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Abstract 
Stepwise covariate modeling (SCM) has a high computational burden and can select the wrong covariates. Machine learning 
(ML) has been proposed as a screening tool to improve the efficiency of covariate selection, but little is known about how to 
apply ML on actual clinical data. First, we simulated datasets based on clinical data to compare the performance of various 
ML and traditional pharmacometrics (PMX) techniques with and without accounting for highly-correlated covariates. This 
simulation step identified the ML algorithm and the number of top covariates to select when using the actual clinical data. A 
previously developed desipramine population-pharmacokinetic model was used to simulate virtual subjects. Fifteen covari-
ates were considered with four having an effect included. Based on the F1 score (an accuracy measure), ridge regression was 
the most accurate ML technique on 200 simulated datasets (F1 score = 0.475 ± 0.231), a performance which almost doubled 
when highly-correlated covariates were accounted for (F1 score = 0.860 ± 0.158). These performances were better than for-
wards selection with SCM (F1 score = 0.251 ± 0.274 and 0.499 ± 0.381 without/with correlations respectively). In terms of 
computational cost, ridge regression (0.42 ± 0.07 seconds/simulated dataset, 1 thread) was ~20,000 times faster than SCM 
(2.30 ± 2.29 hours, 15 threads). On the clinical dataset, prescreening with the selected ML algorithm reduced SCM runtime 
by 42.86% (from 1.75 to 1.00 days) and produced the same final model as SCM only. In conclusion, we have demonstrated 
that accounting for highly-correlated covariates improves ML prescreening accuracy. The choice of ML method and the 
proportion of important covariates (unknown a priori) can be guided by simulations.
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Introduction

Covariate modeling is an important aspect of population 
pharmacokinetics and can influence key drug development 
decisions such as dose optimization in patient subpopula-
tions and identification of subpopulation key features (1, 2). 
Stepwise covariate modeling (SCM) is the most commonly 
used technique for covariate selection (1, 3). However, it has 
a high computational burden especially for complex struc-
tural models or a high number of candidate covariates (1, 
4). Increasing model complexity and too many false highly-
correlated covariates also decrease its power to detect the 
true covariates (5). Moreover, the emerging role of quantita-
tive systems pharmacology and real-world data in informing 
clinical drug development (6–8), means that pharmacomet-
rics (PMX) models are becoming more complex and the 
number of candidate covariates keeps increasing.
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To increase computational speed, one solution is to use 
first-order conditional estimation (FOCE)-based linear 
approximation (FOCE linearization), previously demon-
strated to reduce runtimes from days to less than 10 minutes 
(9). Another common solution is to screen covariates prior 
to covariate modeling using techniques such as graphical 
analysis (e.g. empirical Bayes estimates [EBEs] of a param-
eter versus covariates) or statistical techniques such as cor-
relation analysis, and regression-based methods (1, 2). These 
methods are often applied to low dimensional problems (i.e., 
problems involving a relatively small number of covariates) 
and are often based on prior knowledge, which can some-
times be biased (4).

Supervised machine learning (ML), which utilizes statis-
tical techniques to deal with both low-and multi-dimensional 
problems, has been proposed as a covariate screening tool 
(4, 10, 11). For example, Sibieude and colleagues used dif-
ferent scenarios of covariate influence in simulated data-
sets to compare three ML methods (random forest, neural 
networks, and support vector regression) with traditional 
PMX approaches (i.e., SCM, conditional sampling use for 
stepwise approach based on correlation tests [COSSAC] and 
least absolute shrinkage and selection operator [LASSO]) 
and concluded that ML methods can increase the efficiency 
of covariate modeling (similar or better performance than 
SCM with 30 to 100 times decreased computational time 
burden) (4). They recommended that more conventional 
PMX approaches be performed after the initial covariate 
screening to obtain the covariate relationships and effects 
for the final model. Sibieude et al. used a one-compartment 
model, and did not account for highly-correlated covari-
ates; given that both model complexity and high correla-
tions affect covariate selection accuracy (5), more work in 
this area is required. Particularly, machine learning utilizes 
empirical Bayes estimates [EBEs] and whether EBEs effec-
tively retain sufficient information to identify true covari-
ates for mechanistically more complex models as they did 
for the simpler model will remain an area of active ML 
research in the near future. Accounting for correlations is 
especially important during screening to avoid excluding 
physiologically-relevant covariates due to the selection of 
highly-correlated false covariates.

Desipramine, a commonly used antidepressant, is exten-
sively metabolized by cytochrome P450 family 2 subfamily 
D member 6 (CYP2D6), and is listed by the FDA and EMA 
as a clinical probe substrate for the evaluation of CYP2D6-
mediated drug-drug interactions (DDIs) (12, 13). Following 
oral administration, desipramine is rapidly absorbed with 
its maximum plasma concentration  (Cmax) being observed 
within 2 to 6 hours (12). It is highly tissue-bound (apparent 
volume of distribution ranging from 10 to 50  Lkg−1), highly 
protein-bound (range 73 to 92%), and its bioavailability 
(~40%) is highly variable (14). Desipramine is a moderate 

extraction ratio drug mainly eliminated by hepatic metabo-
lism with its main metabolite being 2-OH-desipramine (12, 
14).

Previously, Gueorguieva and colleagues used data from 
control groups (desipramine-only arm) of seven DDI stud-
ies (108 healthy subjects) to, among other aims, develop a 
population pharmacokinetic (pop-PK) model with hepatic 
intrinsic clearance derived from the total clearance (12). 
During covariate modeling, demographic characteristics 
(age, alcohol status, body mass index [BMI], gender, height, 
race, weight, and smoking status) were tested on apparent 
clearance and volume of distribution parameters using SCM, 
with only BMI being included as a significant covariate on 
the volume of distribution (12).

In earlier analysis, using a slightly larger sample size (114 
healthy subjects) and additional covariates, we built upon 
Gueorguieva et al.’s work and developed a semi-mechanistic 
pop-PK structural model as well as determined the influence 
of including below limit of quantification data (unpublished 
data, Ndzamba, Asiimwe, Mouksassi, Pillai, Lombard, and 
Lang). This paper focuses on examining the role of machine 
learning for covariate screening prior to covariate selection. 
Specifically, we a) compared the performance of various 
ML and PMX techniques on datasets simulated using a 
more complex model structure and clinical trial data; b) 
explored whether accounting for highly-correlated covari-
ates improves the true covariate selection accuracy; and, c) 
applied the best-performing ML techniques to clinical trial 
data.

Materials and Methods

To select the machine learning (ML) technique to apply to 
the desipramine dataset, we conducted a simulation analysis 
and compared the performances of the various ML tech-
niques. Based on the framework proposed by Sibieude et al. 
(4), our analysis workflow (Fig. 1) included structural model 
definition, simulation settings, data generation, and model 
estimation before covariate selection, where we compared 
the various ML techniques, and included the traditional 
pharmacometrics (PMX) techniques. The different compo-
nents of the analysis workflow are described in more details 
below (relevant code is provided in Supplementary Code).

Desipramine Dataset

The desipramine dataset included 114 subjects recruited 
from seven DDI studies whose selected characteristics are 
shown in Table S1 (12). It is worth noting that although 
machine learning could have handled all available 88 covari-
ates (collected by at least one of the seven studies) or 33 
covariates (available in all studies), we selected the most 
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relevant 15 (Table S1, Fig. S1) to optimize the runtime for 
SCM that did not have ML prescreening.

Structural Model

We used a semi-mechanistic first-order absorption model 
with a liver compartment, a central compartment, a periph-
eral compartment and 3 transit compartments. This model 
(scheme in Fig. S2 and parameter estimates in Table I) was 
developed from our earlier analysis (unpublished data, 
Ndzamba, Asiimwe, Mouksassi, Pillai, Lombard, and Lang) 
using nonlinear mixed-effects modeling in NONMEM (ver-
sion 7.5.0/7.5.1) with Perl Speaks NONMEM (PsN, version 
5.3.0) (15).

Settings and Simulation Framework of 200 A Priori 
‘True’ Models

To select the appropriate ML model to apply to the clinical 
dataset, we defined a simulation framework. We generated 
200 simulated datasets (100 per scenario, see below) using 
the structural model and assumed a priori 4 true covariates 
(one ‘true’ categorical covariate [formulation] and three 
‘true’ continuous covariates). The fifteen covariates from 
the clinical dataset shown in Table S1 were included in (used 
to inform) the simulation analysis as detailed in Text S1. We 

defined the a priori ‘true’ covariate effects on the intrin-
sic hepatic clearance (CLint) parameter to derive the ‘true’ 
model, using power and linear relationships for continuous 
and categorical covariates, respectively.

Model defini�ons, simula�on se�ngs, data genera�on, and model es�ma�on
Inputs

� Desipramine structural model
• Parameter estimates

• Covariance matrix for ETAs

� Desipramine dataset
• Fifteen covariates

• Covariate distributions

• Correlations between 

continuous covariates

R
� Code structural mode using rxode2.

� Simulate 100 datasets.
• 114 virtual subjects

� Add covariate effects.
• With effects added (‘true’ 

covariates): 1 categorical (linear), 3 

continuous (power relation). 

• Scenario 1 (large effect size) a

• Scenario 2 (small effect size) a

NONMEM
� Estimate the structural model 

for each of the simulated 

datasets.

� Generate EBEs for each 

simulated dataset.

Covariate selec�on
PMX techniques (NONMEM and R)

� For each scenario (100 simulated datasets each),

use templates to generate configuration (e.g., .scm)

and .mod files in R.

� Run PMX techniques using NONMEM via PsN.
• [Non-linear] SCM

• SCM with FOCE-linearization

Machine Learning (R)
� Use Caret Package (implements >200 methods)

• Linear regression, GAM, stepwise linear methods 

(AIC/RMSE), penalized regression, Random Forest, 

Neural Networks, and XGBoost.

• Tune hyper-parameters with 5-fold cross-validation.

• Compute variable importance.

� Rank methods (including PMX techniques) using the 

F1 score (with/without correlations accounted for).

Fig. 1  Analysis (simulations and performances of the various ML 
techniques) workflow. aThe large effect size was 1.5 for the cat-
egorical covariate and 1 for the continuous covariates while the 
small effect size was 1.15 for the categorical covariate and 0.15 for 
the continuous covariates. AIC = Akaike information criterion, 
EBEs = empirical bayes estimates, FOCE = first-order conditional 

estimation, GAM = generalized additive model (using splines), 
MSE = mean squared error, NONMEM = NONlinear Mixed Effects 
Modeling software, PMX = pharmacometrics, PsN = perl speaks 
NONMEM, RMSE = root mean squared error, SCM = stepwise covar-
iate modeling

Table I  Pharmacokinetic Parameter Estimates from the Structural 
Model

BSV between subject variability, CLint intrinsic hepatic clearance, 
KTR transit rate constant (for three transit compartments), h hour, L 
liter, Q intercompartment clearance, RSE relative standard error, Vc 
apparent central volume of distribution, Vp apparent peripheral vol-
ume of distribution

Parameter (units) Mean estimate (RSE) Shrinkage

CLint (L/h) 482.217 (6.7%)
KTR (/h) 1.265 (3.7%)
Vc (L) 891.995 (5.2%)
Vp (L) 368.922 (10.9%)
Q (L/h) 79.034 (18.6%)
BSV CLint 0.626 (13.4%) 0.9%
BSV CLint~BSV KTR 0.046 (50.3%)
BSV KTR 0.104 (15.0%) 3.7%
BSV KTR ~ BSV Vc 0.037 (34.5%)
BSV Vc 0.109 (18.2%) 9.9%
Proportional error 0.024 (16.1%) 14.6%
Additive error (ng/mL) 0.139 (28.6%) 14.6%
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We included three a priori ‘true’ continuous covariates 
based on the number of high correlations (defined as cor-
relation coefficients >0.5) with other continuous covari-
ates: age (zero correlation with continuous covariates), 
fat-free mass FFM (highly-correlated with one continuous 
covariate [weight]), and aspartate aminotransferase AST 
(highly-correlated with three continuous covariates [alanine 
aminotransferase ALT, bilirubin and gamma-glutamyl trans-
ferase GGT]) (Fig. S3).

We explored two scenarios: a ‘large effect’ scenario in 
which [the non-reference] formulation had an effect size of 
1.5 (or 50% higher CLint with a linear relationship) and 
the continuous covariates an effect size of 1 (see Fig. S4 
for interpretation); and a ‘small effect’ scenario in which 
formulation had an effect size of 1.15 (or 15% higher CLint) 
and the continuous covariates an effect size of 0.15 (Fig. S4 
for details).

To derive the a priori ‘true’ model, the parameter esti-
mates and covariance matrix for random effects/ETAs of 
the structural model including the a priori ‘true’ covariate 
effects were used to simulate 100 datasets per scenario in 
R (version 4.3.1) (16) (package rxode2 (17)). Each dataset 
comprised of 114 virtual subjects (similar to the desipramine 
dataset) with fifteen sampling times (0, 0.5, 1, 2, 3, 4, 6, 8, 
12, 24, 48, 72, 96, 120, 144 hours).

Finally, the a priori ‘true’ model was estimated for each 
scenario/simulated dataset in NONMEM. The empirical 
Bayes estimates (EBEs) were then used as outcomes in the 
ML analysis.

Evaluation of ML and PMX Techniques for Covariate 
Selection for the A Priori ‘True’ Models

The traditional PMX techniques that we tested were: [non-
linear] SCM (forward addition with and without backward 
selection) and SCM with FOCE linearization (9). SCM 
options included: forward p value of 0.05, backwards p value 
of 0.01, linear relationships for categorical covariates and 
linear/piecewise/exponential/power relationships for con-
tinuous covariates.

For machine learning, we used the Caret package in R 
(18) to implement several techniques including linear regres-
sion and generalized additive model using splines (fast, 
simple and commonly used), penalized regression (pen-
alty terms are included on the model’s objective functions; 
includes LASSO [alpha = 1], ridge regression [alpha = 0] and 
elastic net [0 < alpha <1]), step-wise linear methods (based 
on Akaike information criterion/AIC and root mean squared 
error/RMSE; similar in principle to SCM), random forest 
(an ensemble learning method that combines the predictions 
of multiple decision trees to make a final decision), neural 
networks (inspired by the structure of biological neural net-
works and can learn complex patterns and relationships in 

the data) and extreme gradient boosting/XGBoost (another 
ensemble method that builds a sequence of models, each one 
improving the predictions of the previous model). Additional 
information about these machine learning techniques is pro-
vided in Table S2. Tuning of hyperparameters (e.g., alpha 
for penalized regression or number of trees for tree-based 
methods such as random forest) was achieved in Caret using 
five-fold cross-validation and default settings (see Table S2 
for the parameters that were tuned).

We first used the NONMEM CLint individual random 
effects/ETAs for the ML analysis, where they were analyzed 
as the outcome. To compare the use of individual THETA 
parameters instead of ETAs, we also carried out additional 
analysis using logarithmic transformed THETAs. For con-
sistency with traditional PMX techniques, all continuous 
covariates were scaled by dividing them using their median 
value (or 70 kg for weight) followed by a logarithmic trans-
formation (equivalent to a power relation on the linear scale). 
For some ML methods (penalized regression and neural net-
works), an additional transformation (minimum-maximum 
normalization) was done.

To rank the most important covariates in each ML tech-
nique, variable importance was computed either using 
model-based metrics (e.g., t-statistic absolute value for 
linear models, out-of-bag mean squared error for random 
forest) or model-independent metrics (e.g., R-squared sta-
tistic, absolute value of the t-value for the slope of the linear 
predictor) (18). We then selected the top-4 covariates (top-M 
approach), where M is the number of true covariates (4). 
From this, the F1-score (the harmonic mean of recall [true 
positive/(true positive + false negative)] and precision [true 
positive/(true positive + false positive)]) was calculated (F1 
score = 2 x (recall x precision)/(recall + precision)) and used 
to compare the ML and PMX results (4).

Accounting for Highly‑Correlated Covariates 
to Determine the Important Covariates

Because a highly-correlated covariate can be selected instead 
of the ‘true’ covariate (19), we also computed the F1 score 
by accounting for highly-correlated covariates, defined as a 
correlation coefficient > 0.5 for relationships involving only 
continuous covariates or a Fisher’s exact test/Mann-Whitney 
p value <0.05 for relationships involving categorical covari-
ates. When accounting for highly-correlated covariates, a 
true covariate was considered to have been selected if it or 
any of its highly-correlated covariates was selected.

Application of the Best ML Methods 
to the Desipramine/Clinical Trial Dataset

The best ML methods identified during the simulation anal-
ysis were applied to the desipramine dataset to screen 15 
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covariates (Table S1) on three parameters (CLint, transit rate 
constant/KTR and apparent central volume of distribution/
Vc; Table S3) prior to non-linear SCM (linear relationships 
for categorical covariates and linear/power relationships 
for continuous covariates). This was compared to non-lin-
ear SCM on the 15 covariates without ML screening. The 
ML methods were also applied to a larger set of covariates 
(n = 33) but, no comparison was made with SCM because 
of very high computational requirements. As the number of 
true covariates was unknown a priori on the desipramine 
dataset, the top-M approach (where M = number of true 
covariates) was not applicable. We therefore determined 
the number of covariates to test based on the results of the 
simulation analysis. Specifically, M was set to the median 
proportion of covariates selected by an ML technique during 
the simulation analysis.

Results

Machine Learning Improves the Speed and Accuracy 
of Covariate Selection

We first used individual ETAs on intrinsic hepatic clearance 
as the outcome, with the ETA shrinkage being <0.1% in 
all simulated datasets. Without accounting for highly-corre-
lated covariates, ridge regression (F1 score for both scenar-
ios = 0.475 ± 0.231) was the best ML technique (Table II). 
The PMX techniques performed worse than the ML meth-
ods with non-linear SCM (standard approach) having an F1 
score of 0.251 ± 0.274 with only forwards selection, and 
0.206 ± 0.228 with both forwards and backwards selection. 
In terms of perfect selection (i.e., number of simulated data-
sets in which the F1 score was 1, or in which only the true 
covariates were identified), all methods performed poorly 
as detailed in Table II. Because smaller covariate effects 
are harder to detect, all the F1 scores decreased in the ‘low 
effect’ scenario (F1 scores for ridge regression were 0.590 
and 0.360 in the high and low effect scenarios, respectively). 
Using log-transformed individual THETAs as outcome for 
the ML techniques (Table S4) produced results that were 
similar to using the ETAs. The number of times the a priori 
‘true’ covariates were included for each of the selection 
methods are shown in Fig. 2 (panel A), with ridge regres-
sion selecting formulation, AST, age, and FFM in 21.0%, 
55.0%, 61.5% and 52.5% of the 200 simulated datasets (both 
scenarios).

The computational cost per simulated dataset for 
the various methods is shown in Table S5. The fast-
est ML technique was RMSE-based stepwise selection 
with a mean (± SD) runtime of 0.25 ± 0.03  seconds 
in the analysis that used NONMEM ETAs. The most 

accurate technique (ridge regression) had a runtime of 
0.42 ± 0.07 seconds. The PMX methods were much slower 
than the ML techniques with FOCE-linearized SCM 
(both forwards and backwards selection) using 15 threads 
requiring 544.56 ± 99.71 seconds (9.08 ± 1.66 minutes) 
and non-linear SCM (both forwards and backwards selec-
tion, 15 threads) requiring 8288.17 ± 8249.39 seconds 
(2.30 ± 2.29  hours). This means that ridge regression 
(using one thread) was ~20,000 times faster than the com-
monly used non-linear SCM (15 threads).

Accounting for Highly‑Correlated Covariates 
Increases True Covariate Selection Accuracy

When we accounted for correlations (i.e., assumed that 
including a highly-correlated covariate was comparable 
to including the true covariate; Table III), ridge regres-
sion (F1 score for both scenarios = 0.860 ± 0.158) was still 
the best technique. The PMX techniques again performed 
worse than the ML methods with non-linear SCM having 
an F1 score of 0.499 ± 0.381 with only forwards selection, 
and 0.444 ± 0.357 with both forwards and backwards selec-
tion. For all methods, accounting/adjusting for highly-cor-
related covariates (Table III) approximately increased F1 
scores by two-fold compared to those obtained when no 
correlations were considered (Table II). Perfect selection 
scores (i.e., number of simulated datasets in which the F1 
score was 1, or in which only the ‘true’ covariates or their 
correlations were identified) significantly increased, with 
elastic net regression (113/200 datasets with F1 score = 1) 
having the best performance. Again, using log-transformed 
individual THETAs as outcome for the ML techniques pro-
duced results (Table S6) similar to using the ETAs.

Figure 2 (panels A-without and B-with correlations) 
shows that accounting for correlations increased true 
covariate selection (panel C); for ridge regression, this 
increased by 10.0% for age (61.5% vs 71.5%), 26.5% for 
FFM (52.5% vs 79.0%), 38.5% for AST (55.0% vs 93.5%) 
and 79.0% for formulation (21.0% vs 100.0%). These 
increments were consistent with the median [range] num-
ber of correlations in the simulated datasets (age: 1 [1 to 
3], FFM: 2 [1 to 5], AST: 4 [4 to 6], and formulation: 7 [5 
to 10]). Covariate selection patterns for both scenarios are 
shown in Fig. 3 (ridge regression) and Fig. S5 (all meth-
ods). As shown for ridge regression, covariates that were 
correlated with the ‘true’ covariates were almost always 
selected together with the ‘true’ covariate. Specifically, the 
three covariates (bilirubin, ALT and GGT) that were cor-
related to AST (Fig. S3) had a similar selection frequency 
ranging from 93.5% to 94.5%. Lastly, Fig. S6 shows how 
the different methods ranked all the 15 covariates.
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Table II  F1  Scoresa for the ML and PMX Methods, with Highly-Correlated Covariates not Accounted for

ML (caret 
method) and 
PMX tech-
niques

Both scenarios High effect scenario Low effect scenario

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of 
selected 
covariates 
median 
(range)c

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of 
selected 
covariates, 
median 
(range)c

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of selected 
covariates, 
median 
(range)c

Ridge regres-
sion (glmnet, 
alpha = 0)

0.475 
(0.231)

4 4 (4 to 4) 0.590 
(0.193)

4 4 (4 to 4) 0.360 
(0.208)

0 4 (4 to 4)

Penalized 
regression 
(glmnet, vari-
able alpha)

0.460 
(0.241)

3 4 (4 to 4) 0.588 
(0.193)

3 4 (4 to 4) 0.332 
(0.216)

0 4 (4 to 4)

Elastic net 
(glmnet, 
alpha = 0.55)

0.456 
(0.246)

4 4 (1 to 4) 0.588 
(0.202)

3 4 (4 to 4) 0.325 
(0.215)

1 4 (1 to 4)

Neural net-
works (nnet)

0.415 
(0.275)

0 4 (4 to 4) 0.430 
(0.273)

0 4 (4 to 4) 0.400 
(0.278)

0 4 (4 to 4)

AIC-based 
stepwise 
selection 
(lmStepAIC)

0.402 
(0.265)

5 4 (1 to 4) 0.565 
(0.215)

5 4 (1 to 4) 0.240 
(0.204)

0 3 (1 to 4)

Linear regres-
sion (lm)

0.402 
(0.205)

1 4 (4 to 4) 0.512 
(0.175)

1 4 (4 to 4) 0.292 
(0.171)

0 4 (4 to 4)

LASSO 
(glmnet, 
alpha = 1)

0.402 
(0.241)

1 4 (1 to 4) 0.542 
(0.185)

1 4 (3 to 4) 0.260 
(0.205)

0 4 (1 to 4)

Random forest 
(rf)

0.364 
(0.171)

0 4 (4 to 4) 0.425 
(0.165)

0 4 (4 to 4) 0.302 
(0.156)

0 4 (4 to 4)

Extreme gradi-
ent boosting 
(xgbLinear)

0.354 
(0.198)

0 4 (4 to 4) 0.410 
(0.190)

0 4 (4 to 4) 0.298 
(0.190)

0 4 (4 to 4)

RMSE-based 
stepwise 
selection 
(leapSeq)

0.316 
(0.234)

3 2 (1 to 4) 0.438 
(0.226)

3 2 (1 to 4) 0.195 
(0.173)

0 2 (1 to 4)

Generalized 
additive 
model using 
splines (gam-
Spline)

0.311 
(0.185)

0 4 (4 to 4) 0.332 
(0.185)

0 4 (4 to 4) 0.290 
(0.184)

0 4 (4 to 4)

Non-linear 
SCM (only 
forwards 
selection)

0.251 
(0.274)

3 2 (1 to 4) 0.425 
(0.269)

3 2 (1 to 4) 0.078 
(0.131)

0 1 (1 to 4)

Non-linear 
SCM (both 
forwards and 
backwards 
selection)

0.206 
(0.228)

1 1 (1 to 4) 0.348 
(0.224)

1 2 (1 to 4) 0.065 
(0.116)

0 1 (1 to 3)

FOCE-
linearized 
SCM (only 
backwards 
selection)

0.198 
(0.240)

1 1 (1 to 4) 0.318 
(0.256)

1 2 (1 to 4) 0.078 
(0.145)

0 1 (1 to 4)
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Simulations Can Inform the Application of Machine 
Learning to Clinical Trial Data

On the desipramine dataset, we applied both non-linear 
SCM and ridge/elastic net regression (Tables S7 and S8) 
followed by non-linear SCM. In the 200 simulated datasets 
(Table III), ridge and elastic net regression selected a median 
of 9 covariates (range 2 to 13), which means they decreased 
the number of candidate covariates by an average of 40%. 
Applying this figure to the results in Tables S7 and S8 means 
we tested nine covariates (AST, ALT, bilirubin, estimated 
glomerular filtration rate/eGFR, formulation, GGT, race, 
sex, and smoking status) on the CLint, five covariates (age, 
alcohol status, formulation, race and sex) on the KTR, and 
eight covariates (ALT, AST, BMI, FFM, formulation, GGT, 
sex, and weight) on the Vc parameters. The same final model 
(unpublished data, Ndzamba, Asiimwe, Mouksassi, Pillai, 
Lombard, and Lang) with formulation (on all three parame-
ters), FFM (Vc) and bilirubin and race (CLint) was obtained 
during SCM, with and without penalized-regression prese-
lection. Due to fewer covariates, preselection with penal-
ized regression reduced SCM runtime (6 threads) by 42.86% 
(from 1.75 to 1.00 days).

The results of applying ML on the desipramine dataset 
comprising 33 covariates are shown in Tables S9 and S10. 
A simulation analysis to estimate M using a similar model 
structure (i.e. four a priori ‘true’ covariates on CLint) put 
the estimate at 8 (range 5 to 15) for both ridge (attained an 
F1 score of 0.562 ± 0.277 with correlations accounted for) 
and elastic net regression (F1 score = 0.566 ± 0.303), which 
means that starting with 33 candidate covariates and apply-
ing machine learning would reduce the number of candidate 
covariates by an average of 76%. Importantly, this simulation 
analysis took ~6.1 minutes (applying ridge and elastic net 

regression on the desipramine dataset took about two and 
ten seconds, respectively).

Discussion

To examine the role of machine learning (ML) for covari-
ate screening, we used a semi-mechanistic first order 
absorption structural model with a liver compartment, 
a central compartment, a peripheral compartment and 3 
transit compartments to simulate pharmacokinetic pro-
files of 114 virtual subjects. Two hundred datasets were 
simulated and used to test several ML and pharmacomet-
rics (PMX) methods for their ability to select true covari-
ates. As previously reported by Sibieude et al. (4), the 
ML methods performed better than the PMX methods 
(e.g., without accounting for highly-correlated covari-
ates, best ML method F1 score = 0.475 vs best PMX 
method F1 score = 0.251). In Sibieude et al.’s analysis, 
neural networks had the highest F1 score (0.89 ± 0.16), a 
score almost twice that achieved by our best ML method. 
This, however, is unsurprising since Sibieude et al. used 
a simpler (one-compartment) model and their F1 scores 
included results from scenarios with few highly-correlated 
covariates; both model complexity and many false highly-
correlated covariates decrease covariate selection accuracy 
(5). Whereas the overall performance for the ML methods 
was similar in Sibieude et al.’s analysis (F1 scores = 0.85 
to 0.89), in our analysis, ridge regression outperformed 
some of the other techniques. During model-fitting, we 
used five-fold cross-validation that was automated through 
the R caret package (18). This simplified the analysis but 
a relatively narrow search grid may have sub-optimally 
tuned some ML methods leading to lower performance. 

a NONMEM random effects/ETAs used as outcome for the ML methods. bThe simulated datasets were 200 (both scenarios) and 100 (each of 
the high and low effect scenarios). Each of the simulated datasets had 15 covariates and 114 subjects. cFor methods that do not perform covari-
ate selection, the number of selected covariates was set to 4 (the number of ‘true’ covariates). For methods that perform selection (e.g., SCM, 
LASSO and AIC-based stepwise selection), it was possible for the number of selected covariates to be less (or more) than 4. AIC Akaike infor-
mation criteria, FOCE first-order conditional estimation, LASSO least absolute shrinkage and selection operator, ML machine learning, PMX 
pharmacometrics, RMSE root mean squared error, SCM stepwise covariate modeling

Table II  (continued)

ML (caret 
method) and 
PMX tech-
niques

Both scenarios High effect scenario Low effect scenario

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of 
selected 
covariates 
median 
(range)c

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of 
selected 
covariates, 
median 
(range)c

F1 score, 
mean (SD)

# of 
simulated 
 datasetsb 
with F1 
score = 1

# of selected 
covariates, 
median 
(range)c

FOCE-
linearized 
SCM (both 
forwards and 
backwards 
selection)

0.172 
(0.213)

1 1 (1 to 4) 0.272 
(0.228)

1 2 (1 to 4) 0.072 
(0.139)

0 1 (1 to 4)
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In terms of computational cost and consistent with the 
use of empirical Bayes estimates/EBEs (i.e. no need to 
re-estimate the pharmacokinetic models), ML methods 
performed better than PMX methods (ridge regression 
using one thread was ~20,000 times faster than non-linear 
SCM on 15 threads), which is consistent with Sibieude 
et al.’s study (4). For non-linear SCM and due to a sig-
nificantly higher computational cost, we were unable to 
complete analysis using one thread, which emphasizes 
the importance of ML methods, especially in low-income 

settings, where modelers may not have access to powerful 
computers or clusters that can handle multi-threading or 
parallel computing. FOCE-linearization improved SCM’s 
runtime (from ~2.30 hours to 9.08 minutes), although this 
decreased accuracy. The SCM runtimes include the back-
wards selection step and testing of multiple relations (lin-
ear/piecewise/exponential/power) for continuous covari-
ates; excluding backwards selection and testing only power 
relations for the continuous covariates can reduce runtime, 
but this would still be much longer than that of the most 

Fig. 2  True covariates selected 
by the different methods in both 
the high and low effect sce-
narios (200 simulated datasets) 
during the simulation analysis, 
with methods ranked according 
to the F1-score. Panels a and 
b respectively show covariate 
selections without and with 
adjustment for highly-correlated 
covariates while panel c shows 
the differences in selection 
between panels a and b for each 
of the methods. NONMEM 
fixed effects/ETAs were used as 
outcome for the ML methods. 
AIC = Akaike information 
criteria, ALT = alanine ami-
notransferase, AST = aspartate 
aminotransferase, BMI = body-
mass index, BS = backwards 
selection, FFM = fat-free 
mass, FS = forwards selection, 
GAM = generalized addi-
tive model (using splines), 
GGT = gamma-glutamyl 
transferase, LASSO = least 
absolute shrinkage and selec-
tion operator, ML = machine 
learning, PMX = pharma-
cometrics, reg = regression, 
RMSE = root mean squared 
error, SCM = stepwise covari-
ate modeling, SCML = step-
wise covariate modeling 
with first-order conditional 
estimation-based linearization, 
XGBoost = extreme gradient 
boosting
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efficient ML techniques. A p value more stringent than the 
0.05 that we used during the forward step could also have 
reduced runtime, but this would have reduced accuracy 
(4).

Despite poorer performance with the simulated datasets, 
we relied on SCM during covariate selection for the desip-
ramine/clinical trial dataset, as it remains the gold standard 
of covariate modeling. However, it can select the wrong 

Table III  F1  Scoresa for the ML and PMX Methods with Highly-Correlated Covariates Accounted for

a NONMEM random effects/ETAs used as outcome for the ML methods. bThe simulated datasets were 200 (both scenarios) and 100 (each of the 
high and low effect scenarios). Each of the simulated datasets had 15 covariates and 114 subjects. AIC Akaike information criteria, FOCE first-
order conditional estimation, LASSO least absolute shrinkage and selection operator, ML machine learning, PMX pharmacometrics, RMSE root 
mean squared error, SCM stepwise covariate modeling

ML (caret 
method) and 
PMX techniques

Both scenarios High effect scenario Low effect scenario

F1 score, 
mean (SD)

# of simulated 
 datasetsb with 
F1 score = 1

# of selected 
covariates 
median 
(range)

F1 score, 
mean (SD)

# of simulated 
 datasetsb with 
F1 score = 1

# of selected 
covariates, 
median 
(range)

F1 score, 
mean (SD)

# of simulated 
 datasetsb with 
F1 score = 1

# of selected 
covariates, 
median (range)

Ridge regres-
sion (glmnet, 
alpha = 0)

0.860 (0.158) 103 9 (5 to 12) 0.930 (0.113) 72 9 (6 to 12) 0.790 (0.166) 31 9 (5 to 12)

Elastic net 
(glmnet, 
alpha = 0.55)

0.859 (0.185) 113 9 (2 to 13) 0.935 (0.110) 74 9 (6 to 13) 0.782 (0.212) 39 9 (2 to 12)

Penalized regres-
sion (glmnet, 
variable alpha)

0.859 (0.171) 108 9 (5 to 13) 0.927 (0.114) 71 9 (6 to 13) 0.790 (0.190) 37 9 (5 to 12)

Neural networks 
(nnet)

0.829 (0.156) 79 9 (6 to 12) 0.830 (0.162) 41 9 (6 to 12) 0.828 (0.149) 38 9 (6 to 12)

Extreme gradi-
ent boosting 
(xgbLinear)

0.814 (0.150) 68 9 (5 to 12) 0.850 (0.147) 45 9 (5 to 12) 0.777 (0.146) 23 9 (6 to 12)

LASSO (glmnet, 
alpha = 1)

0.810 (0.225) 97 9 (2 to 13) 0.917 (0.128) 69 9 (6 to 13) 0.702 (0.249) 28 9 (2 to 12)

Linear regression 
(lm)

0.790 (0.185) 72 9 (5 to 13) 0.860 (0.139) 47 9 (5 to 13) 0.720 (0.199) 25 8 (5 to 13)

Random forest 
(rf)

0.762 (0.158) 44 9 (5 to 12) 0.795 (0.156) 30 8 (5 to 12) 0.730 (0.154) 14 9 (5 to 12)

AIC-based step-
wise selection 
(lmStepAIC)

0.761 (0.289) 92 9 (1 to 13) 0.905 (0.170) 69 9 (1 to 13) 0.618 (0.313) 23 7 (1 to 12)

Generalized 
additive model 
using splines 
(gamSpline)

0.761 (0.153) 42 9 (5 to 14) 0.770 (0.149) 22 9 (5 to 14) 0.752 (0.157) 20 9 (6 to 12)

RMSE-based 
stepwise selec-
tion (leapSeq)

0.686 (0.268) 53 7 (2 to 13) 0.797 (0.177) 33 7 (3 to 13) 0.575 (0.296) 20 6 (2 to 11)

Non-linear SCM 
(only forwards 
selection)

0.499 (0.381) 41 5 (1 to 12) 0.745 (0.273) 36 7 (1 to 12) 0.252 (0.309) 5 2 (1 to 11)

Non-linear SCM 
(both forwards 
and backwards 
selection)

0.444 (0.357) 23 4 (1 to 11) 0.662 (0.269) 18 6 (1 to 11) 0.225 (0.296) 5 2 (1 to 10)

FOCE-linearized 
SCM (only 
forwards selec-
tion)

0.434 (0.359) 28 5 (1 to 12) 0.630 (0.303) 24 6 (1 to 12) 0.238 (0.300) 4 2 (1 to 11)

FOCE-linearized 
SCM (both 
forwards and 
backwards 
selection)

0.398 (0.335) 16 4 (1 to 11) 0.570 (0.282) 12 5 (1 to 10) 0.225 (0.292) 4 2 (1 to 11)
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covariates (2, 5), which emphasizes the need for more accu-
rate covariate modeling approaches. If ML can be used to 
accurately screen covariates to a manageable number, then 
expert opinion to determine clinical relevance, or evalua-
tion of all possible combinations of covariates (20, 21) can 
be done to improve the accuracy of covariate selection. 
With regard to including false highly-correlated covariates 
instead of the true covariate, this leads to comparable results 
in terms of model predictions but can lead to interpretation 
difficulties for which pharmacological understanding would 
be crucial for any decision making (19). As our results show, 
accounting for correlations leads to increased accuracy and 
increased the percentage selection of the four true covariates 
by 10% (age), 26.5% (FFM), 38.5% (AST) and 79% (formu-
lation) for ridge regression, increments that are consistent 
with the median number of correlations in the simulated 
datasets (age: 1, FFM: 2, AST: 4, and formulation: 7). As 
Fig. 2 shows, some ML techniques may be more sensitive to 

highly-correlated covariates, with extreme gradient boosting 
picking up formulation in 0/200 simulated datasets with-
out adjustment for correlation (versus 200/200 simulated 
datasets with correlation). For the least correlated covari-
ate (age), extreme gradient boosting (and random forest) 
saw no improvement in covariate selection accuracy when 
correlations were accounted for. The downside of includ-
ing correlations is a higher number of retained covariates. 
During screening, retaining very few covariates should not 
compromise accuracy, and although we did not do it in our 
analysis, it is possible to test several thresholds of the cor-
relation coefficient/p-values to choose those that minimize 
the number of retained covariates while maximizing the F1 
score/accuracy.

Ridge regression (highest F1 score) and elastic net 
regression (highest number of simulated datasets with F1 
score = 1) were applied to the desipramine dataset, and 
preselection with these methods reduced SCM runtime by 

Ridge regression
(F1 score = 0.860) 
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Fig. 3  Covariate ranking and selection pattern for ridge regression in 
both the high and low effect scenarios (200 simulated datasets) dur-
ing the simulation analysis. Panel a shows how the four true covari-
ates were ranked across the different methods. The covariate selection 
frequencies for ridge regression are annotated, with the most ranked 
covariate (formulation, selected in 100% of the datasets) appear-
ing on top. Panels b (correlations not accounted for) and c (correla-
tions accounted for) show the frequency of selection of all covariates 
including the true covariates shown in Fig.  2. For ridge regression, 
accounting for correlations increased the covariate selection fre-
quency by 10.0%, 26.5%, 38.5%, and 79.0% for the four true covari-
ates age, FFM, AST, and formulation respectively. Panel d shows 
how often covariates are selected together while panel e shows which 
covariates are selected together. For instance, the first column in both 
panels shows that formulation, ALT, bilirubin, AST, GGT, weight, 

FFM, age and BMI were selected together in 21 datasets. Looking at 
the entire panel e shows that some covariates, specifically ALT, bili-
rubin, GGT, and AST were almost always selected together, an obser-
vation which can be explained by their being highly correlated (cor-
relation coefficient > 0.5). NONMEM ETAs were used as outcome 
for the ML methods, and except for panel b, correlations between 
covariates were accounted for. AIC = Akaike information criteria, 
ALT = alanine aminotransferase, AST = aspartate aminotransferase, 
BMI = body-mass index, BS = backwards selection, FFM = fat-free 
mass, FS = forwards selection, GAM = generalized additive model 
(using splines), GGT = gamma-glutamyl transferase, LASSO = least 
absolute shrinkage and selection operator, RMSE = root mean 
squared error, SCM = stepwise covariate modeling, SCML = stepwise 
covariate modeling with first-order conditional estimation-based lin-
earization, XGBoost = extreme gradient boosting
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42.9%. When applying these methods to the desipramine 
dataset, we relied on the results of the simulation analysis 
(these methods selected ~60% of the top covariates) as we 
could not use the top-M approach, where M is the num-
ber of true covariates (unknown a priori). The simulation 
analysis was conducted using CLint, and so the 60% may 
have been inappropriate for the KTR and Vc parameters. 
We also included four a priori true covariates in our simula-
tion analysis, and it is possible that we would have obtained 
a different percentage had we defined another number of 
true covariates. Another approach would involve a modeler 
reviewing the ML output and selecting a given number of 
top covariates with their correlations. In this study, selecting 
an arbitrary top three/four covariates with their correlations 
would produce a similar number of covariates to selecting 
the top 60% covariates as done during the simulation-based 
approach. This approach also demonstrates the facilitat-
ing role of ML in covariate selection, i.e., that decision-
making ultimately rests with the modeler. Although this 
wasn’t done, combining a ML prescreening followed by 
a physiologically-relevant screening is recommended and 
would have saved more SCM run-time. For example, rather 
than test nine covariates on the CLint (all, except race, were 
highly correlated), we could have selected one/two most 
physiologically-relevant (of the highly-correlated) covari-
ates and tested it/them with race. Additionally, an experi-
enced modeler can add back covariates known to be impor-
tant that have been omitted during ML prescreening. There 
are several other approaches, such as selecting all covari-
ates assigned an importance score above zero for selection 
methods such as LASSO and elastic-net or using techniques 
such as BORUTA (22) that can employ shadow variables 
(permuted copies of the original variables) to decide which 
variables are important. Covariate selection with ML is still 
an emerging field and therefore further study is needed to 
determine the best approaches that can be implemented a 
priori. Another area that will benefit from further study is 
how to account for correlations between the parameters. 
In the current study, the NONMEM EBEs were evaluated 
independently for the three parameters when applying the 
ML methods to the desipramine dataset. SCM can account 
for these correlations and when CLint was tested alone in a 
post-hoc analysis, the selected covariates were fat-free mass 
and formulation (when tested together with KTR and Vc, 
bilirubin, formulation, and race were selected on CLint).

Our study had challenges additional to a relatively nar-
row search grid during parameter tuning and data limita-
tions (e.g., inability to explore a larger range of CYP2D6 
metabolizer phenotypes [only normal/extensive metaboliz-
ers were recruited], unpublished data, Ndzamba, Asiimwe, 
Mouksassi, Pillai, Lombard, and Lang). For instance, 
although we tested SCM with FOCE linearization, we did 
not test other implementations that could have increased 

speed including SCM+, that can reduce the number of 
executed models by up to 70% (1). However, SCM+ is not 
as efficient as FOCE linearization (1, 9) that we tested. We 
also limited the number of tested covariates to 15 to be 
able to compare machine learning with the computationally 
expensive non-linear SCM. This means that when we ana-
lyzed 33 covariates, we could not compare our results with 
SCM. Indeed, given that step-wise methods ignore portions 
of the model space (23), they are highly-sensitive to the 
starting set of covariates and comparison with SCM with 15 
covariates would not be appropriate. The analysis involving 
33 covariates also used only two ML techniques, that both, 
as expected due to more correlations (5), had decreased per-
formance during the simulation analysis. Consequently, we 
cannot ascertain if other ML methods might have performed 
better. However, given that the PMX techniques couldn’t be 
explored, adding additional ML techniques wouldn’t have 
added value when comparing ML with PMX methods. In 
the analysis involving 15 covariates, we selected the ML 
techniques, that in our opinion, were of main interest. This 
means that we may have missed out on superior techniques, 
including ensembles that include a diverse set of ML meth-
ods (e.g., LASSO followed by neural networks or tree-based 
methods). However, including these techniques would not 
change the conclusions that we made with the ML methods 
used i.e., that ML may be better than PMX methods. Also, 
the sample size used during the ML analysis may have been 
insufficient for some techniques. Penalized (including ridge 
and elastic net) regression is able to handle multicollinearity 
with small sample sizes (24), and this could have contributed 
to its superior performance. However, techniques such as 
neural networks or random forest are data-hungry and for a 
continuous outcome like the NONMEM EBEs, may require 
a subject-per-candidate covariate parameter in excess of 200 
(25), or for the 15 evaluated covariates, a minimum sample 
size of 3000 subjects. A relatively small sample size also 
means that cross-validation may produce biased estimates 
and hyperparameter tuning may be more sensitive to the ran-
domization seed used (affecting the test-train split), which 
would in turn impact the performance of sensitive methods 
(26, 27). By trying different randomization seeds, the F1 
scores of the top penalized regression methods remained 
similar which showed stability and less dependence on the 
hyperparameter settings. Lastly, we did not explore time-
varying covariates as this was outside the scope of the cur-
rent analysis.

Conclusion

In conclusion, although the ML methods still need further 
evaluation for more complex models, different and larger 
datasets and our conclusion may not be generally applicable 
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for other cases, we have demonstrated using a semi-mech-
anistic desipramine pop-PK model that ML methods can 
improve the efficiency of covariate selection by facilitating a 
speedy covariate screening process. In our dataset that had a 
moderate number of subjects (n = 114) and many highly-cor-
related covariates, penalized regression methods performed 
better than other methods during covariate prescreening. 
Given the established benefits of penalized regression in 
addressing multicollinearity and its capacity to handle high-
dimensional datasets (28), we believe that penalized regres-
sion can effectively perform in high-dimensional settings 
that encompass many covariates, including highly correlated 
ones, regardless of the model structure. Using ML methods 
during covariate prescreening is becoming increasingly rel-
evant as studies are now collecting more and more data (4), 
including genomic data that can include millions of genetic 
variants and for which prescreening based on graphical anal-
ysis and prior knowledge is not possible. Moreover, compu-
tational gain is more pronounced in more complex structural 
models as the performance of ML is not influenced by model 
complexity since it does not involve solving the ordinary 
differential equations (4). We have also demonstrated that 
accounting for highly-correlated covariates during ML pre-
screening is crucial to reducing the likelihood of omitting 
true/physiologically-relevant covariates. Applying ML pre-
screening to clinical trial data requires some knowledge of 
the true covariates, which are however unknown a priori; in 
this work, we also demonstrated how simulations (based on 
the clinical trial data) can be used to decide which ML tech-
nique is most likely to accurately select covariates given the 
available dataset as well as guide the proportion of impor-
tant covariate selection. After covariate screening, model 
building can follow the traditional PMX approaches, such 
as selection of the most physiologically-relevant covariates 
by the modeler, followed by SCM and model assessment 
through graphical checks, clinical relevance etc. Importantly, 
any data analyst who uses ML approaches should carefully 
assess the methods for their specific purpose and suitabil-
ity to their datasets. Improving the efficiency of covariate 
selection through an ML-facilitated covariate prescreening 
process could lead to quicker decision-making during drug 
discovery and development.
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