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Abstract
The objective of this study is to propose a unified, continuous, and bodyweight-only equation to quantify the changes of 
human basal metabolic rate (BMR), glomerular filtration rate (GFR), and drug clearance (CL) from infancy to adulthood. The 
BMR datasets were retrieved from a comprehensive historical database of male and female subjects (0.02 to 64 years). The 
CL datasets for 17 drugs and the GFR dataset were generated from published maturation and growth models with reported 
parameter values. A statistical approach was used to simulate the model-generated CL and GFR data for a hypothetical 
population with 26 age groups (from 0 to 20 years). A biphasic equation with two power-law functions of bodyweight was 
proposed and evaluated as a general model using nonlinear regression and dimensionless analysis. All datasets universally 
reveal biphasic curves with two distinct linear segments on log–log plots. The biphasic equation consists of two reciprocal 
allometric terms that asymptotically determine the overall curvature. The fitting results show a superlinear scaling phase 
(asymptotic exponent >1; ca. 1.5–3.5) and a sublinear scaling phase (asymptotic exponent <1; ca. 0.5–0.7), which are 
separated at the phase transition bodyweight ranging from 5 to 20 kg with a mean value of 10 kg (corresponding to 1 year 
of age). The dimensionless analysis generalizes and offers quantitative realization of the maturation and growth process. In 
conclusion, the proposed mixed-allometry equation is a generic model that quantitatively describes the phase transition in 
the human maturation process of diverse human functions.
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INTRODUCTION

Human metabolic processes undergo continuous changes 
during the growth and maturation stages (1, 2). It is gen-
erally accepted that human physiological and metabolic 
parameters (Y) do not scale linearly with bodyweight (W) 
but scale with a power-law function, in the form of Y = aWb, 
where a and b are constants. This simple allometric equa-
tion is linear in a double logarithmic plot (i.e., log Y vs. log 
W), which has been used to describe datasets of basal meta-
bolic rate (BMR), glomerular filtration rate (GFR), and drug 
clearance (CL) (3, 4). However, if data from neonates and 

adults were pooled for analysis, the resulting plots are usu-
ally curved with a steeper early phase, followed by a shal-
lower later phase (3, 5–7). Accordingly, simple allometry 
with a fixed exponent, or with a specific exponent obtained 
from the adult data, would systematically overestimate GFR 
or CL values among the youngest (3, 7, 8). In the biology 
field, extensive studies have shown that the metabolic pace 
of animals or plants shifts at certain points of organism’s 
life; such shifting exhibits multiple linear phases connected 
at one or more transitional points in log–log size-scaling 
plots (9–13). The metabolic shifting phenomenon has long 
been recognized in human (5), and the quest for a general 
quantitative model has never ceased (8, 14–17). Thus, the 
current study addresses the feasibility of using one unified, 
empirical equation, where bodyweight is the only independ-
ent variable, to quantitatively describe the maturation of 
human physiological and metabolic functions.

The basal metabolic rate (BMR), i.e., the rate of energy 
transformation within the body at rest, is perhaps the most 
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fundamental biological rate. BMR is considered as a univer-
sal “pacemaker” for biological processes (11). Therefore, 
allometric scaling of BMR has gained much attention and 
been hotly debated for over a century. In biology, the discus-
sion has been shifted from whether there is a universal scal-
ing law to how intra- and interspecific scaling vary beyond 
the “3/4-power” law (10). In medicine, human energy 
requirements are important considerations in clinical and 
public health nutrition (4, 18–22). Thus, the WHO issues 
sex- and age-specific recommendations on human energy 
requirements (23). The WHO recommendations consist, for 
each sex, of 3 bodyweight-based linear equations for esti-
mating BMR. The equations have different constant values 
for separate age groups (0–3 years, 4–10 years, and 11–18 
years), suggesting that BMR varies with bodyweight in a 
nonlinear manner during the growth period. To date, the 
inherent nonlinearity in human metabolic scaling remains 
to be addressed by a unified quantitative model.

Glomerular filtration rate (GFR) is an important param-
eter of renal function. In pharmacology and toxicology, GFR 
determines the renal elimination capacity for xenobiotics 
and environmental toxicants. The information of GFR is par-
ticularly useful for dosing renally cleared drugs, especially 
for pediatric patients, because dosing information for chil-
dren is often limited by ethical and clinical considerations 
in clinical trials. Accordingly, attempts have been made to 
predict pediatric GFR values from adult’s value using quan-
titative models (7). Existing data show that GFR undergoes 
continuous change after birth and reaches adult’s level in the 
early childhood (7, 24). Several models have been proposed 
to model the growth and maturation of GFR, with a focus 
on predicting GFR for neonates or children from adults (6, 
7). The previous models have different levels of complex-
ity. The simplest model has the form of simple allometry, 
where GFR scales with bodyweight in a single power-law 
function, with either fixed or variable exponents (6). More 
complicated models include both age and bodyweight as 
the input variables (7, 24). The prediction models are useful 
for predicting population mean values but not for individual 
prediction (6).

Drug clearance (CL) is an essential pharmacokinetic 
parameter that offers direct estimation of drug dose. The 
acquisition of accurate CL information is critical in drug 
development and in drug therapy. However, the pediatric 
CL data are less attainable, because of the limitation of 
conducting clinical trials in young subjects. Thus, various 
prediction models have been proposed to draw quantitative 
relationship between CL and age and/or bodyweight (3, 8, 
25–27). The magnitude of CL is correlated with body size 
and determined by the function of drug elimination organs 
(i.e., the kidneys and liver). Therefore, CL values are sub-
jected to changes of renal and hepatic functions during matu-
ration and growth. The CL values of many drugs have been 

compiled from both population pharmacokinetic studies and 
physiologically based pharmacokinetic (PBPK) modeling 
(8, 28–32). Besides, several growth and maturation models 
have been evaluated for their predictive performance (17, 
30, 33–35). Overall, the previous findings are highlighted as 
follows: first, CL scales with bodyweight raised to a power 
that is variable with age or body weight (16, 28, 30). Second, 
more profound changes were observed in earlier life than 
in later life (e.g., neonates to toddlers vs. toddlers to ado-
lescents or adults) (28, 30). Finally, a quantitative birth-to-
adulthood model usually includes both age and bodyweight 
as the independent variables (7, 8, 15, 31, 36, 37), although, 
for some drugs and in particular age groups, e.g., in younger 
aged children, clearance can be scaled with bodyweight 
alone (3, 8, 30, 38–40).

Taken together, human BMR, GFR, and CL values seemed 
to share similar rate-switching features during the human 
maturation and growth processes. The aim of this study is to 
evaluate a continuous, single, bodyweight-only equation for 
its potential as a unified empirical model for scaling human 
BMR, GFR, and CL from neonates to adults. The equation 
is in the form of reciprocal sum of two power-law functions 
of bodyweight with 4 parameters (so-called mixed-allometry 
or mixed-power-law equation). All the datasets evaluated in 
this study were either directly retrieved from the literature 
or generated from existing age- and bodyweight equations 
with published parameters. The datasets thus represent the 
tendency of each specific dependent variable of interest 
(BMR, GFR, or CL), and the overall goal is not to predict 
the unknown, but to infer common quantitative understand-
ing from analysis of diverse datasets.

METHODS

BMR Datasets

The basal metabolic rate (BMR) data, in kcal/day, for males 
and females from birth to adulthood were obtained from 
the historical database compiled by Schofield (41). The 
BMR data in MJ/day was converted to kcal/day. The data-
base included BMR data for 4811 males (0.02–52.3 years, 
2.7–108.9 kg) and 2364 females (0.14–64 years, 2.0–96.4 
kg). The data are listed according to divided bodyweight 
groups (separated by 1 kg up to ~100 kg). The majority of 
groups contain >5 subjects (up to 189 subjects).

GFR Dataset

The glomerular filtration rate (GFR) data, in mL/min, 
were generated using the general equation proposed by the 
research group of Anderson (24, 37, 42) for hypothetical 
human subjects:
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where here P is GFR and Padult is the adult GFR value (136 
mL/min (7)), Fage is the age function (maturation function), 
and Fsize is the body size function (allometric function):

The variables and parameters are defined as PMA, post-
menstrual age (weeks); θ, the Hill coefficient; TM50, mat-
uration half-life; W, bodyweight of the individual; Wadult, 
adult bodyweight (70 kg); and μ, allometric, bodyweight 
exponent.

The GFR dataset was generated for a hypothetical popula-
tion from 0 to 20 years of postnatal age. The age–body-
weight information was mainly obtained from Annex 2 in 
ref. (43). Additional age–bodyweight data for infants < 0.25 
years were retrieved from ref. (7). A total of 26 age groups 
were included for the simulation: 0, 0.083, 0.167, 0.25, 0.5, 
0.75, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, and 20 years. The mean bodyweight for each age 
group was either directly retrieved from the reported mean 
values (7) or estimated from the reported median values 
(43). Assuming lognormal distribution (44, 45), the median 
(μ*) was transformed to mean (μ) using the following for-
mula (46): μ = ln μ∗. The standard deviation (σ) of lognormal 
distribution was estimated as � =

√

ln
(

CV2 + 1
)

 , where CV 
is the arithmetic coefficient of variation (47). For each age 
group, the bodyweight was randomly generated using the 
age-specific μ and σ, assuming CV = 0.15 in a population 
(43). This sampling process was conducted using the built-in 
functions, RandomVariate and LogNormalDistribution, in 
 Mathematica®. The postmenstrual ages (PMA) were calcu-
lated by adding a gestational age of 40 weeks (24) to the 
postnatal ages. The resulting (PMA, W) data were plugged 
into Equations 1–3 to generate expected GFR values, using 
the reported parameter values (24): θ = 3.4, TM50 = 47.7 
weeks, μ = 0.75. To add variability to the GFR values, the 
lognormal distribution was assumed with CV = 0.2. For each 
age group, GFR values for 20 randomly selected subjects 
were simulated. The data for 26 age groups (a total of 520 
data points) were pooled as the GFR dataset

Drug CL Datasets

The first CL datasets were retrieved from Björkman’s work 
(29) on physiologically based pharmacokinetic (PBPK) 
modeling for two drugs, theophylline and midazolam. The 

(1)P = Padult ⋅ Fage ⋅ Fsize

(2)Fage =
PMA�

(

TM
50

)�
+ PMA�

(3)Fsize =

(

W

Wadult

)�

CL and bodyweight values of both sexes are directly avail-
able for neonates; children ages 0.5, 1, 2, 5, 10, and 15 years; 
and adults. The total CL values were estimated from PBPK-
modeled hepatic CL and/or renal CL (if applicable). These 
CL datasets were evaluated in the initial modeling trial for 
drug CL.

Next, the extended modeling was applied to CL datasets 
of 17 drugs, which have been previously modeled using the 
growth and maturation model of Anderson et al. (15, 37, 
42); the model parameters were directly available from the 
literature (15). The CL values were generated using the same 
general models, as described in Equations 1–3, where P and 
Padult are replaced by CL and CLadult. All the drug-specific 
parameters in the age function (Equation 2) and size function 
(Equation 3) were taken from the literature (15). For each 
drug, the CL values with random errors were generated for 
26 age groups (each of 20 subjects). The procedure to gener-
ate the CL values with random errors was the same as that 
described above for GFR.

Finally, individual experimental data were retrieved 
from two pharmacokinetic studies of cefetamet in pediatric 
patients (48, 49). The first study included 20 infants of 0.19 
to 1.44 years (48). The second study included 18 children 
(3 to 12 years). The adult data (50, 51) were also included 
to complete the cefetamet dataset.

Model Fitting and Validation

In this study, the following mixed-power equation was pro-
posed to model the datasets mentioned above.

or 

where P is the metabolic or physiological quantity of inter-
est, viz., BMR, GFR, or drug CL. The equation consists of 
two allometric coefficients (0 < A < B) and two allometric 
exponents (α > β > 0). For model comparison, the simple 
allometric model was also included for analysis:

where G and γ are the allometric coefficient and exponent, 
respectively.

Model fitting was performed using the nonlinear regres-
sion function (NonlinearModelFit) in  Mathematica® (Wolf-
ram). The model parameters were obtained by fitting the 
model equations to all available datasets (with suitable 
weighting functions, e.g., 1/y2). The comparison of the 
biphasic allometry (BA) model with the simple allometry 

(4)
1

P
=

1

A ⋅W�
+

1

B ⋅W�

(5)P =
(

1

A ⋅W�
+

1

B ⋅W�

)−1

(6)P = GW�
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(SA) model was based on the Akaike’s information criterion 
(AIC). Besides, the model fitting was validated using multi-
ple measures, including residual plots, R2, and t statistic for 
the fitted parameters.

Estimation of the Characteristic Values

The biphasic model is characterized by continuous change of 
slope in the log P vs. log W plot. The weight-dependent slope 
(S) of the fitted biphasic curve was generated using the follow-
ing equation (see Appendix for the derivation):

The biphasic growth and maturation curve switches at a 
characteristic bodyweight (i.e., the bodyweight at the phase 
transition, w̃ ), which was calculated using the following 
expression (Appendix).

The characteristic slope (S*) at the phase transition body-
weight was calculated as the sum of the allometric exponents 
(Appendix), i.e.,

Dimensionless Analysis

To conduct a dimensionless analysis, Equation 4 is treated as 
follows. First, let X = W∕w̃ , where W is the exact bodyweight 
and 

∼
w represents the critical bodyweight at the phase transi-

tion. Thus, X is the dimensionless, fractional number asso-
ciated with bodyweight. Similarly, let Y = P∕

∼
p , where P is 

physiological parameters such as BMR and GFR or CL and 
∼
p is the corresponding P value at W = 

∼
w , and according to 

Equation 4,

Accordingly, Y is defined as the fractional value of BMR, 
GFR, or CL (relative to their critical value at phase transition). 
Then, the original Equation 4 can be expressed and rearranged 
as follows:

(7)S = �

(

B ⋅W�

A ⋅W� + B ⋅W�

)

+ �
(

A ⋅W�

A ⋅W� + B ⋅W�

)

(8)w̃ = (B∕A)1∕(�−�)

(9)S∗ = (� + �)∕2

(10)
1
∼
p
=

1

A
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w
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1

B
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w
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(11)
1

p̃Y
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1

A
(

w̃X
)� +

1

B
(

w̃X
)�

By substituting 
∼
p in the last equation from Equation 10, 

and after further rearrangement, the final equation is 
obtained:

Where

Accordingly,

The slope of the dimensionless biphasic-scaling curves 
(on a log–log plot) has the following form:

At X ≪ 1, the slope is approaching the asymptotic expo-
nent, α, whereas at the other end (i.e., X ≫ 1) the slope is 
approaching another exponent, β. Since α > β, the slope 
continuously decreases as X increases. Thus, the decrease 
of slope (or “deceleration”) is expressed as

The deceleration equation—which always gives a nega-
tive value—quantifies the change (i.e., continuous slowing 
down) of pace in the growth and maturation process. In this 
study, different physiological and clearance datasets were 
harmonized using the derived dimensionless equations and 
the fitted parameter values for various datasets. Specifically, 
the dimensionless Y values were simulated using Equa-
tion 13 with input X values ranging from 0.1 to 10 (step of 
increment = 0.1). The corresponding slope and deceleration 
curves were generated using Equation 17 and Equation 18, 
respectively.
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RESULTS

Scaling Basal Metabolic Rate

The biphasic allometry (BA) model and the simple allom-
etry (SA) model were fitted to the Schofield’s historical 
dataset of BMR (41). Figure 1 shows the fitting results 
for the male and female datasets. The log BMR vs. log 
W plot (Fig. 1A and B) reveals curvature with two obvi-
ous phases. Thus, the mixed-power equation (the biphasic 
model) offers better fitting results with smaller AIC val-
ues than the simple allometry equation (Table I; Fig. 1A 
and B). Particularly, the SA model systematically overes-
timates the BMR values at W <10 kg but underestimates 
the values at the W range of 10 to 40 kg (Fig. 1C and D). 
The slope of the biphasic curve decreases with increas-
ing bodyweight; at the extreme body sizes, the slope 
approaches the two asymptotic allometric exponents, α 
and β (Fig. 2). The first exponent is about 2, whereas the 

Fig. 1.  Bodyweight scaling 
of BMR datasets. BMR data 
were retrieved from Schofield’s 
historical database (41). A 
Comparison of model fittings 
for the male dataset. Solid line, 
biphasic model (Equation 4); 
dashed line, simple allometry 
model (Equation 6). B Com-
parison of model fittings for the 
female dataset. C The residual 
plots for the male data. Solid 
symbol, biphasic model; open 
symbol, simple allometry. D 
The residual plots for the female 
data

Table I  Model Fitting Results 
for Basal Metabolic Rate

The model parameter estimates (± SE) include the allometric parameters (A, B) and bodyweight exponents 
(α, β), according to Equation 4; bodyweight at phase transition, 

∼
w = (B∕A)1∕(α−β) (Equation 8); the slope 

at transition, S∗ = (α + β)/2 (Equation 9); Akaike’s information criterion (AIC); biphasic allometry model 
(BA); simple allometry model (SA). The parameter estimates for SA (Equation 6) are G = 209 (male) and 
232 (female); γ = 0.50 (male) and 0.43 (female)

A α B β w̃   S* AIC (BA, SA)

Male 19.5 ± 2.5 2.04 ± 0.11 327 ± 26 0.39 ± 0.02 5.52 1.22 (1092, 1151)
Female 17.3 ± 2.3 2.00 ± 0.10 444 ± 44 0.28 ± 0.02 6.64 1.14 (983, 1063)

Fig. 2.  The slope plots for the biphasic model. The changes of the 
slope on the log–log biphasic plots of the BMR datasets were quan-
tified using Equation  7. The slopes for the males (dashed line) and 
females (solid line) have a sharp turnaround around 6 kg. The shaded 
area highlights the transition of the two phases
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second exponent is near 0.3 or 0.4 (Table I). Accordingly, 
the first phase has a superlinear scaling relationship (slope 
>1), whereas the second phase scales sublinearly (slope 
<1). The two phases have a characteristic transition point 
at 5.5 kg and 6.6 kg, for males and females, respectively 
(Table I). Figure 2 highlights the phase transition as the 
body grows. The slope at the phase transition is the mean 
of the two asymptotic exponents (Equation 9) (male, 1.22, 
and female, 1.14).

Scaling the Glomerular Filtration Rate (GFR)

To demonstrate whether the proposed biphasic model could 
also be applied for scaling GFR, the (GFR, W) data were 
simulated for a hypothetical population with 26 age groups. 
In each group, the bodyweight for 20 subjects was randomly 
sampled from a lognormal distribution with transformed 
population mean and estimated standard deviation. The 
GFR values with random errors (CV = 20%) were generated 
according to Equations 1–3 and using reported parameter 
values (24), assuming lognormal distribution. The data of 
all age groups were pooled and then fitted to the biphasic 
mixed-power equation. Figure 3 shows again a biphasic 
log–log profiles. The fitted parameter values are A = 0.38 ± 
0.07, α = 2.18 ± 0.15, B = 14.0 ± 3.5, β = 0.50 ± 0.06. The 
result is consistent with a superlinear scaling phase (slope 
>1) and a sublinear scaling phase (slope < 1). The scaling 
slope decreases with increasing bodyweight (Fig. 3A). The 
phase transition occurs at 8.6 kg, and the slope at the transi-
tion is 1.34. The simple allometry model overestimates GFR, 
again, at W < 10 kg (Fig. 3B and D). Overall, the biphasic 

model provides better fit with lower AIC (3774 vs. 4294) and 
more randomly scattered residuals (Fig. 3C).

Scaling Drug Clearance

Three types of drug clearance data were included for anal-
ysis. First, the proposed biphasic model was fitted to the 
cross-age CL data for theophylline (Fig. 4A and B) and 
midazolam (Fig. 4C and D), which were taken directly from 
a PBPK modeling study (29). The datapoints are scarcely 
distributed in the bodyweight range spanning neonates and 
adults. Nevertheless, compared with simple allometry (based 
on AIC and residual plots), the biphasic allometry model 
provides better fitting results (Table II). Again, the features 
of the biphasic model (i.e., 2 phases with defined phase tran-
sition) were clearly illustrated in this analysis. The two drugs 
have high first-phase exponents (ca. 2.6 to 3) and compara-
ble—but less than unity—second-phase exponents (ca. 0.5 
to 0.6). The results also show superlinear allometry in the 
early childhood and sublinear allometry in the later life. The 
transition occurs at 8.6 to 9.5 kg, with the corresponding 
slope values (S*) close to 1.6 and 1.8, for theophylline and 
midazolam, respectively (Table II).

Secondly, the analysis was extended to 17 drugs whose 
ontogeny CL data have been previously modeled using the 
sigmoid Emax maturation model. All the model parame-
ters, including the maturation half-life (TM50) and the slope 
(Hill) coefficient, were summarized in the review article of 
Holford, Heo, and Anderson (15). To generate the ontog-
eny CL values for each drug, the drug-specific parameters 
were directly retrieved and plugged into the growth and 

Fig. 3.  Bodyweight scaling of 
model simulated GFR. GFR 
values with random errors 
(symbol) for 26 age groups (20 
datapoints for each group) were 
simulated using the growth and 
maturation model of Andersen 
et al. (Equations 1–3). A The 
log–log plot for (GFR, W) and 
the slope plot. The solid line 
represents the nonlinear best-fit 
for the biphasic model (Equa-
tion 4). The dashed line is a 
weight-dependent slope of the 
fitted curve (Equation 7). B The 
residual plot for the biphasic 
model. C The same data were 
fitted to the simple allometry 
model (Equation 6). D The 
residual plot for the simple 
allometry model
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maturation model (i.e., Equations 1–3, where the variable 
P is CL). Specifically, the CL values with random errors 
for 26 age groups (20 subjects/group) were simulated using 
the same approach described for the GFR dataset. For each 
drug, the population pooled (CL, W) data were then fitted to 
the biphasic model (Equation 4) and the simple allometry 
model (Equation 6). Note that the model used for generating 
the CL datasets is independent of the biphasic model used 
for model fitting.

The 17 drugs belong to 8 therapeutic categories, 
including antiviral agents (acyclovir, lamivudine, penci-
clovir), antineoplastic agents (busulfan), anticonvulsants 

(levetiracetam), analgesics (acetaminophen, morphine, val-
decoxib), anesthetics (dexmedetomidine, levobupivacaine, 
propofol, midazolam, ropivacaine), antibacterial agents 
(vancomycin), anti-ulcer agents (pantoprazole), and anti-
malarials (pyrimethamine, sulfadoxine), The pharmacoki-
netic properties are diverse, covering drugs that are either 
mainly eliminated by metabolic pathways (e.g., morphine, 
midazolam) or by renal excretion (e.g., lamivudine, vanco-
mycin). Moreover, while some drugs have very low adult 
clearance values (e.g., 0.04 L/h for sulfadoxine and 1.44 L/h 
for pyrimethamine), drugs such as morphine and propofol 
have adult CL values >100 L/h.

Fig. 4.  Bodyweight scaling of 
drug clearance. The log CL vs. 
log W plots and the slope plots 
for theophylline (A and B) 
and midazolam CL (C and D). 
Symbols are PBPK-modeled 
CL values directly taken from 
the literature (29). Lines are the 
best nonlinear regression fits for 
the biphasic model

Table II  Model Fitting 
Results for Theophylline and 
Midazolam Clearance

PBPK-modeled CL data were retrieved from ref. (29). The model parameter estimates (± SE) include the 
allometric parameters (A, B) and bodyweight exponents (α, β), according to Equation  4; bodyweight at 
phase transition,

∼
w = (B∕A)1∕(α−β)(Equation 8); the slope at transition, S∗ = (α + β)/2 (Equation 9); Akai-

ke’s information criterion (AIC); biphasic allometry model (BA); simple allometry model (SA). 
The parameter estimates for SA (Equation 6) are for theophylline, G = 1.50 (male) and 1.67 (female); γ 
= 0.85 (male) and 0.82 (female); for midazolam, G = 14.9 (male) and 15.9 (female); γ = 0.83 (male) and 
0.81 (female).

A α B β ∼
w S* AIC (BA, SA)

Theophylline
   Male 0.05 ± 0.02 2.70 ± 0.39 4.03 ± 2.69 0.62 ± 0.16 8.60 1.66 (33.0, 41.5)
   Female 0.06 ± 0.02 2.59 ± 0.22 6.18 ± 3.16 0.50 ± 0.13 9.50 1.55 (25.3, 41.9)
Midazolam
   Male 0.17 ± 0.05 3.04 ± 0.21 44.3 ± 17.1 0.56 ± 0.10 9.47 1.80 (62.1, 78.5)
   Female 0.19 ± 0.04 3.05 ± 0.14 53.8 ± 14.7 0.50 ± 0.07 9.09 1.78 (55.0, 78.8)
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Table III summarizes all fitted parameters. Compared 
with simple allometry, biphasic allometry fits better, with 
universally lower AIC values (Table III). The allometric 
coefficients (A and B) are highly variable among drugs, 
because the absolute CL values span >3 orders of mag-
nitude. However, the allometric exponents have a narrow 
distribution: the first exponent (α) ranges from 1.51 to 3.67 
(mean = 2.36; CV = 26%), whereas the second exponent (β) 
is in the range of 0.40 to 0.67 (mean = 0.55, CV = 14%). The 
mean transitional weight is 10.0 ± 4.9 kg (range = 3.64 to 
20.4 kg, CV = 49%). The mean transitional slope (S*) is 1.46 
± 0.32 (range = 1.0 to 2.0; CV = 22%). The results reveal 
consistent biphasic bodyweight scaling with superlinear-to-
sublinear phase transition. Moreover, although the drugs are 
highly variable in terms of elimination pathways and the 
magnitude of CL value, the characteristic slope of the second 
phase (i.e., β) is nearly homogenous among different drugs 
with a CV of 14%.

Since the bodyweight at the phase transition has a wider 
distribution, the 17 drugs were further divided into three 
groups (Figs. 5, 6 and 7). The bodyweight at the phase 
transition is around 15 kg for the group I drugs, 10 kg for 
the group II drugs, and < 5 kg for the group III drugs. The 
grouping enables visualization and comparison of all 17 
drugs with reasonable clarity in three figures. Moreover, it 

highlights the similarity and differences of various drugs 
in the maturation rate.

Finally, to demonstrate the versatility of the biphasic 
model, the drug clearance values from individual pediat-
ric subjects were retrieved from two studies of cefetamet 
(48, 49). Figure 8 shows that the biphasic model fits all 
the datapoints well, except for one point (which is from 
a subject that had multiple postoperative complications 
(49)). The fitting results are described in the figure legend. 
While A and B values are drug-specific, the α exponent 
(2.9) falls within the range of the values found for other 
drugs (Table III). Moreover, the beta exponent (0.47) and 
the transitional bodyweight (11 kg) are about the mean 
values estimated for the datasets of 17 drugs.

Unifying All the Datasets

In this study, a total of 25 datasets were included for analy-
sis. These data cover 3 types of human parameters (BMR, 
GFR, and drug CL), where the absolute values span >3 
orders of magnitude. Nevertheless, some common features 
repeatedly appear throughout this study. To further highlight 
the similarities and differences among different datasets, a 
dimensionless analysis was performed, according to the defi-
nition of X and Y and the derived equations (Equations 13, 

Table III  Fitted and Estimated 
Parameters for Drug CL 
Datasets

The allometric coefficients (A, B) and bodyweight exponents (α, β) are the best-fitted model parameters 
(according to Equation 4); 

∼
w = (B∕A)1∕(α−β) (Equation 8); S∗ = (α + β)/2 (Equation 9); Akaike’s informa-

tion criterion (AIC); biphasic allometry model (BA); simple allometry model (SA).

Drug A α B β ∼
w S* AIC (BA, SA)

Acetaminophen 0.980 2.05 39.7 0.50 10.8 1.28 (4813, 5317)
Acyclovir 0.042 3.67 21.8 0.63 7.88 2.15 (4909, 5330)
Busulfan 1.170 1.80 24.4 0.51 10.7 1.16 (4269, 4859)
Dexmedetomidine 0.680 2.11 45.8 0.46 12.8 1.29 (4746, 5281)
Lamivudine 0.580 2.26 30.8 0.55 10.2 1.41 (4688, 5242)
Levetiracetam 0.256 1.91 6.05 0.57 10.5 1.24 (2991, 3530)
Levobupivacaine 8.318 1.71 49.6 0.59 4.93 1.15 (5511, 5970)
Midazolam 0.238 2.59 52.9 0.48 12.9 1.54 (5013, 5597)
Morphine 1.732 2.57 125 0.58 8.61 1.58 (6333, 6906)
Pantoprazole 1.383 1.51 31.0 0.48 20.4 1.00 (4079, 4624)
Penciclovir 0.045 3.10 63.6 0.47 15.9 1.79 (5134, 5814)
Propofol 20.13 1.84 129 0.61 4.59 1.23 (6598, 7052)
Pyrimethamine 0.019 3.31 1.23 0.67 4.90 1.99 (2063, 2586)
Ropivacaine 0.084 3.11 40.9 0.53 11.0 1.82 (5070, 5541)
Sulfadoxine 0.005 2.11 0.04 0.67 3.70 1.39 (−1720, −1279)
Valdecoxib 0.037 2.63 20.3 0.40 16.8 1.52 (3574, 4279)
Vancomycin 1.117 1.92 5.87 0.63 3.64 1.28 (3433, 3916)
Mean 2.36 0.55 10.0 1.46
SD 0.63 0.08 4.9 0.32
CV (%) 26.4 14.4 49.0 21.9
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17, and 18). The two new variables (X, Y) are fractions or 
multiples of the two characteristic values ( 

∼
w and 

∼
p
)

 . With 
the dimensionless equation (e.g., Equation 13 or Equa-
tion 16), all of the 25 datasets can be compared in one figure 
(Fig. 9A). This composite plot clearly divides the biphasic 
curves into two segments at the reference point of (X, Y) = 
(1, 1), which is considered as a phase transition (turnaround) 
point. The first segment is within the region where both X 
and Y are below the unity, whereas the second segment 
locates at (X, Y) above unity. All the data in the first phase 
show steeper slopes than those in the second phase (i.e., α 
> β). Moreover, the first phase is more variable among dif-
ferent data than the second phase. This is consistent with the 
magnitude of variability reported in Table III for the drug 
CL (CV for α = 26.4%; for β = 14.4%).

Figure 9B further captures the essence of such dispar-
ity; while the asymptotic slope in the first phase is distrib-
uted from 1.5 to 3.5, the asymptotic slope in the second 
phase has a narrow distribution (ca. 0.4 to 0.7). A consistent 

observation is that all the data seemed to merge at X >2 (i.e., 
W is 2 times that of the transitional bodyweight), suggesting 
that the maturation and growth patterns of various human 
parameters are similar when the growing body is passing the 
critical point of transition.

Figure 9C offers further insights into the deceleration process 
of human development after birth. By definition, deceleration 
is the change of the slope of the maturation curve. The negative 
value suggests that, although the human function is growing, 
the speed of functional maturation is continuously declining, 
i.e., deceleration. Figure 9C shows many characteristics of the 
deceleration process. First, it is an inverse, symmetrical bell-
shaped curve with maximal deceleration occurring at the critical 
turnaround point (1, 1) and, second, slow deceleration in the 
early life when the body size is small and when the adulthood 
is approaching. Third, fast deceleration starts almost universally 
at X = 0.3 to 0.4, reaching the maximal deceleration at X = 1. 
This characterizes the maturation pattern of the first phase. After 
passing the maximal deceleration point, the maturation enters 

Fig. 5.  Biphasic bodyweight 
scaling of CL (group I drugs). 
Group I drugs are the drugs 
with the largest transitional 
bodyweight (around 15 kg). 
A–E The log CL vs. log W plots 
(symbol) and the best-fit lines of 
the biphasic model. CL values 
with random errors (CV = 20%) 
were generated according to the 
sigmoidal maturation model 
(Equations 1–3). Each dataset 
was fitted to the biphasic model. 
F The slope plots (lines) and the 
transitional bodyweights (stars) 
for group I drugs
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the second phase and, again, approaches zero deceleration at the 
adulthood (completing the maturation process).

DISCUSSION

The current study proposes a general weight-only equation to 
model various ontogeny datasets of human parameters. The 
datasets are diverse, spanning multiple human parameters 
and covering extensive age groups from birth to adulthood. 

The data were either directly retrieved from historical data-
sets (including mean and individual values) or simulated 
from independent models with published values for specific 
model parameters. A statistical random sampling approach 
was used to add random errors to the simulated data. The 
results demonstrate that a biphasic, mixed-power-law equa-
tion with two limiting allometric functions adequately quan-
tifies the developmental phase transition profiles of BMR, 
GFR, and drug CL. The biphasic model and the additional 

Fig. 6.  Biphasic bodyweight 
scaling of CL (group II drugs). 
Group II drugs are the drugs 
with intermediate transitional 
bodyweight (around 10 kg). 
A–E The log CL vs. log W plots 
(symbol) and the best-fit lines of 
the biphasic model. F The slope 
plots (lines) and the transitional 
bodyweights (stars) for group 
II drugs
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dimensionless analysis offer quantitative insights into the 
maturation and growth of human body functions.

The long-held belief that body functions develop at dis-
tinct pace in different stages of human development is well 
supported by extensive empirical evidence (1, 5, 52–54). 
For example, a study dated back to 1949 had shown that 
renal function matures with the most rapid rate in the first 
6 months, followed by slower rates to reach adult values 
around the second year of life (52). Numerous empirical 
models have been proposed to scale the maturation and 
growth processes of body functions (6, 7, 24). These quanti-
tative equations have been frequently developed for practical 
considerations, e.g., estimating children’s values (6, 14, 39). 
The equations are usually data-specific and age-categorized. 
Most equations contain bodyweight as an input variable; 
meanwhile, age was often included as an additional variable 
(6–8, 24, 36). The equations are either separate, discontinu-
ous equations with cut-points at certain age thresholds (23, 
40), or continuous nonlinear equations containing age and 
bodyweight terms (7, 8, 15, 24). The dependence of body-
weight on age (55–57) is often required to assume a fixed 

weight exponent value (i.e., 0.75) in order to estimate the 
age-associated parameters (e.g., maturation half-life and Hill 
coefficient) (15, 24, 58). Accordingly, this present study pro-
vides a different perspective where bodyweight alone in a 
continuous 4-parameter power-law equation is sufficient to 
quantitatively describe the maturation process.

A previous study has shown that the brain’s metabolic 
requirement starts to accelerate after the first 6-month of life 
and reaches a lifetime peak at about 5 years of age (1). Dur-
ing this particular period, the increasing demand of energy 
in human brain development was compensated by slow rate 
of body growth (1). This present study reveals that the rate 
switching of BMR, GFR, and CL occurs at bodyweights of 
around 5–20 kg, which is about the bodyweight range for 
children of 0.5–9 years of age. Moreover, the transitional 
bodyweights for different datasets center around 10 kg, 
which is about the weight of children at 1 year of age.

The biphasic profiles are universally reproduced in dif-
ferent datasets. Since other important metabolic organs, 
such as the liver and the kidneys, may develop similar age-
related dynamics in energy demands, the biphasic profiles 

Fig. 7.  Biphasic bodyweight 
scaling of CL (group III drugs). 
Group III drugs are the drugs 
with the lowest transitional bod-
yweight (< 5 kg). A–E The log 
CL vs. log W plots (symbol) and 
the best-fit lines of the biphasic 
model. F The slope plots (lines) 
and the transitional bodyweights 
(stars) for group III drugs
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may be associated with the trade-off between maturation 
(functional development) and growth (body size devel-
opment). In the first developmental phase, high blood 
perfusion organs (e.g., brain, liver, kidney) take up more 
metabolic substrate (e.g., glucose) to allow fast develop-
ment of organ functions (fast maturation), which results in 
less energy available for the building of body mass (slow 
growth). Therefore, this phase is characterized by high 
energy needs for the maturation of vital organs, leading to 
the superlinear bodyweight scaling relations (exponent > 
1). At birth, the major drug eliminating organs continue to 
mature and grow. The sizes of theses organs grow at dif-
ferent paces, with fractional organ size (i.e., weight per kg 
bodyweight) reaching the maximum at around 1 to 2 years 
of age (59). The organ blood flow also increases with age 
and bodyweight at different rates (29, 60–62). Moreover, 
the enzyme activities (per kg bodyweight) of most drug 
metabolizing enzymes (e.g., CYP 3A4) also undergo fast 
maturation and reach the adult levels at around 1–2 years 
of age, although some enzyme may mature faster or slower 
(60, 61). The above-mentioned characteristic ages of matu-
ration correspond to average bodyweight of 9 to 13 kg 
(43); coincidently, the mean transition bodyweight (10.0 
kg) observed for the drug CL datasets (Table  III) falls 
within the range. Compared to the later phase, the first 
phase has greater variability in the estimated asymptotic 

(α) exponent (CV = 26%). The CV for the transitional 
bodyweight is even larger (49%); however, the variability 

Fig. 9.  Unifying 25 datasets using dimensionless analysis. A The 
log–log plot for the dimensionless variables. B The slope plots. C 
The deceleration plots. The definitions of the dimensionless variables, 
X (fractional W) and Y (fractional P), and of the slope and decelera-
tion are described in Section - Dimensionless Analysis. For each indi-
vidual dataset, the fitted parameters of the biphasic model were used 
to simulate the dimensionless data, using Equations 13, 17, and 18. 
A total of 25 datasets (covering BMR, GFR, and drug CL) were com-
pared in one plot

Fig. 8.  Biphasic bodyweight scaling of individual pediatric CL data 
obtained from different pharmacokinetic studies. The individual CL 
values of cefetamet were retrieved from study 1 (20 infants, 0.19 to 
1.44 years)(48) and study 2 (18 children, 3 to 12 years)(49). The adult 
data were from ref. (50, 51). One subject in the second study was 
reported to have multiple postoperative complications (coinciden-
tally, the one that has a CL value far below the fitted line). The pooled 
data were fitted with the biphasic allometry and the simple allometry 
model. The AIC values are 269 (biphasic) vs. 313 (simple allometry). 
The fitted parameter values for the basic model are A = 0.049, α = 
2.90, B = 16.6, and β =0.47. The estimated transition bodyweight is 
11.0 kg
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levels are still surprisingly low, if one considers that the 
drugs differ widely both in the exact CL values and elimi-
nation mechanisms. The results suggest commonality and 
variability in ontogeny. While both features warrant fur-
ther empirical and theoretical investigations, the variabil-
ity may be attributed to variation in the maturation speed 
of various factors (hepatic, renal, biliary, and blood) that 
contribute to overall drug elimination in the maturing and 
growing body (59–68).

As the body size development enters into another phase, 
the energy supply relative to the maturing vital organs 
might need to be bounded or be re-shuffled to other organs, 
e.g., muscle. This may contribute to continuous decrease 
of metabolism and many other organ functions along the 
maturation process (69). In the present paper, equations 
are derived to quantify this deceleration process, which 
reaches the maximal deceleration at the transitional bod-
yweight and proceeds to the second phase. Notably, the 
deceleration profile is symmetrical at the transitional point 
(Fig. 9C). Since in the second phase, growth of body size 
dominates functional maturation, the phase is less vari-
able, characterized by tightly disturbed asymptotic expo-
nent with low CV (14%, Table III) and by highly super-
imposed slope profiles after passing the transitional point 
(Fig. 9B). Taken together, energy re-allocation between 
high and low energy-demanding organs may attribute to 
biphasic maturation and growth of organ functions. This 
view is consistent with the general model of West et al. 
(55) which suggests that the growth of body size is limited 
by the capacity of resource allocation networks.

As illustrated in the Appendix (Fig. 10 in the Appendix), 
the curvature of the biphasic profile is set by the two allomet-
ric functions. Each of the two extreme states is represented 
by a single allometric function of bodyweight raised to a con-
stant power (α or β). The magnitude of the two exponents 
shapes the entire curve: for example, higher α together with 
lower β produces greater curvature and more obvious phase 
transitions, as indicated in the modeling of the CL values 
for 17 drugs (Table III and Figs. 5, 6 and 7). Moreover, the 
biphasic model shows that the slope of the scaling curve con-
tinuously changes during the developmental period, which 
agrees with previous observations (16, 28, 30).

The essence of the phase switching with deceleration is 
further captured by the dimensionless analysis. According 
to Equation 13 (or Equation 16), all unitless data will con-
verge at (X, Y) = (1, 1), which is also the transition point of 
the biphasic curve. The dimensionless equations indicate 
that metabolic and physiological functions scale with body-
weight superlinearly at X < 1 (i.e., bodyweight < transitional 
weight) and sublinearly at X > 1 (i.e., bodyweight > tran-
sitional weight). The dimensionless analysis can be further 
elaborated as follows. Mathematically, Equation 17 can be 
expressed as the linear combination of two fractional terms:

where

and the deceleration equation (Equation17) can be simpli-
fied as

In biological terms, the two fractions represent the rela-
tive contribution of the two maturation/growth phases (i.e., 
α and β  phases) from birth to adulthood. Phase transi-
tion occurs at the characteristic bodyweight where the two 
phases have equal contribution (i.e., f = 1/2). Thus, at the 
phase transition point, the slope is the average of the two 
characteristic exponents, i.e., (α + β)/2, and deceleration 
reaches the maximal value −0.25(α − β)2. In this study, the 
β exponent is around 0.5 with small variation across all 25 
datasets. In contrast, the α exponent has larger variation 
(Table III and Fig. 9B). Thus, larger difference in the two 
exponents results in sharper transition and greater peak 
deceleration (Fig. 9C).

Bodyweight has been proposed and evaluated as the 
covariate in predicting pediatric CL values. It is known that 
a fixed exponent is insufficient to describe the change of 
CL with respect to bodyweight increases across the human 
lifespan. Given that the bodyweight exponent value is usu-
ally higher in younger (e.g., neonates and infants) than in 
older age groups, the bodyweight exponent has been treated 
as a continuous function that features continuous decline 
of exponent during growth—the so-called bodyweight-
dependent exponent (BDE) models. Table  IV compares 
the BDE models with the biphasic model. The first BDE 
model (BDE I) assumes that the decline of exponent follows 
a 4-parameter sigmoidal bodyweight function, with clearly 
defined maximal and minimal exponents. The model has 
been applied in the population pharmacokinetic analysis 
of two drugs (propofol and morphine), covering subjects 
with bodyweight ranging from 0.56 to 122.7 kg (2 stud-
ies)(16, 70). As demonstrated in these 2 studies, the inclu-
sion of 4 parameters in the exponent function would have 
an advantage of modeling data including preterm neonates 
with extreme low bodyweight. However, it would be more 
challenging to estimate all the parameters with confidence, 
especially when the neonate data are not sufficient.

The second BDE model (BDE II) also includes a body-
weight-dependent exponent function, which itself is also a 
power-law function, with 2 parameters that characterize the 
weight-dependent decline of exponent. The model has been 

(19)slope = � ⋅ f� + � ⋅ f�

(20)0 < f𝛼 =
X𝛼

X𝛼 + X𝛽
< 1

(21)0 < f𝛽 =
X𝛽

X𝛼 + X𝛽
< 1

(22)deceleration = −(� − �)2f� ⋅ f�
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applied in three contexts: the population pharmacokinetic 
analysis of busulfan (71), predicting drug CL in children 
(3, 33), and scaling CL of clotting factor VIII and IX (72). 
Specifically, the model has been compared to other methods, 
including simple allometry with single fixed exponent (0.75 
or data-specific), age-dependent exponent (ADE) model, 
segmented model, and/or maturation model (3, 33). Over-
all, the predictive power of the models varied with drugs or 
with age groups (33); however, the BDE model seemed to 
provide better prediction of drug CL for theophylline (3) and 
the clotting factors (72).

Compared with the BDE models, the biphasic model pro-
posed in this study represents a completely different concept 
and methodology (Table IV). The model combines simple 
allometry in a form of inverse function. The two allometric 
exponent terms (α and β) shape the curvature of ontogeny 
bodyweight profiles with two distinct, definable phases. 
Besides, the allometric coefficient terms (A and B) deter-
mine the absolute value of human parameters (i.e., BMR, 
GFR, and CL of different drugs). Moreover, the model offers 
meaningful insights into the ontogeny dynamics of human 
functions. The simplicity and generality of the biphasic 
model are revealed in several derived terms: phase transi-
tion bodyweight, slope (rate of ontogeny), and deceleration 
(reduction of ontogeny rate).

Besides BDE, the age-dependent exponent (ADE) model 
has been previously applied to predict clearance in children. 
The ADE model assigns different exponent values for dif-
ferent age groups (3, 33, 73): 1.2 (0–3 months), 1.0 (>3 
months – 2 years), 0.9 (>2–5 years), and 0.75 (>5 years). In 
terms of predictive performance, the ADE model appears 
to be comparable with BDE II (3, 33) and PBPK models 
(73). Since the exponent values are pre-determined, the ADE 
model may be useful in helping the design of first-in-child 
pharmacokinetic studies during new drug development (3, 
33). The issue with the ADE model, however, is the designa-
tion of the same fixed exponents within the same age group 
for different drugs. In this study, the proposed biphasic 
model shows that the slope of the ontogeny curve changes 
continuously with bodyweight (e.g., Figs. 5F, 6H, 7F), and 
the slope of the early-life phase is much higher than the 
largest designated exponent (i.e., 1.2) in the ADE model. 
From this perspective, the biphasic model may help refine 
the ADE model by estimating the age group- and compound 
(or dataset)-specific exponent values using Equation 7.

Some caveats and future perspectives are noted here. 
The aim of this study is not to predict the unknown val-
ues from the proposed model. Instead, the study is the first 
attempt aiming to understand the ontogeny process of human 
metabolism and physiological functions by proposing a gen-
eral, harmonizing model. Future studies may be directed 

towards building and validating the proposed model for 
practical applications, such as prediction of renal functions, 
of pediatric doses and of metabolic demands. Such studies 
would have broad implications in new drug development, 
clinical drug therapy (74–77), and clinical nutrition (78–80). 
However, it should be noted that all prediction models may 
be suitable for predicting mean population values but not 
for individual prediction, because the observed value for 
an individual child is erratic and uncertain (33). During 
pediatric new drug development, BDE and other allomet-
ric models may lack practical application due to limited 
availability of data (33). The biphasic model may have the 
same issue. However, the current study demonstrates that α 

Fig. 10  Characteristics of the mixed-power function. A Simulated 
data of physiological quantity (P) vs. bodyweight (W). The lines 
represent the two asymptotic power-law functions with respective 
y-intercepts (i.e., 0.1 and 10, at W = 1 kg) and an interception point 
which defines the critical point of phase transition (at W = 10 kg). B 
Slope as a function of bodyweight. The plot highlights the two allo-
metric exponents (α and β) and the corresponding mean value at the 
point of phase transition
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and β are narrowly distributed with CV% of 26% and 14%, 
respectively, although the drugs differ widely in their abso-
lute CL values (> 3 orders of magnitude) and in elimination 
mechanisms (metabolism-dominated vs. renal excretion-
dominated). Future studies may lead to further classifica-
tion of drugs according to the parameter values and drug 
properties, e.g., elimination mechanisms. For example, for 
a new investigational drug that is mainly renally excreted, 
the proposed dimensionless model (Equation 13 or 16) may 
be used for predicting pediatric CL of the drug, using the 
parameter values obtained from the GFR dataset. The pro-
posed dimensionless form asks only for two parameters, 
i.e., α and β,. For application, it remains only to specify 
the phase transition bodyweight, which will then determine 
the CL value at this characteristic weight. The mean phase 
transition weight (10 kg) may be used; alternatively, specific 
weight may be used if the drug can be classified into specific 
ontogeny group. Moreover, the same reasoning and approach 
may be applied in population pharmacokinetic analysis and 
PBPK modeling. The dimensionless equation will be applied 
to transformed, unitless CL and weight values. Finally, this 
paper may inspire future attempts in finding a theoretical 
framework and derivation of the equation based on first 
principles.

CONCLUSION

In this paper, a general equation is proposed to model the 
maturation of BMR, GFR, and drug CL. The equation (Equa-
tion 4) is expressed in reciprocal terms of mixed allometric 
functions where bodyweight is the only independent variable. 
All the bodyweight-based profiles are biphasic on log–log 
coordinates. The biphasic curvature is determined by two 
asymptotic allometric functions, representing the maturation 
and growth functions, respectively. The first phase (below 
the critical bodyweight) is universally characterized by much 
steeper slopes with an asymptotic exponent >1 (superlinear 
scaling). The second phase (above the critical bodyweight), 
however, exhibits much shallower slopes with an asymptotic 
exponent < 1 (sublinear scaling). The proposed equation can 
be further expressed in a unitless form, where the relation-
ship between the fractional physiological/metabolic quantity 
(Y) and the fractional bodyweight (X) can be described by a 
general equation with two allometric exponents, α and β. The 
unified equation quantitatively characterizes the curvature 
of the biphasic maturation and growth profiles for diverse 
datasets, by two characteristic parameters (α and β). In con-
clusion, the proposed mixed-allometry model enables a quan-
titative understanding of human development from birth to 
adulthood.

APPENDIX

Characteristics of the Biphasic Model

This study proposes a mixed-power function (the biphasic 
allometry model) (Equation 4) to scale human BMR, GFR, 
and drug CL from adults to neonates. In fact, this study was 
inspired by allometric scaling of whole-plant respiration from 
small seedlings to giant trees (12). Equation 4 states that the 
reciprocal of a physiological or metabolic parameter (P) is 
equal to the sum of reciprocals of each of two individual 
power-law bodyweight functions (i.e., allometric functions). 
To understand the key features of the model, a simulation was 
conducted to characterize the mixed-power function. The fol-
lowing hypothetical parameters were used: A = 0.1, B = 10, 
α= 2.5, and β= 0.5. By plugging the parameter values into 
Equation 4, a set of hypothetical (P, W) data was generated for 
a simulated bodyweight range of 3–70 kg (at a 1-kg interval). 
Figure 10A shows the simulated data and two asymptotic lines 
on log–log coordinates. Let P1 and P2 be the first and second 
asymptotic functions, respectively, and then the asymptotic 
bodyweight functions are

 and Equation 4 can be expressed as

when P1 ≪ P2, P ≈ P1, which is the first asymptote near the 
low bodyweight region of W ≪ (B/A)1/(α − β) (by solving the 
inequality relationship). In contrast, when P1 ≫ P2, P ≈ P2, 
the second asymptote occurs at W ≫ (B/A)1/(α − β). Thus, the 
characteristic bodyweight ( 

∼
w ) is revealed as

Mathematically, 
∼
w is exactly the bodyweight at which 

the two asymptotic lines intersect (P1 = P2 and A
∼
w
�
= B

∼
w
�
 ). 

Biologically, it is considered here as the critical bodyweight 
at which the body undergoes transition from maturation 
phase to growth phase (i.e., the phase transition body-
weight). By taking the derivative of Equation 4, the fol-
lowing expression for the slope (S) of the biphasic curve 
is obtained:

(23)P
1
= AW�

(24)P
2
= BW�

(25)
1

P
=

1

P1

+
1

P2

(26)w̃ = (B∕A)1∕(�−�)

(27)� =
d logP

d logW
= �

(

P1

P1 + P2

)

+ �

(

P2

P1 + P2

)
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Therefore, according to Equation 27, the slope of the 
biphasic model can be estimated at any given bodyweight. 
Figure 10B shows that the slope decreases with increas-
ing bodyweight. The slope curve is indeed flanked by 
two asymptotic lines: slope ≈ α, at the low body weight 
region where W ≪

∼
w or when P1 ≪ P2; whereas slope ≈ β, 

at W ≫
∼
w or when P1 ≫ P2. Note that the characteristic slope 

(S*) at the phase transition bodyweight is exactly the mean 
of the two asymptotic exponents, since at W =

∼
w , P1 = P2, 

Equation 27 is reduced to

In sum, Fig. 10 captures the essence of the proposed 
mixed-allometry model by revealing all the parameter val-
ues used for the simulation: two asymptotic exponents of 
2.5 and 0.5 (exactly α and β), two asymptotic allometric 
coefficients (A = 0.1, B = 10), and a critical bodyweight of 
10 kg (i.e.,

∼
w = (B∕A)1∕(�−�) = (10∕0.1)1∕2 ) where the slope 

of the biphasic curve at this critical point is exactly the mean 
of the two exponents (i.e., 1.5).
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