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Abstract
In vitro-in vivo extrapolation ((IVIVE) and empirical scaling factors (SF) of human intrinsic clearance (CLint) were developed 
using one of the largest dataset of 455 compounds with data from human liver microsomes (HLM) and human hepatocytes 
(HHEP). For extended clearance classification system (ECCS) class 2/4 compounds, linear SFs (SFlin) are approximately 1, 
suggesting enzyme activities in HLM and HHEP are similar to those in vivo under physiological conditions. For ECCS class 
1A/1B compounds, a unified set of SFs was developed for CLint. These SFs contain both SFlin and an exponential SF (SFβ) 
of fraction unbound in plasma (fu,p). The unified SFs for class 1A/1B eliminate the need to identify the transporters involved 
prior to clearance prediction. The underlying mechanisms of these SFs are not entirely clear at this point, but they serve 
practical purposes to reduce biases and increase prediction accuracy. Similar SFs have also been developed for preclinical 
species. For HLM-HHEP disconnect (HLM > HHEP) ECCS class 2/4 compounds that are mainly metabolized by cytochrome 
P450s/FMO, HLM significantly overpredicted in vivo CLint, while HHEP slightly underpredicted and geometric mean of 
HLM and HHEP slightly overpredicted in vivo CLint. This observation is different than in rats, where rat liver microsomal 
CLint correlates well with in vivo CLint for compounds demonstrating permeability-limited metabolism. The good CLint IVIVE 
developed using HLM and HHEP helps build confidence for prospective predictions of human clearance and supports the 
continued utilization of these assays to guide structure–activity relationships to improve metabolic stability.

Keywords  clearance prediction · fraction unbound in plasma · hepatocytes · liver metabolism · microsomes · IVIVE · 
scaling factor

Abbreviations
ADME	� Absorption, distribution, metabolism, and 

excretion
AFE	� Average fold error

ALQ	� Above the limit of quantification
BLQ	� Below the limit of quantification
CLh	� Hepatic clearance
CLint	� Intrinsic clearance
CO2	� Carbon dioxide
CYP	� Cytochrome P450
DDI	� Drug-drug interaction
DI90%	� Total deviation index (a measure of the 

fold range that captures 90% of prediction 
errors)

ECCS	� Extended clearance classification system
ELogD	� Chromatographic LogD
FMO	� Flavin-containing monooxygenase
fu,lm	� Fraction unbound in liver microsomes
fu,p	� Fraction unbound in plasma
HEK-293	� Immortalized human embryonic kidney cell 

line
HEP	� Hepatocytes
HHEP	� Human hepatocytes
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HLM	� Human liver microsomes
HTD 96	� 96-Well high throughput equilibrium dialy-

sis device
IV 	� Intravenous
IVIVE 	� In vitro-in vivo Extrapolation
kw	� Chromatographic capacity factor in 

aqueous
LC–MS/MS	� Liquid chromatography with tandem mass 

spectrometry
LM 	� Liver microsomes
logD7.4	� Log10 of distribution coefficient between 

octanol and pH 7.4 buffer
MDCK	� Madin-Darby canine kidney cell line
MDCK-LE	� Low efflux MDCK cell line (i.e., RRCK)
MgCl2	� Magnesium chloride
NADPH	� Reduced nicotinamide adenine dinucleotide 

phosphate
NHP	� Non-human primate
OAT	� Organic anion transporter
OATP	� Organic anion transporting polypeptides
Papp	� Apparent permeability
PBPK	� Physiologically based pharmacokinetic 

modeling
PBS	� Phosphate-buffered saline
PK	� Pharmacokinetics
pKa	� Negative log10 of acid dissociation constant
Rbp	� Blood-to-plasma ratio
rpm	� Revolutions per minute
RRCK	� Ralph and Russ canine kidney cell line (i.e., 

MDCK-LE)
SAR	� Structure-activity relationships
SF	� Scaling factor
SFβ	� Exponential scaling factor
SFlin	� Linear scaling factor
SFLogD	� Shake-flask LogD
UV	� Ultraviolet

Introduction

Clearance is one of the most important pharmacokinetic 
(PK) parameters of drug candidates influencing dose, half-
life and dosing regimen (1–5). Over the years, human clear-
ance prediction has continued to evolve from using single 
species or allometric scaling from preclinical species to 
in vitro-in vivo extrapolation (IVIVE) and physiologically 
based pharmacokinetic (PBPK) modeling (6–15). Our abil-
ity to accurately predict human clearance has strengthened 
due to improvements in the quality of in vitro reagents (e.g., 
human liver microsomes (HLM) and human hepatocytes 
(HHEP)) and methodologies for clearance measurements 
(9, 15–24). Metabolism continues to play a major role in 
the elimination of small molecule drugs in humans, along 

with renal and biliary clearance and transporter-mediated 
pathways (25). Due to the major species differences in drug 
metabolizing enzymes (26), using animals to scale human 
metabolic clearance is no longer a common practice in mod-
ern drug discovery, although scaling from preclinical species 
is routinely used to predict human oral absorption, steady-
state volume of distribution, and renal clearance (27–36). In 
vitro metabolic stability assays using human reagents (e.g., 
HLM and HHEP) are most frequently applied to predict 
human in vivo clearance, as well as guiding structure–activ-
ity relationships (SAR) to improve metabolic stability. 
Therefore, development of IVIVE and empirical scaling 
factors (SFs) using these reagents are important to under-
stand the clearance prediction accuracy in humans, mini-
mize prediction biases, and increase success in the clinic 
(37). We have recently reported clearance IVIVE and SFs for 
preclinical species using liver microsomes (LM) and hepato-
cytes (HEP) (38). In this study, we focus on development of 
human clearance IVIVE and SFs for each class using the 
extended clearance classification system (ECCS) (39).

Recently, a large collection of human intravenous (IV) 
PK data of 1352 compounds has been published (40). Using 
this IV dataset predominately, we generated in vitro data for 
eight different endpoints including physicochemical proper-
ties, metabolic stability and other absorption, distribution, 
metabolism, and excretion (ADME) properties. Here, we 
discuss using a subset of 455 compounds for development 
of clearance SFs and IVIVE with HLM and HHEP. This is 
the largest study of human clearance IVIVE and SFs using 
consistent in vitro assays developed in house. The clearance 
IVIVE and SFs from preclinical species (38) are updated as 
well with the new approaches applied to human. The paral-
lel-tube liver clearance model is utilized to develop IVIVE 
and SFs, as it outperformed the well-stirred liver model for 
high clearance compounds, and provided only minor differ-
ences for low-to-moderate clearance compounds (38). As 
such, only the parallel-tube liver model is discussed in this 
manuscript. The IVIVE and SFs developed will enable us to 
improve the accuracy and our confidence in human clearance 
and PK prediction.

Materials and Methods

Material

Cryopreserved HHEPs (Lot SPB consisting of 13 donors 
with 6 male and 7 female, datasheet available in supplemen-
tal material) were custom-pooled and prepared by BioIVT 
(Westbury, NY). HLMs of 50 donor pools (Lot 103 con-
taining 36 male and 14 female donors, datasheet available 
in supplemental material) were purchased from Xenotech 
(Kansas City, KS). Cryopreserved male HEPs and male LMs 
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of CD-1 mouse, Sprague Dawley and Wistar Han rat, bea-
gle dog and cynomolgus monkey were purchased from by 
BioIVT (Westbury, NY), Lonza (Walkersville, MD), Xeno-
Tech (Lenaxa, KS), and Corning (BD Biosciences, Woburn, 
MA). Frozen plasma and fresh blood were obtained from 
BioIVT and Pfizer labs (Groton, CT). All chemicals were 
obtained from Pfizer Global Material Management (Gro-
ton, CT) or purchased from Sigma-Aldrich (St. Louis, MO) 
unless specified otherwise. The 96-well equilibrium dialysis 
(HTD 96) device and cellulose membranes with molecular 
weight cut-off of 12–14 K were obtained from HTDialysis, 
LLC (Gales Ferry, CT).

In Vitro Data

The detailed protocols have been discussed previously on 
the microsomal and hepatocyte stability assays, permeability 
assay and assays for binding (i.e., plasma and liver micro-
somes), blood-to-plasma ratio, logD7.4 and pKa measure-
ments (17, 38). Briefly, for liver microsomal stability experi-
ments, test compounds (1 µM) were incubated with liver 
microsomes (LMs, 0.25 μM CYP protein) for 1 h in the pres-
ence of NADPH (1.3 mM), MgCl2 (3.3 mM), and potassium 
phosphate buffer (100 mM at pH 7.4). For hepatocyte stabil-
ity experiments, test compounds (1 µM) were incubated with 
hepatocytes at 0.5 million cells/mL at 37°C in an incubator 
(relative humidity ≥ 90%, 5% CO2/air) for 4 h. Hepatocytes 
maintained functional activity during the experimental of 
4-h incubation (41). At various time points, samples were 
taken, proteins were precipitated with cold acetonitrile 
containing internal standards, and supernatants were ana-
lyzed by LC–MS/MS. CLint was calculated based on loss 
of parent compounds over time using equations discussed 
in a previous paper (38). A hepatocyte relay assay was used 
for low clearance compounds at cell densities of 0.5 or 2 
million cells/mL (19). Replicate measures of LM and HEP 
apparent intrinsic clearance (CLint,app) were geometrically 
averaged. Measures below or above the limits of quantifi-
cation (BLQ and ALQ) were geometrically averaged with 
quantified values utilizing Beal’s method M3 if at least half 
the replicates were quantifiable (42). For binding measure-
ments in plasma or liver microsomes, test compound (2 μM) 
was added to the matrices and dialyzed against phosphate 
buffered saline (PBS) for 6 h using HTD96 equilibrium 
dialysis device in a CO2 incubator (75% relative humidity, 
200 rpm) at 37°C (38). At the end of the dialysis, samples 
were matrix-matched and analyzed by LC–MS/MS. Fraction 
unbound values were calculated using equations presented in 
the previous publication (38). Apparent permeability (Papp) 
was measured using the low efflux MDCK cells (MDCK-LE, 
i.e., RRCK) in a 96-transwell® monolayer assay (43). Test 
compounds (2 μM) in a cassette format (n = 4) were added to 
the donor wells and buffer in the receiver wells. After 1.5-h 

incubation (95% humidity, 5% CO2/air) at 37°C, samples 
were analyzed using LC–MS/MS. Papp was calculated using 
equations described in the previous publication (38, 43). 
Blood-to-plasma ratio was determined by adding test com-
pound (1 μM) in fresh blood and incubating at 37°C for both 
1 and 3 h in an incubator (90% humidity, 5% CO2/air) on a 
shaker (450 rpm) (44). At the end of the incubations, plasma 
was separated from blood. Blood and plasma samples were 
matrix-matched, quenched with cold acetonitrile containing 
internal standards and centrifuged, and supernatants were 
analyzed by LC–MS/MS. PFLogD (45) was calculated using 
an in-house LogD model that was developed to predict LogD 
for any compounds based on underlying experimental data 
from the SFLogD (46) and ELogD (47) assays. PFLogD 
calculations take into account the known limitations of the 
SFLogD (inaccurate for compounds with actual LogD above 
4.0) and ELogD (inadequate for acidic or zwitterionic com-
pounds) assays by performing a logical combination of the 
results from the two assays based on the chemical space of 
the compound being predicted. In a SFLogD experiment, test 
compound (67 μM) was added to a 96 well-plate containing 
octanol/phosphate buffer (pH 7.4) in a 1:1 ratio pre-saturated 
with one another (46, 48). The plate was sealed and mixed 
on a plate shaker for 15 min at room temperature. At the 
end of the experiment, the octanol and buffer phases were 
separated by centrifugation and the samples were analyzed 
by LC–MS/MS. The log10 of compounds in octanol divided 
by those in buffer is LogD. The ElogD method measured 
the chromatographic retention time of test compounds in the 
presences of a small amount of octanol and various amount 
of methanol in the mobile phase (47). The chromatographic 
capacity factor [(compound retention time − retention time 
of solvent)/retention time of solvent] was extrapolated to 
100% aqueous (kw′) and correlations between LogD and 
kw′ was developed using compounds with known LogD. 
This relationship between LogD and kw′ was then used to 
calculate ElogD (47). pKa was measured using a capillary 
electrophoresis method (49, 50). Electrophoretic separations 
were performed in parallel across 24 different pH buffers 
(pH 1.8–11.2) for test compounds to measure migration time 
relative to a neutral marker (DMSO) using UV detection. 
Titration curves were generated on effective mobility vs. pH 
to calculate pKa. The MoKa software (Molecular Discov-
ery Limited, London, UK) was used to calculate pKa, when 
experimental data were not available.

In Vivo IV PK Data

Human IV PK data are mostly from the literature (40) and 
animal IV PK data were obtained using protocols described 
previously (38). All procedures performed on these animals 
were in accordance with regulations and established guidelines 
and were reviewed and approved by an Institutional Animal 



	 The AAPS Journal (2023) 25:40

1 3

40  Page 4 of 14

Care and Use Committee or through an ethical review process. 
For ECCS class 4A compounds predominantly eliminated by 
renal clearance (logD7.4 ≤ 2), hepatic clearance data were not 
included in the analysis for this class if renal clearance values 
were not available. Renal clearance was assumed to be neg-
ligible for the remaining ECCS classes (i.e., 1A, 1B, 2, and 
4B) if not available. The assumption is reasonable, as these 
compounds have high passive permeability or LogD and renal 
reabsorption is likely to be high. Class 3A/3B compounds 
were excluded from analysis as biliary clearance can be the 
major clearance mechanism for this class that neither HLM nor 
HHEP can predict. The parallel-tube model was used to convert 
between hepatic blood clearance (CLh(b)) and CLint (Eq. 1).

Data Analysis

Average fold error (AFE; aka Bias) was used to assess model 
prediction accuracy, i.e., the extent of any systematic pre-
diction bias. AFE and its corresponding 90% confidence 

(1)CLh(b) = Qh ∙

(
1 − exp

(
−fu,p ∙ CLint(
Rbp ∙ Qh

)
))

interval (AFECI90%) and log-transformed standard devia-
tion (σlnAFE) were calculated with Eqs. 2–4, where Obsi are 
the known observations for each compound, Predi are the 
model predictions for each compound, N is the number of 
compounds; ni is the number of predictions per compound, 
and Φ−1

(0.95) is the normal inverse cumulative distribution 
for 95% probability.

The Pearson correlation coefficient (ρ; aka R) of the log 
transformed observations and predictions was used to assess 
model prediction precision. ρ and its corresponding 90% 
confidence interval (ρCI90%) and Z-transformed standard 
deviation (σZρ) were calculated with Eqs. 5–7.
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Three methods were used to assess model predic-
tion precision and accuracy, absolute average fold error 
(AAFE), root mean square fold error (RMSFE; aka ε), 
and percent of predictions within 2-fold the observations 
(% within 2-fold). AAFE provides the average absolute 
spread of model prediction error from unity. AAFE and its 
corresponding 90% confidence interval (AAFECI90%) and 
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log-transformed standard deviation (σlnAAFE) are calculated 
(51) with Eqs. 8–10.

RMSFE provides the variance of the model predic-
tion errors from unity. RMSFE and its corresponding 90% 
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confidence interval (RMSFECI90%) and log-transformed stand-
ard deviation (σlnε

2) were calculated (51) with Eqs. 11–13.

To provide more intuitive meaning to RMSFE val-
ues, they were transformed into the total deviation index 
(DI90%) and the probability within a 2-fold error (P≤2-fold). 
DI90% is a measure of the fold range that captures 90% of 
prediction errors. It is basically the 90% confidence inter-
val of the model predictions. DI90% and its corresponding 
90% confidence interval (DI90%,CI90%) are calculated (51) 
with Eqs. 14 and 15.

RMSFE can alternatively be transformed into the more intu-
itive probability of predictions being within 2-fold of observed 
(P2-fold). P2-fold and its corresponding 90% confidence interval 
(P2-fold,CI90%) are calculated (51) with Eqs. 16 and 17.

% within 2-fold was calculated with Eq. 18.

LM and HEP empirical linear scaling factors (SFlin) were 
fit in Microsoft Excel by minimizing the -2 log likelihood 
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function (-2LL) per species and ECCS class with lognormal 
residual error (RMSFE) which negates bias. An additional 
exponential scaling factor (SFβ) on plasma fraction unbound 
(fu,p) as introduced in Jones et al. (20) was additionally 
considered (Eq. 19). Unlike Jones et al. (20), SFlin was 
limited to positive values (> 0) rather limited to > 1.

Scaling factor 95% confidence intervals were deter-
mined by log-likelihood profiling. Three significant num-
bers were used for SFs in order to minimize the likelihood 
of introducing compounding errors during intermediate 
calculations using the rounding numbers.

Results

Human hepatic clearance IVIVE and empirical SFs were 
developed using 448 literature IV clearance values (40) 
and seven Pfizer drug discovery compounds, after sub-
tracting out renal clearance. In vitro physicochemical and 
ADME data were obtained from Pfizer’s internal data-
base. All the in vitro and in vivo data are included in the 
Supplemental Material (Excel file, excluding the 7 Pfizer 
internal compounds). Density plots of the compounds 
based on their physicochemical and ADME properties are 
illustrated in Fig. 1. The compounds encompass a wide 
range of properties and represent typical small molecule 
drug space. The in vivo and in vitro data of preclinical 
species have been published previously (38) with updated 
analysis using similar approaches as in humans. Only com-
pounds with in vitro quantifiable experimental clearance 
values from LMs and/or HEPs and in vivo clearance values 
were included in the IVIVE analysis. For the other in vitro 
ADME properties (Papp, pKa, logD7.4, Rbp, fu,p, and fu,lm), if 
experimental data were not available, in silico values from 
internal global QSAR models were judiciously utilized 
for the analysis on the 455 human compounds. The num-
ber of compounds [in brackets] utilizing in silico predic-
tions per in vitro assay are: logD7.4 [145], pKa [86], RRCK 
Papp [3], fu,hlm [1], and Rbp (1). No in silico predicted fu,p 
values were used. The in silico predictions are noted in 
the supplemental excel file with a superscript “1”. Com-
pound ECCS class was assigned based on pKa (ionization 
state), RRCK Papp, LogD7.4, and MW (Supplemental Mate-
rial, Word file, Fig. S1) (29, 39). ECCS class 1A com-
pounds are acids or zwitterions with Papp ≥ 5 × 10–6 cm/s 
and MW ≤ 400, and class 1B compounds differ from 
class 1A only by MW > 400. Similarly, class 3A and 3B 
are acids or zwitterions with low passive permeability 
(Papp < 5 × 10–6 cm/s). Class 2 compounds are bases or neu-
trals with high passive permeability (Papp ≥ 5 × 10–6 cm/s). 

(19)in vivo CLint = SFlin ∙ f
(−SF�)
u,p ∙ in vitro CLint
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Class 4A compounds are bases or neutrals with low pas-
sive permeability (Papp < 5 × 10–6 cm/s) and low lipophi-
licity (logD7.4 ≤ 2), and class 4B compounds differ from 
class 4A only by log D7.4 > 2. Empirical SFs for clear-
ance were developed based on CLint in each ECCS class 
(39), when there are sufficient compounds in the class 
(N > 10). The physiological parameters used for IVIVE 
development are summarized in Table I based on previ-
ously published information (12) and in house data. It 
is worth noting that, in the previous analysis of IVIVE 
and SFs of preclinical species, SIMCYP™ physiologi-
cal parameters (Certara, Sheffield, UK) values were 
used instead (38), although they are not meaningfully 
different than the current values used. For HLM SFs, 
only compounds predominately metabolized by CYPs 
and/or FMOs were included.

Human ECCS Class 2/4

ECCS class 2/4 are basic and neutral compounds with meta-
bolic and/or renal clearance as major clearance mechanisms. 
Most of the Pfizer portfolio compounds belong to these 
classes. The intrinsic clearance SFs of ECCS class 2/4 were 
developed with a small set of well-curated compounds (high 
experimental replicates) that are known to be mainly metab-
olized by CYPs. With this well-curated dataset, the SFlin is 
1.39 (N = 21, Fig. 2a, Table II) for HLM and 1.12 for HHEP 
(N = 35, Fig. 2b, Table II). The confidence intervals for the 
SFs are summarized in Table II. The SFs are close to 1 for 
both HLM and HHEP, indicating no significant clearance SFs 
are needed for this class of compounds. The DI90% values for 

both reagents are around 5-fold and other statistical metrices 
are shown in Table II. Adding an exponential fu,p scalar SFβ 
did not significantly improve the prediction accuracy for this 
class (data not shown). Applying the linear SFs developed with 
the well-curated dataset to a large dataset of ECCS class 2/4 
compounds results in good IVIVE with minimal over predic-
tion biases for both HLM (N = 91, bias 1.9-fold, Fig. 2c, CYP/
FMO mediated substrates) and HHEP (N = 335, bias 1.2-fold, 
Fig. 2d, irrespective of metabolic enzymes). The DI90% values 
increased to 8- to 9-fold, which could potentially be due to 
the noise of the screening data and/or uncertainties in ECCS 
classification. Other statistical metrices are summarized in 
Table II.

Fig. 1   Density plot of the human IV dataset of 455 compounds based on physicochemical and ADME properties

Table I   Physiological Parameters and Experimental Conditions for 
IVIVE and SF Development

a In vitro assay conditions
Qh, hepatic blood flow; PRpLW, microsomal protein per liver weight; 
HEPpLW, hepatic cellularity per liver weight; LWpBW, liver weight 
per body weight; PRlm, liver microsomal protein concentration in 
incubation; CDhep, hepatocyte cellularity per volume

Parameters Mouse Rat Dog NHP Human

Qh (mL/min/kg) 90 70 40 44 20
PRpLW (mg/g) 45 45 45 45 45
HEPpLW (MC/g) 120 135 240 120 120
LWpBW (g/kg) 90 40 32 32 21
PRlm (mg/mL) a 0.21 0.34 0.32 0.21 0.8
CDhep (MC/mL) a 0.5 0.5 0.5 0.5 0.5 or 2
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Human ECCS Class 1A/1B

ECCS class 1A/1B compounds are acids and zwitterions 
with high passive permeability. Uptake transporters are typi-
cally involved in clearance of class 1A/1B (Supplemental 
Material, Fig. S1). When only SFlin is used for class 1A/1B, 
overprediction of clearance is observed for low clearance 
compounds, while underprediction is apparent for high 
clearance compounds (data not shown). Additionally, OATP 
and OAT2 substrates required different SFlin. The clearance 
prediction error positively correlated with fu,p (data not 
shown). Based on this observation and a recent publication 
on using the SFβ for fu,p due to potentially albumin-mediated 
uptake (20), the SFβ was applied to class 1A/1B. With the 
addition of SFβ, prediction accuracy improves significantly, 
and the prediction error is no longer correlated to fu,p. No 
meaningful overprediction or underprediction are observed 
for low or high clearance compounds after incorporation of 
SFβ. For class 1A/1B, SFlin and SFβ are 0.428 and 0.445, 
respectively (Fig. 3a, N = 85). The DI90% is around 6-fold. 
Additional statistical metrices are summarized in Table II. 
The reason to develop unified SFs for class 1A and 1B is 
based on the two classes having very similar SFlin and SFβ 
(data not shown). When the unified SFs are applied to indi-
vidual classes, they both perform well with minimal biases 
of 1.3-fold overprediction for class 1A (Fig. 3b) and 1.4-fold 

underprediction for class 1B (Fig. 3c). Since the likelihood 
of transporters being involved in class 1A/1B compounds, 
only HHEP SFs have been developed, as there are no func-
tional transporters in HLM. With the incorporation of SFβ, 
the higher the plasma protein binding (lower fu,p), the larger 
the contribution of fu,p to the overall clearance.

Preclinical Species Clearance IVIVE and Scaling 
Factors

Clearance IVIVE and linear SF for preclinical species has 
been developed previously using SIMCYP™ physiologi-
cal parameters (38). Here, the SFs are updated by includ-
ing the SFβ for class 1A/1B similarly to the approaches for 
human and incorporating slightly different physiologically 
parameters historically used in house (12). These results are 
shown in Fig. 4 for mouse, rat, dog and NHP. Additional 
statistical metrices are summarized in Supplemental Mate-
rial Table S1–S4. Both SFlin and SFβ for preclinical species 
and human are summarized in Fig. 5 for each ECCS class.

Prediction of Human Clearance for HLM‑HHEP 
Disconnect Compounds

For certain CYP-mediated compounds, CLint in LM may 
be greater than observed in HEP (17). The cause for this 

Fig. 2   Human intrinsic clear-
ance IVIVE and scaling factors 
for ECCS 2/4 compounds. 
a HLM of the well-curated data-
set, b HHEP of the well-curated 
dataset, c Remaining CYP/FMO 
substrates of the large dataset in 
HLM, and d Remaining of the 
large dataset in HHEP

HLM (N=21)
SFlin=1.39[0.89-2.2]

a b

c dHLM (N=91)

HHEP (N=35)
SFlin=1.12[0.78-1.6]

2.2 AAFE
±5.7-fold DI90%

HHEP (N=335)

2.7 AAFE
±8.4-fold DI90%
±1.2-fold↑ Bias

2.2 AAFE
±5.2-fold DI90%

3.1 AAFE
±9.1-fold DI90%
±1.9-fold↑ Bias
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disconnect is believed to be mainly due to permeability-
limited metabolism in HEP (17), although other factors 
that have not yet been identified may also contribute to the 
disconnect. For CYP mediated mechanisms, when intrinsic 
clearance in HLM is greater than HHEP (≥ 2-fold to account 
for assay variability), a decision will need to be made on the 
assay to use to predict human in vivo clearance. For rat, we 
have previously shown using a dataset of 56 ECCS class 
2/4 compounds that LM predicted in vivo rat hepatic clear-
ance better than using rat HEP which underpredicted in vivo 
clearance (38). However, in human, this appears different, 
and there is an observed species difference between rat and 
human for the disconnect compounds. In human, for the 
compounds evaluated with HLM CLint greater than HHEP 
that are predominately metabolized by CYP and/or FMO, 
HLM overpredicts human in vivo hepatic clearance by 2.8-
fold (N = 40, DI90% 9.7, Fig. 6a, Table III) and HHEP slightly 
underpredicts in vivo clearance by 1.3-fold (N = 40, DI90% 
4.9, Fig. 6b, Table III). This indicates human in vivo hepato-
cyte permeability is higher than in vitro, but still poses some 
limitations to metabolism (differing in comparison to rat 
HEP where there appears to be no permeability limitation 
for in vivo metabolism). The geometric mean (geomean) of 
HLM and HHEP CLint slightly overpredicts in vivo human 
clearance with bias of 1.5-fold and DI90% of 5.1-fold (N = 40, 
Fig. 6c, Table III).

Discussion

This study evaluates human IVIVE and SFs with one of 
the largest dataset of 455 compounds, consisting of data 
from standardized in vitro assays. The results provide use-
ful insights on prediction accuracy of human clearance. 
SFs were developed based on ECCS, as different clear-
ance mechanisms required different SFs. Although ECCS 
was established based on human major clearance mecha-
nisms, similar clearance pathways are likely to occur in 
preclinical species to some extent (e.g., metabolism vs. 
active transport) (52). As such, the SFs developed for pre-
clinical species were also based on ECCS. SFs for class 
3A and 3B were not developed as biliary clearance can 
be a significant clearance mechanism that neither LMs 
nor HEPs can predict. SFs are dependent on the com-
pounds involved in their development. There are uncer-
tainties around the SFs, which will need to be considered 
when defining prediction uncertainty of clearance. For 
ECCS class 2/4 compounds, the SFs obtained from the 
well-curated dataset with known clearance mechanisms 
translate well to the larger dataset (the detailed clearance 
mechanisms were not investigated) with minimal biases. 
This provides confidence of using the current reagents for 
clearance prediction of drug candidates, where clearance Ta
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pathways may not have been fully characterized in early 
drug discovery. When new batches of reagents (LM or 
HEP) are purchased, IVIVE and SFs will require re-eval-
uation. The SFs of ECCS class 2/4 compounds are close 

to 1 using both HLM and HHEP, suggesting the enzyme 
activities of in vitro reagents (i.e., HLM and HHEP) 
closely represent those in humans under physiological 
conditions. This is likely credited to judicious selection  

Fig. 3   Human intrinsic clear-
ance IVIVE and scaling factors 
using HHEP for a Both ECCS 
1A/1B compounds, b Only 
ECCS 1A compounds, c Only 
ECCS 1B compounds

ECCS 1A/1B (N=85)
SFlin=0.428[0.24-0.75]
SFβ = 0.445[0.31-0.59]

a

b cECCS 1A (N=51) ECCS 1B (N=34)

2.4 AAFE
±5.9-fold DI90%
±1.4-fold↓ Bias

2.5 AAFE
±6.3-fold DI90%
±1.0-fold↑ Bias

2.5 AAFE
±6.6-fold DI90%
±1.3-fold↑ Bias

Mouse

4/2 SCCE
EC

CS
 1

A
EC

CS
 1

B

LM
s

sPEH

4/2 SCCE

Rat Dog NHP

= 48

= 1.23

= 0.308

= 2.9

= 9.9
↓ = 1.6

= 41

= 1.23

= 0.308

= 1.8

= 3.3
↑ = 1.2

= 44

= 1.99

= 0

= 2.7

= 7.5
↑ = 1

= 61

= 2.05

= 0

= 2.2

= 5.9
↑ = 1

= 27

= 0.646

= 0.447

= 2.2

= 5.7
↓ = 1.2

= 13

= 0.646

= 0.447

= 3.3

= 11
↑ = 2.1

= 265

= 4.21

= 0

= 2.2

= 5.3
↑ = 1

= 38

= 1.09

= 0

= 1.9

= 4.6
↑ = 1

= 3

= 0.747

= 0.542

= 1.1

= 1.2
↑ = 1.0

= 11

= 0.747

= 0.542

= 1.8

= 3.5
↓ = 1.3

= 8

= 0.322

= 0.467

= 2.3

= 5.5
↑ = 1.0

= 10

= 0.322

= 0.467

= 3.2

= 13
↓ = 1.0

= 45

= 3.26

= 0

= 2.5

= 6.9
↑ = 1

= 83

= 1.33

= 0

= 1.9

= 4.0
↑ = 1

= 294

= 3.03

= 0

= 2.3

= 5.8
↑ = 1

= 54

= 1.15

= 0

= 2.0

= 4.8
↑ = 1

Fig. 4   Intrinsic clearance IVIVE and scaling factors for all ECCS classes of all preclinical species
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of donors with high enzyme activity similar to human in 
vivo to create the in vitro batches, as well as optimal in vitro 
assay conditions. This observation of SFs near unity is in 
contrary to the literature reports of needing much larger SFs 
(e.g., 5-fold) for HLM and HHEP to scale human in vivo 
clearance (11, 53), which might potentially be due to lower 
quality in vitro reagents and suboptimal assay conditions 

from various labs or not considering the impact of ECCS 
classification for the different clearance mechanisms. Other 
potential reasons for the higher CLint scaling factor may be 
due to the use of the well-stirred liver model rather than the 
parallel-tube model. Reanalysis of the data (N = 140, mostly 
bases and neutrals of ECCS class 2/4 compounds) in the 
recent publication (54) using parallel-tube model reduced 
the SFs (Supplemental Material, Table S5). The HLM SFlin 
(1.49)) in the publication (54) is similar to the SFlin in this 
study (1.39), but HHEP SFlin (1.79) is slightly higher than 
SFlin (1.12) in this study. This comparison suggests that 
HLM enzyme activities are similar between the two studies, 
but HHEP enzymes are slightly more active in this study 
than those in the publication (54).

For ECCS class 1A/1B, active uptake is typically 
involved through transporter-mediated mechanisms 
(OTAPs and OATs, Supplemental Material, Fig. S1). Tra-
ditionally, prediction of clearance for class 1A/1B com-
pounds is to use transporter uptake assays to scale hepatic 
clearance, which can be quite challenging and variable 
(55–61). Our study indicates that clearance of class 1A/1B 
compounds can be scaled directly using metabolic clear-
ance from suspension HEPs with higher SFs than class  
2/4. The higher SFs may be accounting for the active uptake 
components by the transporters, although the detailed 
mechanisms involved are not entirely clear at this point. In 
practice, this approach simplifies the clearance prediction  

Fig. 5   Summary of intrinsic clearance scaling factors for all ECCS 
classes of all species

Fig. 6   Human liver microsome 
and hepatocyte intrinsic clear-
ance disconnect (CLint HLM/
HHEP ≥ 2). a Using HLM CLint, 
b Using HHEP CLint, c Using 
geometric mean of HLM and 
HHEP CLint

HLM (N=40)
SFlin= 1.39[0.89-2.2]a b

c HLM & HHEP
Geometric Mean
(N=40)

HHEP (N=40)
SFlin= 1.12[0.78-1.6]

2.2 AAFE
±4.9-fold DI90%
±1.3-fold↓ Bias

3.2 AAFE
±9.7-fold DI90%
±2.8-fold↑ Bias

2.3 AAFE
±5.1-fold DI90%
±1.5-fold↑ Bias
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for class 1A/1B, i.e., measurement of active uptake rate by 
transporters is no longer needed. Further investigation of 
the mechanistic implications of this observation will help 
better refine our approaches in the future for clearance 
prediction. The introduction of the SFβ is an empirical 
approach in order to improve the accuracy of clearance 
prediction for ECCS class 1A/1B compounds. The SFβ 
is intended to account for potentially albumin-facilitated 
update by transporters (20). However, the underlying 
mechanisms of incorporating the SFβ are not entirely 
clear at this point. Albumin-facilitated update is a topic 
that requires further research in the future. With the SFβ, 
the lower the fu,p, the larger the clearance scaling factor. 
Drug discovery team may attempt to reduce plasma pro-
tein binding in order to lower clearance. However, clear-
ance is not very sensitive to fu,p change. With SFβ for class 
1A/1B compounds, 10-fold higher fu,p results in 3-fold 
decrease in intrinsic clearance. The unified set of SFs for 
both class 1A and 1B eliminate the need to identify the 
individual ECCS classification for each class prior to the 
clearance prediction. Identifying the transporters involved 
in the clearance of class 1A and 1B can be challenging 
for a number of reasons. High passive permeability can 
counter act the active uptake leading to minimal uptake 
signal in vitro, resulting in the active uptake not being 
detectable using HEK-293 cells transfected with uptake 
transporters (e.g., OATPs and OATs) or plated HHEP. To 
further elucidate OATP transporter involvement, in vivo 
non-human primate (NHP) drug-drug interaction (DDI) 
studies are often performed using single-dose rifampin 
administration (62). Occasionally, both OAT and OATP 
transporters are involved in the hepatic uptake of com-
pounds making it challenging to decide the appropriate 
SFs to use to scale clearance for dual substrates of OAT 
and OATP. The current approach with the unified SFs for 
both class 1A and 1B simplifies the clearance prediction 
process and reduces the data required to select the appro-
priate SF. When making predictions for victim transporter 

DDIs at later stages of drug discovery, transporter reaction 
phenotyping becomes important.

Permeability-limited metabolism in HEP has recently 
been reported for ECCS class 2 compounds that are mainly 
metabolized by CYPs (17). This happens when metabolic 
rate is faster than permeation rate across the HEP mem-
brane. In rats, for the CLint LM > HEP compounds (permea-
bility-limited), rat LM predicted in vivo clearance well (not 
permeability-limited) (38). The reason for the in vitro-in 
vivo differences are not fully understood but may suggest 
permeability-limited metabolism in rat HEP is an in vitro 
artifact. Rat HEP membrane permeation is no longer lim-
iting metabolism in vivo as it can be in vitro. In humans, 
however, permeability limits metabolism to some extent in 
vivo, but not as severe as in vitro. For the dataset evalu-
ated, HLM significantly overpredicted in vivo human clear-
ance, while HHEP slightly underpredicted and HLM-HHEP 
CLint geomean slightly overpredicted clearance in humans. 
For compounds with HLM-HHEP disconnect (CLint HLM/
HHEP ≥2-fold) that are mostly metabolized by CYPs and/
or FMO, project specific strategies can be considered based 
on additional mechanistic understanding of the cause for the 
disconnect. Future studies evaluating disconnects between 
LM and HEP are required to help build in-depth understand-
ing of the intricate role of permeability in limiting metabo-
lism both in vitro and in vivo across different species.

In conclusion, clearance IVIVE and SFs have been 
successfully developed for human and preclinical species 
using LM and HEP. In general, the SFlin for ECCS class 
2/4 is small (~ 1–2) with the exceptions of rodents (~ 2–4), 
suggesting enzyme activities of our in vitro reagents are 
comparable with in vivo under physiological conditions. 
SFβ was introduced to improve clearance prediction accu-
racy and reduce biases for ECCS class 1A/1B compounds. 
For ECCS 2/4 compounds predominantly metabolized by 
CYPs/FMO with HLM clearance greater than HHEP, 
HLM significantly overpredicted in vivo clearance. Project 
specific strategies may be used to scale human clearance.

Table III   Summary of Statistical Metrics of Intrinsic Clearance IVIVE Using HLM and HHEP based on ECCS Class for Compounds with HLM 
CLint > 2 × HHEP CLint

a Scaling factor best fits[95% confidence intervals]

b Summary statistics[90% confidence intervals]

c Overprediction bias↑, underprediction bias↓

Species Reagent ECCS N SFlin
a SFβ

a Biasb,c (AFE) AAFEb DI90%
b P≤2-fold

b within 2-fold ρ2b (R2)

Human LM 2/4 40 1.39[fixed] 0[fixed] 2.8↑[2.2–3.6] 3.2[2.7–3.9] 9.7[7.0–14] 38%[33–44%] 30% 0.61[0.43–0.75]

HEP 2/4 40 1.12[fixed] 0[fixed] 1.3↓[1.0–1.6] 2.2[1.9–2.6] 4.9[3.7–6.8] 53%[45–62%] 44% 0.60[0.41–0.74]

LM&HEP 
Geomean

2/4 40 1.5↑[1.2–1.9] 2.3[2.0–2.6] 5.1[3.8–7.0] 52%[44–60%] 44% 0.62[0.44–0.76]
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