while enhancing short-term memory [90]. This 
indicates GLUT4’s critical role in hippocampal memory 
processes [91].

Akt-GSK-3β pathway involving Akt and GSK-3β is 
significant in AD [92]. This pathway is crucial for neuro-
protection as it promotes cell survival by encouraging cell 
proliferation and inhibiting apoptosis [93]. It is particularly 
relevant in AD due to its role in facilitating Tau protein 
hyper-phosphorylation [94]. GSK-3β is instrumental in the 
neuronal stress response affecting transcriptional activity of 
the cAMP response element binding [95]. This regulates 
the transcription of BDNF and other neuropeptides [96]. 
These elements are vital for long-term memory regulation 
and maintenance of synaptic plasticity [97]. The mTOR 
pathway is a key regulator of cell growth, proliferation, 
and metabolism, and has been linked to AD [98]. This path-
way responds to environmental stimuli such as growth fac-
tors, energy state, and nutrients [99]. Increased activity of 
the mTOR signaling pathway is believed to contribute to 
AD’s major pathological processes [100]. mTOR inhibitors 
have shown promise in alleviating AD-like pathology and 

cognitive deficits in numerous animal models suggesting the 
potential of reducing mTOR activity as a novel therapeu-
tic strategy for AD [101]. Oxidative stress induced by the 
accumulation of Aβ in AD contributes to neuronal death by 
damaging lipids, proteins, and DNA [102]. It also triggers 
apoptosis and interferes with various signaling pathways, 
including ERK1/2, Nrf2, RCAN1, CREB/ERK, Nrf2, PP2A, 
NFκB, and PI3K/Akt, leading to changes in GSK-3β expres-
sion and PP2A activity [103].

The NF-κB pathway a family of transcription factors 
that regulate numerous genes associated with inflamma-
tion is implicated in AD due to chronic inflammation and 
overactivation of the NF-κB pathway [104]. This pathway 
can be activated through two distinct pathways: canonical 
and noncanonical, with the former playing a crucial role in 
inflammatory responses seen in AD [105]. Extracellular Aβ 
induces iNOS, leading to an oxidative stress response and 
activation of the NF-κB inflammation pathway [106]. The 
multifactorial nature of AD has led to the exploration of 
novel targets for AD therapeutics including NF-κB signal-
ing pathway [107]. NLRP1/3 pathway: The NLRP1 and 
NLRP3 are implicated in AD due to their role in inflam-
mation [108]. In AD, these inflammasomes are activated, 
leading to an increase in inflammasome components and 
downstream effectors [109]. NLRP3 inflammasome acti-
vated in microglia by Aβ contributes to neuroinflammation 
[110]. Similarly, the NLRP1 inflammasome responds to Aβ 
aggregates leading to the activation of caspase-1 and pro-
cessing of interleukin-1β (IL-1β) and interleukin-18 (IL-18) 
[111]. The Wnt/β-catenin pathway is crucial for cell sur-
vival and death and is implicated in AD [112]. Its loss makes 
neurons more susceptible to Aβ-induced apoptosis [113]. 
Activation of this pathway occurs when Wnt proteins bind 
to the Frizzled (Fzd) receptor family and Wnt co-receptor 
LRP5 or LRP6, leading to GSK3β inhibition and β-catenin 
stabilization [114]. Stabilized β-catenin then moves into the 
nucleus interacts with TCF/LEF and induces the expression 
of specific target genes [115]. Impaired Wnt signaling path-
ways are linked to increased Aβ levels, reduced β-catenin 
levels, and enhanced GSK-3β enzyme expression [116]. 
Wnt/β-catenin signaling also regulates adult hippocampal 
neurogenesis with Wnt7a playing a critical role in neuro-
genesis by activating Wnt/β-catenin signaling and specific 
downstream target genes [117].

AMPK pathway: The AMPK is a crucial controller 
of energy balance within cells and has significant role in 
managing glucose and lipid metabolism [118]. It has been 
proposed that AMPK may be involved in AD [119]. AMPK 
influences the generation of Aβ protein is a key factor in AD 
by adjusting neuronal cholesterol and sphingomyelin levels 
and controlling APP distribution in lipid rafts [120]. Fur-
thermore, AMPK activity, which is linked to mitochondrial 
biogenesis and function, is found to be reduced in AD brains 
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[121]. AMPK activation also facilitates autophagy and pro-
motes lysosomal degradation of Aβ [122]. However, AMPK 
activation can also lead to non-neuroprotective outcomes, 
including increased Aβ generation and tau phosphorylation 
[123]. mTOR pathway: mTOR is a serine/threonine kinase 
that is integral to various cellular processes such as growth, 
proliferation, metabolism, protein synthesis, and autophagy 
[124]. mTOR activation is thought to increase Aβ generation 
and deposition by influencing APP metabolism and upregu-
lating β- and γ-secretases [125]. It also inhibits autophagy, 
leading to a decrease in Aβ clearance [126]. Furthermore, 
mTOR is implicated in the pathogenesis of AD by inhibiting 
insulin signaling and affecting neuronal growth and plastic-
ity as a nutrient sensor [127]. However, mTOR activation 
also has harmful effects, including inhibiting insulin signal-
ling and autophagic removal of Aβ and tau aggregates [128].

Sirtuin 1 (Sirt1) pathway: SIRT1 a member of the Sir-
tuin family, plays a crucial role in AD by regulating process-
ing of APP [129]. It enhances the production and activity 
of α-secretase, an enzyme that prevents the formation of 
toxic Aβ species [130]. Additionally, regions of the brain 
with high Aβ deposition also show increased aerobic glyco-
lysis, which can reduce NAD+ levels and potentially affect 
the Sirtuin pathway [131]. Therefore, therapeutic strategies 
that increase SIRT1 could potentially reduce AD neuropa-
thology by inhibiting the formation of Aβ [132]. PGC-1α 
pathway: PGC-1α is a key regulator of mitochondrial bio-
genesis which is involved in various metabolic processes 
and could potentially protect against AD [133]. It activates 
survival pathways such as the MEK/ERK and PI3K/AKT 
signalling pathways which prevent apoptosis in hippocampal 
neurons [134]. PI3Ks are a group of enzymes vital for cel-
lular functions that have a significant role in AD through the 
PI3K/Akt signalling pathway [135]. This pathway regu-
lates numerous biological processes and can inhibit several 
neurotoxic mechanisms, making it a potential therapeutic 
target for AD [136]. It influences Tau phosphorylation and 
amyloid cascade both crucial in Alzheimer’s progression 
[137]. The pathway is also linked to oxidative stress, neuro-
inflammation, insulin signalling alterations, and autophagy 
changes in Alzheimer’s [138]. HIF-1α pathway: HIF-1α is 
a key regulator that manages cellular reactions to low oxy-
gen levels [139]. It has a crucial role in AD. When oxygen 
levels are low HIF-1α stabilizes and moves to nucleus to 
form a complex with HIF-1β [140]. This process is con-
trolled by enzymes like prolyl hydroxylase (PHD) and HIF 
prolyl hydroxylase (HPH) which modify HIF-1α enabling 
it to associate with Von Hippel-Lindau (VHL) [141]. Any 
disruption in the autophagy process can lead to neuroinflam-
mation and neuronal cell death, causing hypoxia and trigger-
ing various transcription factors, including HIF-1α [142].

The NRF2-ARE pathway is crucial in AD [143]. NRF2 
is a transcriptional regulator that responds to oxidative stress 

[144]. When oxidative damage is high NRF2 moves to 
nucleus and binds to Antioxidant Response Element (ARE) 
which triggers transcription of antioxidant protector genes 
[145]. This pathway is involved in AD due to its dysfunction 
and altered localization [146]. It triggers genes that protect 
cells and detoxify enzyme genes which can prevent AD 
pathology [147]. However, in AD, buildup of Aβ and tau 
decreases NRF2 levels, reducing the antioxidant response 
[148]. This decrease in NRF2 levels leads to further accu-
mulation of Aβ and tau by disrupting their autophagy-
mediated turnover [149]. Therefore, NRF2-ARE pathway 
is considered a potential therapeutic target for AD [150]. 
PKC pathway: PKC is a group of enzymes that is essential 
for various cellular functions [151]. In AD, PKC enhances 
the production of a secretory form of amyloid precursor 
protein (sAPP α) by activating α-secretase activity, which 
decreases buildup of harmful Aβ levels in brain [152]. PKC 
isoforms like PKCα and -ε signalling pathways are closely 
linked with pathological damage in AD [153]. Activating 
these PKC isoforms can reduce Aβ production and related 
dementia in AD by enhancing APP α-processing pathways 
and Aβ degradation [154]. TGF-β pathway: TGF-β a tran-
scriptional regulator is crucial in AD [155]. Under low oxy-
gen conditions, TGF-β stabilizes and forms a complex with 
Smad proteins key molecules in TGF-β signalling [156]. 
This pathway is involved in AD due to its dysfunction and 
altered localization [157]. It triggers genes that protect cells 
and detoxify enzyme genes which can prevent AD pathology 
[158]. However, in AD the buildup of Aβ and tau decreases 
TGF-β levels reducing the antioxidant response [159]. This 
decrease in TGF-β levels leads to further accumulation of 
Aβ and tau by disrupting their autophagy-mediated turnover 
[160]. Therefore, the TGF-β pathway is considered a poten-
tial therapeutic target for AD [161].

JAK-STAT pathway is crucial in neuroinflammatory 
diseases like AD [162]. It initiates innate immunity, man-
ages adaptive immune mechanisms, and controls the neuro-
inflammatory response [163]. This pathway transmits signals 
from receptors on cell membrane to nucleus, regulating cel-
lular activities such as growth, differentiation, and apop-
tosis [164]. Any imbalance in this pathway leads to severe 
immunodeficiencies and malignancies, and it also plays a 
role in neuro-transduction and pro-inflammatory signalling 
mechanisms [165]. Ras/ MAPK pathway: It transmits sig-
nals from receptors on the cell membrane to the nucleus that 
regulates cellular activities such as growth, differentiation, 
and apoptosis [166]. In AD, all MAPK pathways, includ-
ing ERK, JNK, and p38 pathways, are activated in vulner-
able neurons, indicating their involvement in the disease’s 
pathophysiology and pathogenesis [167]. Oxidative stress 
can trigger intracellular signalling pathways including p38 
MAPK signalling pathway which contributes to aggregation 
of Aβ and hyperphosphorylated tau protein in brain [168]. 
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CDK5 pathway: CDK5 is a crucial member of the cyclin-
dependent kinases, playing a significant role in development 
of a central nervous system and various neuronal activities 
[169]. In AD, CDK5 is closely linked with the disease’s 
pathogenesis [170]. When neurons are exposed to patho-
logical stimuli, CDK5 activity increases leading to abnormal 
hyperphosphorylation of several CDK5 substrates like APP, 
tau, and neurofilament resulting in AD [171]. The imbalance 
of CDK5 contributes to numerous pathological events in 
AD from the creation of senile plaques and NTs to synaptic 
damage, mitochondrial dysfunction, cell cycle reactivation, 
and neuronal cell apoptosis [172].

Biomarkers

A biomarker, which is also called a biological marker, is a 
detectable sign that gives us information about alterations 
occurring inside our body. These changes can be detected by 
measuring the increase or decrease in the level of biomarkers 
present in the blood, urine, or soft tissues. These studies help 
us to diagnose disease at an early stage [173]. The different 
biomarkers which are essential in the diagnosis of AD are 
given in Table 1.

Conventional Treatments

Conventional treatments for AD mainly concentrate on man-
aging the symptoms of the condition. There is currently no 
cure or synthetic medication available to halt or reverse the 
disease’s progression [193]. The two main classes of syn-
thetic drugs used for AD are cholinesterase inhibitors and 
NMDA receptor antagonists [194]. Cholinesterase inhibi-
tors, including medications like Donepezil, Rivastigmine, 
and Galantamine. They work by elevating acetylcholine 
levels, a neurotransmitter associated with memory and 
cognition, in the brain [195]. These drugs aim to enhance 
communication between nerve cells and temporarily reduce 
cognitive and behavioral observed in individuals with Alz-
heimer’s. [196].

Whereas, NMDA receptor antagonists include Meman-
tine which helps to regulate the activity of glutamate, an 
excitatory neurotransmitter [197]. It is typically used in 
moderate to severe Alzheimer’s cases and can provide some 
relief from symptoms. It is important that these medications 
do not modify the course of the disease [197]. Their effects 
can vary among individuals. While they may offer tempo-
rary improvement in cognitive function and behavior, the 
progression of AD continues [198]. The various Synthetic 
drugs used in the management of AD are discussed below 
in the table (Table II):

In addition to this, there is currently no approved herbal 
medication or therapy that is commonly accepted as a stand-
ard treatment for AD. Hence, the majority of the medications 
used in traditional treatment of the condition are synthetic. 
The majority of traditional methods focus on drugs such as 
NMDA receptor antagonists and cholinesterase inhibitors, 
which are designed synthetically to target particular compo-
nents of Alzheimer’s symptoms [203]. Additionally, the use 
of herbal medicines and other complementary and alterna-
tive therapies as possible supplements to traditional medi-
cal care is the subject of the remaining research. In small-
scale studies, certain herbs and compounds, such as Ginkgo 
biloba, Curcuma longa, Papaya, Blueberry, and Colostrinin 
have shown potential for maintaining cognitive function and 
reducing inflammation, which is linked to AD. The various 
herbal drugs used in the management of AD are described 
below in Table III.

The drawbacks of current and conventional treatments for 
various medical conditions include issues related to pharma-
cokinetics, bioavailability, patient compliance, and toxicity 
or side effects [217]. Conventional treatments often suffer 
from poor pharmacokinetics, leading to inadequate absorp-
tion and distribution of the drug within the body. This results 
in suboptimal bioavailability, where only a small fraction of 
the administered dose reaches the target site in an effective 
form [218]. Additionally, the difficulty of patient compli-
ance is a significant concern, as many traditional therapies 
require frequent dosing or have inconvenient administration 
routes, making it challenging for patients to adhere to their 
treatment regimens. Moreover, toxicity and adverse side 
effects are common problems associated with conventional 
treatments, which can cause harm to patients and reduce 
the overall effectiveness of the therapy [219]. These limita-
tions highlight the need for novel delivery systems that can 
enhance pharmacokinetics, improve bioavailability, simplify 
administration, and minimize toxicity, thereby offering more 
effective and safer treatment options.

Need for a Novel drug Delivery System 
and Their Mechanism of Penetration

There are several conventional treatments which have been 
explored by the researchers for the management of AD 
[220]. However, they have some limitations. For instance, 
they have difficulty crossing the Blood-brain barrier (BBB), 
which prevents them from reaching the target site [221]. 
Additionally, conventional treatments are associated with 
side effects due to their non-specific targeting or toxicity 
to healthy cells. Furthermore, a major limitation of herbal 
drugs is their low solubility and metabolism, which can limit 
their bioavailability and efficacy [222]. In addition, the qual-
ity and purity of herbal drugs can vary depending on the 



	 AAPS PharmSciTech          (2024) 25:207   207   Page 8 of 35

Table I   Biomarkers of AD

Biomarker Type/ Fluid Role Test/ Method Description Ref

Aβ Protein/cerebrospinal fluid Plaque formation ELISA • Aβ is protein that forms 
plaques in brains of Alz-
heimer’s patients.

 • ELISA measures Aβ 
levels in blood or CSF to 
diagnose and monitor the 
disease.

[174]

Tau protein Protein/ Indicate NTs ELISA  • Tau protein is found in 
abnormal tangles in brains 
of AD patients.

 • ELISA measures Tau 
levels in blood or CSF to 
diagnose and monitor the 
disease.

[175]

CLU Protein/cerebrospinal fluid Risk Assessment and 
Research

ELISA  • CLU gene is changed or 
mutated, and its increased 
disease is often measured 
through ELISA.

[176]

CRP Protein Inflammation Assessment 
and Research

ELISA  • CRP is a protein that 
indicates an increase in 
inflammation.

[177]

IL-6 Protein/cerebrospinal fluid Inflammation Assessment 
and Research

ELISA, PCR  • IL-6 is a pro-inflammatory 
cytokine.

 • Increased levels lead to 
Alzheimer ‘s-associated 
inflammation.

[178]

TNF-α Protein/cerebrospinal fluid Inflammation Assessment 
and Research

ELISA, PCR  • TNF-α is another pro-
inflammatory cytokine.

 • Increased level of TNF- α 
leads to neuroinflamma-
tion.

[179]

CSF Fluid/blood fluid Screening and treatment Lumbar Puncture  • CSF can help us find 
markers like Aβ and tau, 
useful for diagnosing AD.

[180]

Aβ42/Aβ40 Ratio Biofluid/cerebrospinal fluid Indicates Aβ protein levels 
in CSF

ELISA  • Measures the ratio of 
Aβ42 to Aβ40 in blood.

 • Imbalances indicate Alz-
heimer’s pathology.

[181]

P-Tau181 Biofluid/Protein Indicates abnormal tau 
protein levels in CSF/Neu-
rodegeneration

ELISA  • Measures the level of 
phosphorylated Tau protein 
(P-Tau181) in the blood.

[182]

NFL Biofluid/Protein Indicates nerve cell damage 
and neurodegeneration

Immunoassay  • Detects neurofilament 
light chain, a marker of 
neuronal damage.

 • An increase in the NFL 
levels indicates the neuro-
degeneration in the brain.

[183]

Amyloid PET Imaging Imaging/cerebrospinal fluid Measures amyloid plaques 
in brain

PET  • Increased amyloid plaques 
in the brain indicate the 
AD

[184]

Tau PET Imaging Imaging Detects abnormal Tau pro-
tein Accumulation

PET  • It helps to assess the pro-
gression of the disease.

[185]

MRI Volumetry Imaging Measures changes in brain 
volume/Neurodegeneration

PET / MRI  • Measures change in brain 
volume, particularly the 
hippocampus and other 
regions to identify disease-
related atrophy.

[186]
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sources and preparation methods, which also affects their 
safety and efficacy. Also, the active ingredients in herbal 
drugs can interact with other medications or cause side 
effects such as gastrointestinal upset, dizziness, or headache 
[223]. Most importantly, At present, the options for treating 
AD are quite restricted and have shown only modest efficacy. 
The main classes of drugs used to treat AD are cholinester-
ase inhibitors and NMDA receptor antagonists [224]. How-
ever, these drugs have several limitations that make them 
less effective in treating AD. Cholinesterase inhibitors have 

limited efficacy and can cause side effects such as diarrhea, 
nausea and vomiting. Whereas, NMDA receptor antagonists 
can cause side effects such as dizziness, headache, and con-
fusion [225]. Furthermore, these drugs do not address the 
underlying pathophysiology of AD, which involves different 
pathophysiological events such as buildup of amyloid and 
tau, neuro-inflammation, and neuronal injury [226].

The aforementioned limitations of the conventional treat-
ments can be addressed by using NDDS. Advantages of 
using NDDS include enhanced drug efficacy, reduced side 

Table I   (continued)

Biomarker Type/ Fluid Role Test/ Method Description Ref

FDG - PET Imaging Assess glucose metabolism 
in brain/Neurodegeneration

PET  • Reduction in glucose 
uptake indicates neuronal 
dysfunction.

[187]

APOE ε4 Genetic Risk Assessment PCR  • Presence of this variant 
increases the risk of late-
onset AD.

[188]

PSEN1 Genetic Rare Familial Alzheimer’s 
Risk

Sequencing  • Mutations in this gene can 
lead to early-onset familial 
AD.

[189]

PSEN2 Genetic Rare Familial Alzheimer’s 
Risk

Sequencing  • Mutations in this gene are 
associated with EoFAD.

[190]

APP Genetic Rare Familial Alzheimer’s 
Risk

Sequencing  • Mutations in the APP can 
cause EoFAD.

[191]

miRNAs Molecules Regulatory Role in Gene 
Expression

qRT-PCR and 
next-generation 
sequencing

 • Increased or decreased 
miRNA indicates AD.

[192]

Homocysteine Molecule Potential Risk Factor Blood Test  • Increased levels of 
homocysteine in the blood 
are linked with cognitive 
decline and increased AD 
risk.

[191]

Plasmalogens Lipids Potential Indicators of Alz-
heimer’s Risk

Mass Spectrometry  • Reduced levels of plasm-
alogens increase the risk 
of AD.

[192]

Table II   Synthetic Drug Used in the Management of AD

S. No. Drug name Dose of drug Formulation Outcomes Ref

1. Donepezil 5 mg daily, possibly raise 10 mg after 4–6 weeks if 
well-tolerated, then increase to 23 mg after at least 
3 months.

Tablet Improved memory and thinking [199]

2. Rivastigmine 6 to 12 mg daily, given twice a day, for both Oral 
Solution and capsules

Solution
Capsule

Enhances cognitive function

3. Galantamine Tablet − 4 mg, 8 mg, and 12 mg.
Capsule − 8 mg, 16 mg, and 24 mg.
The oral solution- 4 mg.

Tablet
Capsule
Oral solution

Improved memory and cognition [200]

4. Memantine Tablets and oral solution at 5 mg daily, with poten-
tial increases to 10 mg, 15 mg, and 20 mg weekly 
if tolerated.

Tablet
Oral solution

Regulates glutamate activity [201]

5. Donepezil + Memantine 7 mg memantine/10 mg donepezil daily, on a daily 
basis to increase to 28 mg memantine/10 mg done-
pezil in 7 mg increments weekly if tolerated.

Capsule (ER) Combines acetylcholinester-
ase inhibition and glutamate 
regulation

[202]
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effects, prolonged drug action, better patient compliance, 
targeted drug delivery, protection of sensitive drugs from 
degradation, and overcoming biological barriers [227]. The 
different mechanism that helps the nanocarriers to cross 
BBB include the paracellular pathway, adsorption-mediated 
transcytosis, receptor-mediated transcytosis, and carrier-
mediated pathway [228]. In passive diffusion, Nanoparti-
cles (NPs) with high lipophilicity and small size can diffuse 
through BBB. This is facilitated by the lipid bilayer of the 
BBB’s endothelial cells, which allows lipophilic substances 
to dissolve and cross BBB [229]. In adsorption-mediated 
transcytosis, NPs with a positive charge or hydrophobic 
surface can adsorb to the luminal surface of the endothe-
lial cells and induce endocytosis, followed by exocytosis 
at abluminal side [230]. In receptor-mediated transcytosis, 
NPs are conjugated with ligands that bind to specific recep-
tors on endothelial cells which trigger receptor-mediated 
endocytosis and exocytosis across the BBB (Fig. 2) [231]. 

In carrier-mediated transport, NPs are conjugated with mol-
ecules that are substrates for transporters on the endothe-
lial cells that utilize carrier-mediated transport to cross the 
BBB (Fig. 3) [232]. The various nanocarrier explored to 
treat AD includes VDDS, Nanoparticle (Gold NPs, Silver 
NPs, Copper NPs), Intranasal, Liposome, Nanoemulsion, 
Nano Suspension, in situ gel, Nanoparticle and SLN, and 
PLGA Nanoparticle.

Vesicular Drug Delivery System (VDDS)

Liposomes

Liposomes are defined by the presence of at least one lipid 
bilayer. This lipid bilayer forms a closed sphere that houses 
a cavity filled with drug. This arrangement is due to the 
amphipathic characteristics of phospholipids, which have 
hydrophilic heads and hydrophobic tails. They are being 

Table III   Therapeutic Products Used in the Management of AD

S. No. Therapeutic products Condition of participants Dose Animal Duration Outcomes Ref.

1. Ginkgo biloba Mild to moderate dementia 240 mg Mice 24 weeks •  Improved neuropsychiatric 
symptom

[204]

120 to 240 mg Mice 24 weeks •  Improved cognitive func-
tions

[205]

AD or vascular dementia 240 mg/day Mice 24 weeks •  Improved cognitive 
functions and functional 
abilities

•  Improved neuropsychiatric 
symptom

[206]

Mild cognitive impairment 40 mg Male Wistar rat 24 weeks •  Improved cognitive func-
tions

[207]

2. Saffron Mild to moderate AD 33 mg/kg Rat 16 weeks •  Improved cognitive func-
tions and memory

[208]

3. Lemon balm Mild to moderate AD 25 mg/kg Mice 4 months •  Improved cognition func-
tion and agitation

[209]

4. Green tea Severe AD 20 mg/kg/day Mice 2 months •  Improved cognitive func-
tion

[210]

5. Papaya AD 400 mg/kg Rat 6 months •  Reduced oxidative stress [211]
6. Sage Mild to moderate AD 300 mg/kg Mice 4 months •  Improved cognitive func-

tions
•  No side effects except 

anxiety

[212]

7. Coconut AD 300 mg/kg Rat 21 days •  Improved cognitive func-
tion

[213]

8. Blueberry Moderate to severe AD 150 mg/kg Mice 16 weeks •  Improved learning
•  Reduced depression 

symptoms

[214]

9. Polygonum minus Huds Early memory failures 100 mg/kg Mice 12 weeks •  Improved learning
•  Enhance anti-oxidant 

activity
•  Reduced depressive 

symptoms

[215]

10. Colostrinin AD 100 µg Mice 15 weeks •  Improved cognitive and 
daily functions

[216]
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investigated as a potential method for delivering drugs to 
treat AD. They can carry various therapeutic molecules and 
cross the blood-brain barrier. Recent developments have led 
to liposomes that can better penetrate the blood-brain bar-
rier, enhancing the effectiveness of Alzheimer’s drugs are 
discussed below [233].

 Andrade et al., prepared transferrin-functionalized VB12 
liposomes (VB12-Tf-LIP) by thin film hydration technique. 
Results of the study showed that the prepared formulation 
exhibited particle size below 200 nm. Thereby helping the 
liposomes to cross the BBB. This further helped the VB12-
Tf-LIP to exhibit a 1.6-fold increase in Aβ1−42 fibril disag-
gregation as compared to the VB12 alone treated group. In 
addition to this, the prepared formulation exhibited anti-AD 
activity by inhibiting the Aβ fibrillation and disaggregation 
of preformed fibrils [234].

Similarly, Mutu et al., prepared rivastigmine liposomes 
by thin film hydration technique. Their activity was evalu-
ated in the Balb-C-type mice model. The results of the study 

showed that rivastigmine liposomes exhibited an increase 
in anti-cholinesterase activity by 2.8-fold and 2.2-fold as 
compared to negative control and rivastigmine alone treated 
group, respectively. Hence, they exhibited better anti-AD 
activity as compared to other groups [235].

In another study, Vasileva et al., prepared α-tocopherol 
and donepezil co-loaded liposomes by solvent evaporation 
technique. Their activity was evaluated in a transgenic AD 
mice model. The prepared formulation showed a decrease 
in the number of Aβ plaques by 1.5-fold as compared to the 
untreated group [236].

 Kuedo et al., explore the potential of ethanolic extract 
shrimp shells (EESS) loaded liposomes against AD. Their 
activity was evaluated on a thiopental-induced Wistar rat 
model. The result demonstrated that the prepared formula-
tion exhibited a neuroprotective effect by modulating BDNF/
TrkB, GAP-43, and PSD-95 signaling pathways. In addition, 
upregulated synaptic proteins. Thereby, improved cognition 
in the AD model [237].

Fig. 3   Mechanism of drug transport
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 Li et al. prepared Galanthamine hydrobromide-loaded 
liposomes against the AD model by the thin-film homog-
enization method. Their in vivo activity was checked on the 
Male Sprague–Dawley rats. The result of the prepared for-
mulation showed a 7-fold decreased in the acetylcholinest-
erase activity in the diseased group [238].

Niosomes

Niosomes are vesicles formed by non-ionic surfactants and 
cholesterol for targeted drug delivery. They are structur-
ally similar to liposomes but offer greater stability. They 
can encapsulate both water-soluble and fat-soluble drugs 
making them ideal for various applications in drug delivery 
systems. They can encapsulate various therapeutic agents 
and cross the blood-brain barrier [239]. Various niosomes 
that are being studied as a potential delivery system for AD 
treatments are mentioned below.

 Kulkarni et al., formulated N-Acetyl Cysteine niosomes 
by ethanol injection method. Their activity was evaluated on 
Male Wistar rats. Results showed that the prepared formu-
lation exhibited a 1.2-fold increase in nasal permeation as 
compared to unprocessed N-Acetyl Cysteine. Furthermore, 
the prepared formulation exhibited a 1.3-fold decrease in 
AChE level as compared to untreated group [240].

Similarly, Moulahoum et al., prepared carnosine-loaded 
niosome Against AD. The prepared formulation exhib-
ited a neuroprotective effect by exhibiting antioxidant and 
anti-AOPP activity. In addition, it was observed from the 
study that the carnosine-treated group exhibited a 2.1-fold 
decrease in AoPP level as compared to the carnosine-treated 
group [241].

In addition, study Ansari et al., explore the potential of 
Artemisia absinthium loaded niosomes against AD. The 
formulation was prepared by thin hydration techniques. 
The result of the study showed that Artemisia absinthium 
noisome exhibited a neuroprotective effect by decreasing 
aggregation of Aβ proteins and neurofibril tangles at the 
desired site [242].

Exosome

Exosomes are tiny vesicles ranging from 30 to 150 nm in 
diameter. They can carry genetic material and proteins 
from their parent cells. They are particularly useful in can-
cer detection as they can contain relevant information from 
cancer cells. As potential drug delivery tools, exosomes offer 
low immunogenicity, the ability to cross the blood-brain bar-
rier, and the flexibility to encapsulate various therapeutic 
agents, thereby extending their half-life and stability [243]. 
Studies related to exomes for the management of AD are 
given below.

 Chen et al., isolated exosomes from mesenchymal stem 
cells (MSC-exosomes). Their activity was examined on the 
J20 mouse model. The result of the study showed that the 
prepared formulation exhibited a 2-fold improvement in cog-
nition as compared to the disease group. Also, reduce the Aβ 
plaque to 5-fold in Tg- exosome treated group as compared 
to the diseased group animals [244].

Similarly, Zaldivar et al., isolated exosomes from Mes-
enchymal stem cells, and their activity was examined in the 
C57BL/6 AD mice model. The result of the study showed 
that the prepared formulation exhibited a 1.6-fold increase 
in novel object activity as compared to the negative control 
group. Overall, the results of the aforementioned activity 
revealed improvement in learning and memory in the MSCs 
exosome-treated group [245].

 Cui et  al., isolated rabies viral glycoprotein (RVG) 
exosomes from the Mesenchymal stem cells (MSCs), and 
their activity was examined on the APP/PS1 double trans-
genic mice. The result of the study showed that the prepared 
formulation exhibited a 1.4-fold increase in the Morris water 
maze test as compared to the diseased group. Overall, the 
result showed a 2-fold decrease in the formation of plaques 
in MSC-RVG-Exo treated group [246].

In another study, Sheykhhasan et al., isolated Q10-loaded 
exosomes from adipose-derived stem cells (ADSCs-Exo) 
and their activity was examined on the STZ-induced Wistar 
rats. The result of the study showed that the prepared for-
mulation exhibited improvement in cognition by learning 
and memory as compared to the untreated. In addition, 
exosomes, exhibited anti Amyloid beta effect, antioxidant 
and anti-inflammatory action in the brain, and produced a 
neuroprotective effect [247].

Similarly, Jahangard et al., isolated exosomes from the 
Mesenchymal stem cells that contain miR-29, and their 
activity was examined in the male Wistar rats. The result 
shows that the prepared formulation showed a decrease of 
1.5-fold in the Aβ as compared to the diseased group. Over-
all, the study showed increased learning and memory in the 
AD model [248].

Transferosome

Transferosomes are unique, deformable vesicular structures 
composed of phospholipids and an edge activator, which 
allow them to navigate through small pores. They are used 
for both local and systemic drug delivery due to their high 
encapsulation efficiency, ability to act as a reservoir for 
gradual drug release, and protection of the drug from meta-
bolic breakdown. They can also deliver drugs through the 
nasal route, bypassing the blood-brain barrier and enhancing 
bioavailability [249]. The several studies reported for the 
management of AD are discussed below.
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Raj et al., prepared curcumin-loaded transferosome-based 
In-Situ Gel by the thin film hydration method. The in vivo 
study was performed on the Swiss albino mice. The result 
of the study showed that the prepared formulation increased 
the 2-fold concentration of the drug in the brain as compared 
to the curcumin IV formulation. This study showed that the 
prepared In-situ gel formulation increased BA in the brain. 
Hence, transfersome can be used in the management of the 
AD [250].

In another study, Mishra et al., prepared Berberine and 
curcumin co-loaded transferosomes by film hydration 
method against the AD model. Their activity was checked 
on the Swiss albino mice. The result of the study showed 
that the prepared formulation decreased the 4-fold AChE 
in the BBR-CUR-TRANS treated group as compared to the 
control group. Overall, the study showed an improvement in 
memory in the AD mice model [251].

Similarly, Nojoki et al., prepared chitosan-transfersulin 
(CTI) transfersome by the film hydration method against the 
AD model. An in vivo study of the prepared formulation was 
performed on the STZ-induced Wistar rats. The result of the 
study showed that the prepared formulation-treated group 
exhibited a 1.5-fold increased in latency as compared to the 
diseased group. Additionally, the Histopathological evalu-
ation of the study indicated a decrease in the level of CA1, 
CA3, and DG in CTI treated group by 2-fold, 3.6-fold, and 
2.5-fold respectively as compared to the control group [252].

Ethosomes

Ethosomes are nanoscale carriers composed of phospholip-
ids, ethanol, and water, designed for delivering substances 
through the skin. They can encapsulate and deliver both 
lipophilic and hydrophilic drugs efficiently. They are stable, 
approved for pharmaceutical use, and can be incorporated 
into different formulations like gels and creams [253]. Stud-
ies that have explored the use of ethosomes as a type of 
nanoscale carrier in Alzheimer’s treatment are mentioned 
below.

Shi et al., prepared ligustrazine phosphate-loaded Etho-
somes (LP-Ethosomes), and examined its activity in the 
male Sprague–Dawley rats. The result of the study showed 
that the LP-Ethosomes treated group indicated a decrease in 
escape time by 2.5-fold as compared to the control group. 
the ethosomal-treated group exhibited an increased in MDA 
activity by 0.93-fold as compared to the control group. Over-
all, the study showed that prepared formulation is effective 
in treating AD [254].

Phytosomes

Phytosomes are a type of advanced drug delivery system 
that encapsulates plant-based bioactive compounds with 

phospholipids, forming a cell-like structure. This unique 
structure enhances the pharmacokinetic and pharmacody-
namic properties of the herbal extracts leading to increased 
bioavailability. Phytosomes enhance the potency, quality, 
and precision of treatments. Additionally, it shields the 
components of herbal extracts from degradation by diges-
tive fluids and gut bacteria [255]. Studies reported so far for 
the AD treatment are given below.

Wattanathorn et al., prepared mulberry fruit and ginger 
(PMG) loaded Phytosome. Their activity was evaluated on 
the male Wistar rats. The result of the study showed that 
the prepared formulation decreased 1.5-fold in the Morris 
Water Maze test which resulted the improved memory as 
compared to the diseased treated group. Also, PMG Phyto-
some increased 1.4-fold in the locomotor as compared to the 
induced group. Thus, the study showed that the prepared for-
mulation will be effective in the neuroprotectant effect [256].

Similarly, Ullah et al., prepared curcumin-loaded phy-
tosomes. Their activity was examined on the GFAP-IL6 
mice AD model. The result of the study showed that the 
prepared formulation decreased 1.4-fold Iba-1 + microglia 
in the hippocampus as compared to the normal food-fed 
GFAP-IL6 group. Furthermore, it also decreased 1.3-fold 
of TSPO + microglial cells in the hippocampus as compared 
to the normal food-fed group. This indicated the neuropro-
tective effect of the prepared formulation [257].

in vitroCubosomes

Cubosomes are lipid-based NPs that form a 3D cubic lattice. 
They can encapsulate and deliver a wide range of thera-
peutic agents, including both hydrophobic and hydrophilic 
drugs. Their unique structure provides stability, controlled 
drug release, and protection against degradation. By adjust-
ing the lipid composition and surface modifications, drug 
release kinetics can be modulated, enhancing therapeutic 
efficacy and reducing side effects [258]. Studies related to 
cubosomes for the management of AD are given below.

Elnaggar et al., prepared monoolein cubosomes co-loaded 
piperine which are modified by the Tween (T-cubs). Their in 
vivo activity was examined in male Wistar rats. The result 
of the study showed that the prepared formulation showed 
an increase of 4.7-fold in the latency test as compared to the 
positive group. Further, T-cubs also decreased 3.8-fold in the 
AChE activity as compared to the diseased group. Overall, 
the result showed that the prepared formulation is effective 
against AD [259].

Wu et al., prepared cubosomes which are modified by 
Odorranalectin (OL-Cubs) against the AD, and examined 
their anti-AD activity on the Sprague-Dawley rats. The result 
of the study showed that the prepared formulation showed an 
improved in escape latency by the 2-fold as compared to the 
AD group in the water maze learning test. The overall study 
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concluded that the OL-Cubs was effective for the improved 
learning impairment in AD [260].

Nanoparticles (NPs)

NDDS utilize NPs to enhance the delivery and effective-
ness of therapeutic agents. These systems aim to control the 
size, surface properties, and release of active pharmaceutical 
ingredients for optimal therapeutic effect. NPs can reduce 
side effects and are prepared using various techniques. The 
field of nanomedicine is advancing rapidly, with nano-
delivery systems serving as diagnostic tools and delivering 
therapeutic agents to targeted sites. These nanoparticle-
based systems could potentially address the challenges of 
conventional therapies and contribute to improved clinical 
outcomes [261].

Gold NPs (AuNPs)

AuNPs are increasingly being used in NDDSs due to their 
biocompatibility and adaptable surface. These proper-
ties allow for the addition of bioactive ligands, enhancing 
drug stability and efficacy, and enabling drugs to cross the 
blood-brain barrier [262]. Recent studies showing promises 
in treating AD are described below.

 Zhang et al., prepared tetrapeptide-anchored gold NPs 
and analysed their effect on the Kun Ming (KM) mice model 
against the AD. Results of the study showed that the pre-
pared formulation of AuNPs exhibited an antioxidant effect 
by increasing the level of SOD, GSH, and catalase and 
increased the level of AChE in the brain. Hence, improved 
cognition and managed AD [263].

 Hou et al., prepared AuNPs of chiral L- and D-glu-
tathione and examined their activity on the KM mice model 
against the AD. Results of the study showed that prepared 
formulation improved memory by 2-fold as compared to AD 
group. Furthermore, the prepared formulation decreased Aβ 
plaque deposition in the brain. This indicated the effective-
ness of the AuNPs against AD [264].

 Tramontin et al., prepared AuNPs for the treatment of AD. 
They examined their activity in the Okadaic acid (OA) induced 
male Wistar rats model. Results of the study showed that the 
prepared formulation improved memory by 1-5-fold as com-
pared to the diseased group. Overall, the Study showed that 
prepared formulation improved cognition and decreased oxida-
tive stress. Hence, effective against the AD mice model [265].

Poly (lactic‑co‑glycolic acid) NPs (PLGA NPs)

PLGA NPs are a promising area of research in NDDS, par-
ticularly for neurodegenerative diseases. Their biocompatibil-
ity, non-toxicity, and various benefits such as improved drug 
solubility, protection from enzymatic digestion, increased 

targeting efficiency, and enhanced cellular internalization 
make them an attractive option. Despite their potential, no 
PLGA NPs are currently on the market or in clinical trials 
for neurodegenerative diseases and are only at the preclinical 
stage [266]. Some of the preclinical studies supporting PLGA 
for management of AD are mentioned below.

 Lopez et al., prepared Memantine polylactic-co-gly-
colic nanoparticle (MEM–PEG–PLGA) NPs and examined 
its in vivo activity on the Male APPswe/PS1dE9 (APP/
PS1) and C57BL/6 mice. Results of study showed that 
the MEM–PEG–PLGA NPs treated group exhibited an 
increased in the latency by 2.5-fold as that of the untreated 
group. Additionally, the prepared formulation exhibited 
a decreased in the level of Aβ plaques and Tau proteins 
in the brain as compared to the untreated group. Overall 
study, indicated the anti-AD potential of the developed 
formulation in the diseased mice [267].

 Abreu et al., prepared PGZ-loaded NPs (PGZ-NPs) by 
the solvent displacement technique against the AD. They 
examined their activity in the male APP/PS1 mice. Results 
of the study showed that the prepared formulation decreased 
2.5-fold of the Aβ burden as compared to the diseased 
group. This indicated that the PGZ-NPs improved cogni-
tion and were effective against the AD in mice model [268].

 Jeon et al., prepared Vitamin D-binding protein (DBP) 
PLGA NPs by the emulsion diffusion method and investigated 
its in vivo activity on a 5XFAD AD mice model. The result 
of the study showed that the prepared formulation exhibited 
improvement decreased by 1.3-fold in a cognition-treated 
group compared to the disease group. Additionally, the DBP-
PLGA NPs exhibited treated group decreased Aβ aggregation 
and reduced neurodegeneration. The overall study indicated 
that the prepared formulation is effective against AD [269].

 Xu et al., prepared rhynchophylline-loaded mPEG-PLGA 
NPs coated with Tween 80 (T80-NPS-RIN) by nanoprecipita-
tion method against the AD model. They investigate their in 
vivo activity on the C57BL/6 mice and male Sprague-Dawley 
rats. Results of the study showed that prepared formulation 
has a neuroprotective effect against AD by decreasing inflam-
mation, oxidative stress, and tau protein in the brain [270].

 Vilella et al., fabricated the Polymeric NPs (g7-NPs-Zn) 
against the AD model and evaluated their anti-AD activity 
on the APP23 mice. Results of the study showed that the 
prepared formulation decreased the Aβ plaques by 1.2-fold 
as compared to the saline group. Furthermore, g7-NPs-Zn 
reduced the IL-6 by 3-fold as compared to the diseased 
group. Thus, the study concluded that the prepared formu-
lation was an effective formulation against AD [271].

Silver NPs (AgNPs)

AgNPs are gaining attention for their potential role in AD 
treatment. Produced through environmentally friendly 
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methods, these NPs exhibit properties that enable them to 
cross the blood-brain barrier, a significant hurdle in brain 
disease treatment. They have demonstrated an ability to 
improve drug stability and efficacy, making them suitable 
carriers for Alzheimer’s drugs. Additionally, their antioxi-
dant and anti-diabetic properties could also be beneficial in 
managing Alzheimer’s [272]. Studies related to AgNPs for 
the management of AD are given below.

 Zhang et al., prepared N. khasiana leaf extract-based 
(AgNPs) and evaluated its Anti- AD activity in the male 
Wistar rats. Result of study showed that prepared formula-
tion decreased the Barnes Maze Task by 1.2-fold as com-
pared to the negative control group which improved memory. 
Finally, this study indicated that the AgNPs will be effective 
in cognition impairment and managing AD [273].

 Ittiyavirah et al., prepared an Ethanolic extract based 
Boerhaavia diffusa AgNPs (AgNPsBD) against the AD mice 
model and investigated their anti-AD activity in the male 
Wistar albino rats. Result of the study showed that prepared 
formulation exhibited an increase of 1.5-fold Morri’s water 
maze test activity as compared to the diseased induced 
group. This indicated the Enhancement in the ability to 
learn and remember spatial information in rodents. Also, 
AgNPsBD increased GSH level by 1.4-fold as compared to 
the AD group. Overall, the study showed that the formula-
tion is effective against AD [274].

In another study, Ramshini et al., explored the AgNPs 
against the AD in Wistar rat model. Result of the study indi-
cated a decrease in the escape latency by 2.2-fold & and 2.4-
fold as compared to scopolamine & and lysozyme-treated 
group. In addition to this, AgNPs also exhibited improve-
ment in memory and spatial learning by inhibiting amyloid 
fibrils-induced neurotoxicity. Overall event, indicated the 
potential of AgNPs against AD [275].

Cerium Oxide NPs (CNPs)

CNPs are a type of nanomaterial with significant potential in 
various fields. They are known for their biomimetic activi-
ties, including acting as superoxide dismutase, catalase, 
and more. Two forms exist: CeO2 and Ce2O3, with CeO2 
being more stable and commonly used. CNPs have antioxi-
dant properties due to the self-regeneration of their surface 
which involves redox-cycling between cerium’s 3+ and 4+ 
states. They are used in biomedical applications, such as 
treating bacterial infections, and have potential in biology 
and medicine [276].

 Danish et al., synthesized Cerium oxide NPs (CNPs) 
by homogenous precipitation method against the AD and 
investigated their anti-AD activity on the female Wistar 
rats. Result of study showed that prepared formulation 
improved memory in the MWT escapes latency by 1.4-fold 
as compared to AD-induced group. Also, CNPs increased 

SOD and GSH activity by 2.7-fold and 4-fold as compared 
to Scopolamine group respectively [277].

Similarly, Hu et al., synthesized cerium dioxide NPs 
(LMC) and loaded them with Resveratrol (LMC-RES) 
against the AD mice model and explored their activity on 
the 5xFAD mice. Result of study showed that prepared 
formulation increased GSH level by 3-fold and SOD level 
by 4-fold as compared to Aβ induced group. LMC-RES 
also decreased the Aβ 1–42 concentration by 1.3-fold as 
compared to diseased group. Overall, study concluded that 
LMC-RES have antioxidant properties, reduced ROS, pro-
tected neurons, and improved cognition in AD [278].

In another study, Wahle et  al., synthesized cerium 
dioxide (CeO2 NPs) against the AD and examined their 
anti-AD activity on the 5xFAD transgenic mice. Result 
of study showed that prepared formulation decreased the 
plaque load percentage by the 1.3-fold as compared to con-
trol group in hippocampus. Overall study concluded that 
CeO2 NPs was effective against the AD [279].

Zinc Oxide NPs (ZnO NPs)

ZnO NPs are unique nanomaterials with diverse applications. 
They are known for their distinct optical and chemical proper-
ties, which can be adjusted by changing the NPs’ morphology. 
ZnO NPs are commonly used in electronics and optoelectron-
ics. They also have potential in biomedicine and biotechnol-
ogy, including enhancing plant growth and productivity, man-
aging diseases, and serving as an antimicrobial agent [280].

 Abdulmalek et al., prepared zinc oxide NPs (ZnONP), 
and evaluated their activity on the male Wistar rats. Result 
of study showed that the prepared formulation decreased 
Aβ-42 by 4.2-fold as compared to the STZ-induced group. 
Also, it improved AChE activity by 7.4-fold as compared 
to diseased group. Overall study indicated the effective-
ness of ZnOPN against neurodegenerative disorders [281].

Similarly, Kesmati et al., explored cognitive potential of 
ZnO NPs was evaluated on male NMRI mice. Results of 
study showed that prepared formulation exhibited improve-
ment in locomotor activity by 1.2-fold as that of the untreated 
group. In addition to this, the ZnO NPs treated group also 
showed an increase in step-down latency time by 1.3-fold as 
compared to untreated group. Hence, it indicated the effec-
tiveness of the developed formulation against AD [282].

Selenium NPs (SeNPs)

SeNPs are nanomaterials that have attracted attention due 
to their biocompatibility, bioavailability, and minimal tox-
icity. They are derived from selenium salts using reducing 
agents. SeNPs are recognized for their distinct optical and 
chemical properties and have applications in electronics and 
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optoelectronics. In biomedicine and biotechnology, they 
show potential in promoting plant growth, disease manage-
ment, and as antimicrobial agents [283].

 Gholamigeravand et al., prepared Selenium NPs (SeNPs) 
by chemical Precipitation method against the AD model. 
They examined their activity on the male Wistar rats. Result 
of study showed that prepared formulation decreased Aβ 
plaques in brain by 1.1-fold as compared to STZ-induced 
group. Furthermore, SeNPs improved memory by 1.2-fold 
as compared to diseased group. Thus, the study concluded 
that prepared formulation was effective against AD [284].

In another study, Ji et al., prepared Se-loaded chondroitin 
sulphate (CS@Se) NPs against the AD and evaluated their 
anti-AD activity on the SPF-grade male C57BL/6 mice. 
Result of study showed that prepared formulation improved 
memory by 1.5-fold in MWT as compared to AD model 
group. Furthermore, CS@Se NPs treated group showed an 
increase in GSH level by 13-fold as compared to the dis-
eased group [285].

 Sun et al., prepared chiral penicillamine Se-NPs (L-/D-
Pen@Se NPs) against AD and investigated their in vivo 
activity on the APP/PS1 transgenic mice. Result of study 
showed that prepared formulation improved memory in 
MWT by 1.4-fold as compared to AD group. Overall, study 
showed that the L-/D-Pen@Se NPs improved the cognitive 
impairment in AD [286].

 Micelles

Micelles are colloidal particles formed from surfactant 
molecules in a liquid. They are typically spherical, with 
hydrophilic heads facing the solvent and hydrophobic tails 
in the center. This formation occurs spontaneously when 
the surfactant concentration exceeds the critical micelle 
concentration. Micelles have diverse applications, includ-
ing in electronics, optoelectronics, and biomedicine. They 
can enhance plant growth, manage diseases, and serve as 
antimicrobial agents [287].

In another study, Hagl et al., evaluated anti-AD effect of 
curcumin-loaded micelles (CMI) on Male C57BJ/6-Thy1-
APP751SL mice. Result of the study showed a decrease 
in Aβ40 level in the CMI-treated group by 2.8-fold as that 
of placebo group. Further, CMI treated group exhibited an 
increase in the level of ATP by 1.2-fold as compared to pla-
cebo group [288].

 Yang et al., prepared the micelles that targeted the neu-
ronal mitochondria (CT-NM) against AD and investigated 
their anti-AD activity on the ICR mice, nude mice, and SD 
rats. Result of study showed that CT-NM decreased the level 
of Aβ by 3-fold as compared to the diseased group. Further, 
the prepared formulation increased the level of the SOD 
and GSH by 2.1-fold and 2-fold respectively. Hence, the 

prepared formulation was a potential method for the treat-
ment of AD [289].

Dendrimers

Dendrimers are highly structured, branched polymers with 
a typically spherical 3D shape. They are symmetric around 
the core and are also known as arborols or cascade mol-
ecules. Dendrimers are unique due to their structural per-
fection, usually being monodisperse and highly symmetric. 
They have diverse applications, including in biomedicine 
and biotechnology, where they can enhance plant growth, 
manage diseases, and serve as antimicrobial agents [290].

 Gothwal et al., prepared rivastigmine (RIV) loaded den-
drimeric (PAMAM-Lf-RIV) against the AD mice model. 
Their activity was examined on the Wistar rats. Result of 
study showed that prepared formulation improved memory 
by 1.2-fold as compared to control group. Overall, the study 
concluded that PAMAM-Lf-RIV was an effective formula-
tion against AD [291].

In another study, Gothwal et al. prepared PAMAM-LF-
loaded memantine (MEM-PAMAM-Lf) dendrimers. Their 
in vivo activity was evaluated against AD-induced mice. The 
result of study showed that prepared formulation decreased 
1.4-fold AChE activity as compared to AL-induced group. 
Overall, the study concluded that the MEM-PAMAM-Lf 
improved memory, and a promising approach against AD 
[292].

 Klementieva et al., prepared Poly (propylene imine) 
(PPI) glycodendrimers against AD mice model and inves-
tigated their anti-AD activity in APP/PS1 transgenic mice 
AD model. Result of study showed that G4mDS treated 
group exhibited a decreased in total amyloid burden, fibrillar 
amyloid burden, aggregation index, and soluble Aβ level by 
1.5-fold, 1.3-fold, 1.7-fold, and 1.8-fold of that of untreated 
group, respectively [293].

Nanoemulsion

Nanoemulsions, also known as mini emulsions, are stable 
dispersions of liquid within another liquid, with droplet sizes 
around 100 nm. Their small size results in properties such 
as high surface area, stability, transparency, and adjustable 
rheology. They are formed by shearing a mixture of two 
immiscible liquids (like oil and water), surfactants, and pos-
sibly co-surfactants. They can be oil-in-water or water-in-oil, 
depending on the core particle. Nanoemulsions are used in 
areas like drug delivery, food, cosmetics, pharmaceuticals, 
and material synthesis [294].

 Song et al., prepared the Osthole loaded nano emulsion 
(OST-NE) against the AD mice model. Their anti-AD activ-
ity was examined in the Scopolamine-Induced Kunming 
mice. The result of study showed that prepared formulation 
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improved memory by 3.7-fold as compared to the diseased 
group. The OST-NE also increased the SOD activity by 1.1-
fold as compared to the Scopolamine-induced group. Thus, 
OST-NE was an effective AD [295].

Furthermore, Alaqeel et  al., prepared the quercetin-
loaded nano emulsion (QCNE) against the AD. They 
investigated their anti-AD activity against the albino male 
rats. The result of study showed that prepared formulation 
increased SOD and GSH activity by 1.4-fold and 1.9-fold as 
compared to AD group respectively. Furthermore, QCNE 
decreased the level of IL-1β & TNF-α by 1.8-fold and 2-fold 
as compared to the diseased group. Thus, QCNE indicated 
the potential against neuronal disease [296].

 Ismail et al., prepared the thymoquinone-rich fraction 
nano emulsion (TQRFNE) against the AD. They examined 
their anti-AD activity on the Sprague-Dawley rats. Result 
of study showed that prepared formulation decreased the 
BACE1 and RAGE levels by 2-fold and 1.7-fold in hip-
pocampus respectively. This indicated the reduction of Aβ 
secretion in brain. Furthermore, TQRFNE also decreased the 
level of Aβ40 and Aβ42 in hippocampus and was effective 
against AD [297].

 Beniwal et al. fabricated the citral Nanoemulsion (N-Cit-
ral) against the AD model and examined their anti-AD activ-
ity on the male rats model. The result of study showed that 
prepared formulation improved memory by 4-fold as com-
pared to the AD-induced group. While N-Citral decreased 
the level of MDA by 1.2-fold as compared to diseased group. 
It indicated that the N-Citral was effective against the neu-
rodegenerative disease [298].

Nanostructured Lipid Carriers (NLCs)

Nanostructured Lipid Carriers (NLCs) are lipid NPs made 
from a blend of solid and liquid lipids. They remain solid at 
room and body temperatures. As the second generation of 
lipid NPs, NLCs were developed to address the limitations 
of the first generation, such as restricted drug loading and 
drug leakage during storage. NLCs have diverse applica-
tions due to their unique properties. They have potential in 
biomedicine and biotechnology, including enhancing plant 
growth, disease management [299].

 Shehatae et al., prepared Donepezil and Astaxanthin 
co-loaded NLCs (DPL/AST–NLCs) by the hot high-shear 
homogenization technique against AD rats model examined 
their anti-AD activity on the male albino rats. Result of the 
study showed that prepared formulation improved memory 
in the MWT by 3.6-fold as compared to the AD group. Fur-
thermore, DPL/AST–NLCs decreased Aβ1–42 by 4.3-fold 
as compared to diseased group. In addition to this, DPL/
AST–NLCs also decreased inflammation, and oxidative 
stress, and improved cognitive impairment [300].

In another study, Shehata et al., fabricated Astaxanthin 
loaded NLCs (AST–NLCs) by the hot high-pressure homog-
enization (HPH) technique against AD rat model. They 
investigated their activity on male albino rats. The result of 
study showed that prepared formulation improved memory 
in MWT by 2.6-fold as compared to AD group. Further-
more, the prepared formulation decreased Aβ1–42 content 
by 3-fold as compared to the diseased group. Overall, the 
study concluded that AST–NLCs indicated the potential 
against AD [301].

 Anand et al., prepared NLC loaded with the rivastigmine 
hydrogen tartrate (RHT-NLCs). They examined their In-vivo 
activity on the albino Wistar rats. The result of study showed 
that prepared formulation improved memory by 2.9-fold as 
compared to the negative control group. Overall, study con-
cluded that RHT-NLCs were an effective formulation against 
AD [302].

Solid Lipid NPs (SLNs)

Solid Lipid NPs (SLNs) are lipid NPs composed of a solid 
lipid core that can encapsulate both water-soluble and fat-
soluble active pharmaceutical ingredients. Typically spheri-
cal, their size ranges from 10 to 1000 nm. SLNs have unique 
properties that make them useful in various fields. They 
have potential in biomedicine and biotechnology, including 
enhancing plant growth, disease management [303].

 Shivananjegowda et al., prepared Memantine Hydro-
chloride (MeHCl) and Tramiprosate (TMPS) co-loaded 
solid lipid NPs (SLNs) against the AD. Their activity was 
examined on the Albino Wister Rats. Result of study showed 
that prepared formulation improved memory by 3-fold in 
escape latency test as compared to AlCl3-induced group. 
Also, M + T SLN reduced the Aβ level in AD mice model as 
compared to diseased group. Overall, study shows the M + T 
SLN was effective the AD [304].

Similarly, Saini et al., demonstrated ferulic acid SLNs 
coated with chitosan by the hot homogenization technique 
against AD and investigated their activity in the STZ-
induced Wistar rats. The result of the study showed that 
prepared formulation promoted an increase in level of GSH, 
SOD, and Catalase. Furthermore, it reduced the level of 
AChE. Thereby managed the neurodegeneration and cogni-
tion in the AD [305].

 Dara et al., fabricated Erythropoietin SLN (EPO-SLN) 
by the double-emulsion method and examined the activity 
on the Albino Wistar male rats. Result of study showed that 
prepared formulation exhibited a reduction in Aβ plaques by 
6.5-fold as compared to diseased Aβ induced group. Also, 
EPO-SLN decreased ROS by 1.5-fold as compared to the 
diseased group. Overall, study shows that EPO-SLN was 
effective against neurodegenerative disorders [306].



	 AAPS PharmSciTech          (2024) 25:207   207   Page 18 of 35

In another study, Campisi et al., prepared the curcumin 
SLNs-loaded (SLNs-CUR) by solvent evaporation method 
against the AD model and examined their activity on the 
TgCRND8 (Tg) mice. The result of the study showed that the 
prepared formulation improved memory by 9-fold in Morris 
water maze test as compared to untreated group [307].

Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are minuscule tubular structures 
made of carbon atoms, with a diameter much smaller than a 
strand of human hair. Their small size, strength, and ability 
to be functionalized with various biomolecules make them 
ideal for targeted delivery to specific cells or tissues. They 
possess a high surface area and robust adsorption capabili-
ties, which allow for high drug-loading capacity. This makes 
them a key component in nano-drug delivery systems. They 
can also penetrate cells, delivering drugs directly to the cyto-
plasm or nucleus. In the case of neurovascular disorders, 
CNTs can potentially deliver drugs across the blood-brain 
barrier [308].

 Yang et al., evaluated the potential of single-walled car-
bon nanotubes (SWCNTs) against AD in the Kunming mice. 
Result of study showed that prepared formulation exhibited 
improvement in memory by 1.1-fold as compared to AD 
group. Furthermore, it reduced level of AChE and effective 
against AD [309].

 Xue et al., evaluated potential of single-walled carbon 
nanotubes (SWNT) against AD and examined the activ-
ity on the CRND8 mice. Result of study showed that pre-
pared formulation decreased p-ULK1/t-ULK1 by 1.7-fold 
as compared to untreated group. Overall, the study shows 
that SWNT has a neuroprotective effect against AD therapy 
[310].

 Ranjan et al., evaluated potential of carbon nanotubes 
(CNTs) against AD model and examined their activity in 
Male Wistar rats. The result of study showed that the pre-
pared formulation decreased the level of Ascorbic Acid by 
2.1-fold, 1.8-fold, and 1.3-fold in brain which enhanced 
memory. Thus, CNTs are an effective approach for the treat-
ment of the animal model of AD [311].

Hydrogel

Hydrogels are three-dimensional polymeric networks capa-
ble of absorbing large amounts of water and biological fluids 
are increasingly used in drug delivery due to their unique 
properties and biocompatibility. They can encapsulate a 
wide range of drug molecules and control their release over 
time. Their responsiveness to specific triggers such as pH, 
temperature, or enzymes allows for targeted drug deliv-
ery, reducing potential systemic toxicity. Hydrogels can be 
formed into various shapes and sizes, enhancing their ver-
satility [312].

Table IV   Industrial Applications and Clinical Applications for the Treatment of AD for Various Delivery Systems

S No. Delivery system Industrial applications Clinical application for AD Ref.

1. Liposome Drug delivery, Cosmetics and Food industry Target drug delivery [317]
2. Niosome Drug delivery, cosmetics Targeted drug delivery [318]
3. Exosome Drug delivery and diagnostics Biomarkers, targeted therapy [319]
4. Transferosome Drug delivery Enhanced skin delivery, targeted therapy [250]
5. Ethosome Transdermal drug delivery Improved skin permeation [254]
6. Phytosome Drug delivery, nutraceuticals Enhanced bioavailability [320]
7. Cubosome Drug delivery, cosmetics Targeted drug delivery, sustained release [259]
8. NPs Drug delivery, electronics, textiles Targeted drug delivery, diagnostics [321]
9. Gold NPs Imaging, electronics, drug delivery Drug delivery, diagnostics [322]
10. Poly Lactic-co-Glycolic Acid NPs Drug delivery, medical devices Sustained release, targeted delivery [323]
11. Silver NPs Antimicrobial coatings, textiles Antimicrobial therapy [272]
12. Cerium Oxide NPs Catalysts, UV filters Antioxidant therapy [277]
13. Zinc Oxide NPs Sunscreens, coatings, textiles Antimicrobial therapy, UV protection [324]
14. Selenium NPs Dietary supplements, cosmetics Antioxidant therapy [325]
15. Micelles Drug delivery, detergents Solubilizing hydrophobic drugs [326]
16. Dendrimers Drug delivery, gene therapy Targeted drug delivery, diagnostics [327]
17. Nanoemulsion Food industry, cosmetics Improved drug solubility [328]
18. Nanostructured Lipid Carriers Drug delivery, cosmetics Controlled release, enhanced stability [329]
19. Solid Lipid NPs Drug delivery, cosmetics Controlled release, enhanced stability [304]
20. Carbon Nanotubes Electronics, materials science Drug delivery, diagnostics [330]
21. Hydrogel Wound care, contact lenses Sustained release, tissue engineering [331]
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 Ribeiro et al., prepared Curcumin-loaded mesoporous 
silica NPs (MSN-CCM) Hydrogel (HG@MSN-CCM) 
against the AD and examined their anti-AD activity on the 
STZ-induced mice female Swiss albino mice. Result of study 
showed that prepared formulation showed that prepared for-
mulation improved memory in open field test by 4.5-fold as 
compared to negative control group. Thus, Study shows the 
HG@MSN-CCM improved cognition and acted as a poten-
tial formulation against AD [313].

Similarly, Ou et al. examined the therapeutic effect of 
Timosaponin BII-loaded hydrogel (ISGs) on scopolamine-
induced AD mice. Result of the study showed that ISGs 
treated group increased cholinergic M1 receptor in hip-
pocampus of mice by 2-fold as compared to untreated group 
[314].

 Chen et al., prepared timosaponin BII loaded in situ 
hydrogel (ISG) against the AD and evaluated their in vivo 
activity against the C57BL/6J mice. Result of study showed 
that prepared formulation improved memory in the platform 

Table V   Nano-Drug Delivery Systems for AD

S. No. NDDS Active drug candidate Models used Result Ref.

1. CNTs Berberine Wistar rats Improved memory by 3.5-fold 
as compared to Aβ 1–42 
group

[332]

2. Dendrimers o-phenylene diamine Inclusion bodies of ovine prion 
protein (PrP)

Decreased Aβ [333]

3. AuNPs Anthocyanin Male mice C57BL/6 N Improved memory by 3.3-fold 
as compared to the diseased 
group

[334]

4. AuNPs CLPFFD peptide Capillary endothelial cells Decreased Aβ [335]
5. Liposome NPs Curcumin derivative (CD) APP/PS1 transgenic mice Isolate Aβ-42 [336]
6. Liposome NPs Peptide iAβ5 Capillary endothelial cells Improved neurodegenerative 

diseased
[337]

7. Liposome NPs Curcumin and nerve growth 
factor

Male Wistar rats Managed 1.1-fold AChE 
Activity as compared to the 
Aβ group

[338]

8. Mesoporous silica NPs (MSN) Rivastigmine SH-SY5Y cell line Effective in neurodegenerative 
diseased

[339]

9. Mesoporous silica NPs (MSN) Metal chelator CQ Endothelial cell line. Decreased the Aβ [340]
10. Metallic NPs Iron oxide Aβ fibrillation Improved neurodegenerative 

diseased
[341]

11. Polymeric NPs RVG29 peptide Transgenic AD mice Improved memory by 1.4-fold 
as compared to the saline 
group

[342]

12. Polymeric NPs Piperine Adult male Wistar rats Improved memory by 2.5-fold 
as compared to the diseased 
positive group

[343]

13. Polymeric NPs Iminodiacetic acid Aβ-42 aggregation/SH-SY5Y 
cell line

Improved Aβ aggregation [344]

14. Polymeric NPs Epigallocatechin-3-gallate SH-SY5Y cell line Inhibited Aβ [345]
15. Polymeric NPs Cerium (III) acetate SH-SY5Y cell line and 

5XFAD Transgenic mouse
Decreased oxidative stress 

in AD
[346]

16. SLNs RVG-9R Caco-2 cells A promising approach in neu-
rodegenerative diseased

[347]

17. SLNs Grape seed extract/ Resvera-
trol

Endothelial cells Inhibited Aβ (1–42) [348]

18. SLNs Galantamine hydrobromide Adult Wistar rats Increased memory 2.1-fold as 
compared to the diseased-
induced group

[349]

19. SLNs Nerve growth factor Mouse stem cells Effective in neuronal dysfunc-
tion

[350]

20. SLNs Rapamycin SH-SY5Y cell line Decreased 1.5-fold cell prolif-
eration

[351]
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crossing test by 1.4-fold as compared to model group. Fur-
ther, T BII-ISG improved the distance covered in open field 
test by 1.1-fold as compared to AD model group. Thus, 
study concluded the effectiveness of the developed formu-
lation against AD [315].

In another study, anti-AD effect of galantamine loaded 
hydrogel (Gal) was evaluated on streptozotocin-induced 
AD Wistar rats. The result of study showed increased in the 
body weight of rat in Gal treated group by 1.4-fold as that 
of untreated group. Further, increased escape latency was 
also observed in Gal treated group by 1.3-fold as compared 
to untreated group [316].

Few other NDDS formulation studies for the management 
of AD are discussed in Tables IV and V. Industrial applications 
and clinical applications for the treatment of AD for various 
delivery systems are discussed in Table IV. Additionally, Clini-
cal trials, ongoing clinical trials, and patents related to AD are 
mentioned in Tables VI and VII, and Table VIII, respectively.

Future prospective

Research on AD is advancing across multiple fronts. In 
terms of early detection and diagnosis, ongoing efforts 
are focused on developing more accurate and accessible 
methods, including biomarkers, imaging techniques, and 
blood tests, to identify signs of the disease before symp-
toms appear. Researchers are exploring the concept of pre-
cision medicine, tailoring Alzheimer’s treatments based 
on individual genetic and molecular profiles to optimize 
effectiveness and minimize side effects. In drug develop-
ment, numerous trials are underway with a focus on medi-
cations capable of decelerating or stopping the progression 
of disease by targeting specific biological processes such 
as accumulation of beta-amyloid plaques and tau tangles. 
Non-pharmacological studies, such as lifestyle modifica-
tions, cognitive training, and physical exercise, are being 
investigated for their potential in preventing or delaying 

Table VI   Clinical Trials Studied for the Treatment of AD

S. No. Dosage Allocation/Phase No. of patients Outcomes Duration Ref.

1. Donanemab Randomized Clinical Trial, Phase 3 1736 Donanemab effectively slowed clinical 
progression at 76 weeks

76 weeks [352]

2. Vitamin E + C Randomized Clinical Trial 78 Reduction of CSF F2-isoprostane 
levels showed a decreased in oxida-
tive stress

16 weeks [353]

3. Oral avagacestat Randomized Clinical Trial, Phase 2 1358 Avagacestat did not show effectiveness 
and was linked with adverse dose-
limiting effects

2 years [354]

4. Pioglitazone Randomized Pilot Clinical Trial 29 Pioglitazone was generally well toler-
ated in patients with AD

18 months [355]

5. Citalopram Randomized Clinical Trial 186 1.5-fold improvement in reducing 
agitation and caregiver distress com-
pared to a placebo

9 weeks [356]

6. AZD0530 Randomized Clinical Trial 159 Decrease in hippocampal volume and 
entorhinal thickness in AZD0530-
treated group

52 weeks [357]

7. PF-04494700 Randomized Clinical Trial 399 Increased adverse events at high doses 
while good safety profile at low dose

18 months [358]

8. Indomethacin double-blind controlled study 66 Indomethacin showed a 1.3% improve-
ment in cognitive tests as that of the 
placebo group

6 months [359]

9. NGF gene delivery Phase 1 Clinical trials 10 Increased NGF expression, enhanced 
cholinergic function, and improved 
cognitive performance

22 months [360]

10. Insulin Pilot Clinical Trial 104 Improved delayed memory, changes in 
Aβ42 level, and tau protein-to-Aβ42 
ratio

4 months [361]

11. Atabecestat Randomized Phase 2b/3 Clinical Trial 4464 Atabecestat treatment led to dose-
related cognitive decline and neu-
ropsychiatric Adverse events

3 months [362]

12. Idalopirdine Randomized Clinical Trials 2525 Adverse events occurred in 55.4–69.7% 
of participants in idalopirdine groups

24 weeks [363]

13. Risperidone Prospective Clinical Trial 473 No statistically significant differences 
between risperidone and placebo

8 weeks [364]
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Alzheimer’s onset and managing symptoms. Technology, 
such as wearable devices and smartphone apps, is being 
explored to monitor and assess cognitive function, provid-
ing valuable data for early detection and disease manage-
ment. Global collaboration among researchers, healthcare 
professionals, and organizations is deemed crucial, foster-
ing initiatives and partnerships to pool resources, share 
data, and accelerate progress. There is a growing emphasis 
on public awareness and advocacy to reduce the stigma 
associated with AD with governments and organizations 
working on policies to support research funding, caregiver 
support, and improved healthcare access. Staying updated 
on the latest research findings and breakthroughs is essen-
tial, given the dynamic and continuously evolving nature 
of the field, with reliable sources like scientific journals, 
health organizations, and research institutions recom-
mended for the most current information.
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