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Abstract. This review is a summary of factors affecting the drug pharmacokinetics (PK) of
dogs versus humans. Identifying these interspecies differences can facilitate canine-human PK
extrapolations while providing mechanistic insights into species-specific drug in vivo
behavior. Such a cross-cutting perspective can be particularly useful when developing
therapeutics targeting diseases shared between the two species such as cancer, diabetes,
cognitive dysfunction, and inflammatory bowel disease. Furthermore, recognizing these
differences also supports a reverse PK extrapolations from humans to dogs. To appreciate the
canine-human differences that can affect drug absorption, distribution, metabolism, and
elimination, this review provides a comparison of the physiology, drug transporter/enzyme
location, abundance, activity, and specificity between dogs and humans. Supplemental
material provides an in-depth discussion of certain topics, offering additional critical points to
consider. Based upon an assessment of available state-of-the-art information, data gaps were
identified. The hope is that this manuscript will encourage the research needed to support an
understanding of similarities and differences in human versus canine drug PK.

KEY WORDS: ADME; canine-human interspecies extrapolation; metabolism; scaling factors;
transporters.

BACKGROUND

The dog is not only a preclinical species for human medicine
but also a potential patient, presenting with numerous analogues of
human diseases. This includes cancer, inflammatory bowel disease

(IBD), diabetes, and cognitive dysfunction (1). In fact, because of
the numerous homologous cancers occurring in dogs and humans,
the National Cancer Institute established the Comparative Oncol-
ogy Program (https://ccr.cancer.gov/comparative-oncology-pro-
gram) (2). Similarly, canine cognitive dysfunction mimics
Alzheimer’s disease (3, 4), containing spontaneously deposited
human-type amyloid-β that shows 98% homology with that of the
human protein (3).

To support these important interspecies extrapolations, there
is a need to understand the respective physiological differences that
can exist in drug absorption, distribution, metabolism, and
elimination. Such information can also help predict interspecies
differences in drug toxicity (5–9). Therefore, this review provides a
comparison of canine vs. human physiological characteristics,
transporter abundance, activity and location, and enzyme abun-
dance, activity, and location. In some cases, this information is
derived from studies conducted in the individual species. In other
situations, data are from studies where both species were
simultaneously assessed and compared.

Since most canine studies employ healthy adult Beagles
or purpose bred mongrels, this review focuses on information
generated in individuals assumed to represent a wild-type
population (i.e., without genetic mutations identified in the
study reports). Population variability known to exist in
humans (10–12) and dogs (13–15) is not covered.
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The main body of the manuscript provides a high-level
comparison of the canine versus human differences impacting
drug PK. A more in-depth discussion of some of the topics
covered in the manuscript can be found in the Supplemental
material. To further support an examination of the points
covered in this review, an extensive list of references is
provided.

COMPARISON OF CANINE VS. HUMAN
PHYSIOLOGY, INCLUDING TRANSPORTER
ABUNDANCE, ACTIVITY AND LOCATION, AND
ENZYME ABUNDANCE, ACTIVITY, AND LOCATION

Gastrointestinal (GI) Physiology

Gastric Crushing Force

Dogs and humans exhibit similar area-normalized torque
(approximately 3700 dynes/cm2), reflecting comparable 2-
dimensional rotational force, but very different 3-dimensional
crushing force (8). Using identical pressure sensitive pills in
dogs and humans, the area-normalized gastric emptying force
(dynes/cm2) was 606 and 962 in fasted and fed humans and
was 3858 and 3639 dynes/cm2 for fasted and fed dogs (16).
Similar relative differences were observed using the destruc-
tive force dependent release system (DDRS) (17, 18). This
difference in crushing force can render the dog a poor model
for testing human oral modified release dosage forms.

Pylorus Restrictions

The dog pylorus tends to be more restrictive than that of
humans, with beads of 17 mm diameter passing through the
human pylorus (fasted state, 6 ounces of water), but the dog
stomach retaining particles of 5–10 mm for up to about 1.5 h
(19, 20). In the fed state, particles greater than 5 mm in
diameter in the dog stomach were retained for over 7.5 h
(19). The corresponding timeframe in humans was more
difficult to define because of its dependence on meal
composition (21).

The Interdigestive Migrating Motor Complex (IMMC)

The IMMC both of humans and dogs is characterized by
4 phases. However, while phase 3 of the IMMC (rapid
peristaltic contractions) is similar in both species under fasted
conditions (approximately every 120 min in humans and
100 min in dogs), the time to phase 3 activity following a meal
is 2.6 to 5 h in humans and 5–13 h in dogs (22, 23).

Gastric Emptying Time

The estimation of gastric emptying time can be highly
dependent upon the experimental method employed (20).
Using the SmartPillR GI Monitoring system, (24) observed a
mean gastric emptying time of 34 min in fasted dogs and a
median of 30 min (min/max = 7 to 202 min) in fasted humans
(25). Species differences emerged in the fed state. While in
(Beagle) dogs, the duration ranged from 1.11 to 4.53 h, it
ranged from 3.08 to 19.20 h in humans (Fig. 1). Similarly,
when considering those cases where the SmartPillR exited the

stomach at the time of the first meal, GET estimated obtained
across several canine breeds was comparable to estimates
found in humans (24, 26, 27). Contrasting this to what was
discussed for the IMMC, these results may reflect temporary
entrapment of the SmartPillR within the human (25) and
canine (28) stomach after a solid meal. Since the SmartPillR is
in fact a capsule, the dimensions of this device may influence
estimates of gastric emptying time and small intestinal
residence time in humans (26) and dogs (27). Despite this
problem, these devices are routinely used for monitoring local
pH and formulation release mechanisms (26).

Small Intestinal Transit Time

Most studies indicate a faster and more variable small
intestinal transit time in dogs (1–2 h and not affected by the
food intake) versus humans (24, 29) (Fig. 1).

Gastric pH Under Fasted and Fed Conditions

Fasted State. Given the large variability that can occur
within the canine fasted stomach, the United States Pharma-
copoeia (USP) recommends that drug gastric solubility in the
dog be evaluated over a pH range of 1.2–6.5 (24, 29). In
contrast, a single pH value (1.6) is recommended for testing
in human fasted simulated gastric fluid (USP General
Chapter <1236>).

Fed State. The USP General Chapter <1236> includes a
description of gastric fluids for the fed state for humans but
describes only the fasted state for dogs. Under fed conditions,
humans tend to exhibit an initial rise in pH due to the
buffering effect of food, but pH slowly returns to pre-meal
conditions in a period of 60–90 min. In contrast, the dog does
not exhibit this initial rise due to the buffering effect, which
may be attributable to a higher basal acid secretion (29), the

Fig. 1. Mean, minimum, and maximum GI transit time measured via
a SmartPill swallowed in 19 fed humans and 6 fed Beagle dogs. Meals
were of comparable caloric value but differed in terms of consistency
(pureed for dogs but not for humans). Graph is based upon digitized
values (GetDataGraph Digitizer, version 2.6, Softnews Net SRL,
SOFTPEDIAR, Sectorul 3, Romania) derived from information
presented by Koziolek et al. (2015 and 2019) (24, 25). Key (based
on terms used in the referenced citation): GET = gastric emptying
time, SITT = small intestinal transit time, CTT = colon transit time,
WGTT = whole gut transit time. Patterned columns = dog; solid
columns = humans
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amount (grams) of food consumed (30), and to housing
conditions [using Bravo capsules, there tended to be a slightly
more acidic postprandial gastric pH when dogs were fed
under home cage versus study cage conditions (31)].

Intestinal Fluid Composition

Weak acids are typically more soluble in the canine vs
human fasted intestinal fluids. For neutral molecules and for
weak bases with a pKa of less than 3, the difference was
largely a function of the species-specific extent of bile
micellization. Above pH 4, the solubility differences for weak
acids were associated both with ionized and unionized drug
solubilization (32).

Although the USP Chapter <1236> describes human fed
and fasted intestinal and colonic fluids, only fasted small
intestinal fluids are described for dogs (33–35). Recom-
mended fasted state small intestinal pH is 6.5 and 7.5 for
humans and dogs, respectively (where the intestinal segment
is not identified for either species). These values are
consistent with reports for dogs (Heidelberg capsule), where
intestinal pH under fasted conditions ranged from around 6.0
immediately after gastric emptying and progressively in-
creased to pH 7.5 at 120 min after gastric emptying (29),
and for humans (IntelliCap® system) where the proximal
small intestinal pH was around 6 and increased to about 7–8
in the more distal regions (36). Additional information is
available in Supplemental Section 1, Table 1S.

Canine-Human Differences in Bile Composition

The impact of bile salts on drug absorption may be drug
and animal species specific (32, 37). The recommended
composition of canine fasted state simulated intestinal fluids
(FaSSIFc) includes 5 mM sodium taurocholate and sodium
taurodeoxycholate (34), while for humans, the recommenda-
tion is only 3 mM sodium taurocholate (38). The numerous
canine-human differences in primary and secondary bile
abundance and type (from fecal samples) (39, 40) are
provided in Fig. 2. While the ratio of human bile acid
conjugation to glycine (primary) versus taurine (glycine/
taurine) is 3, there is negligible conjugation to glycine in
dogs, with nearly all conjugation being to taurine.

The largest canine-human differences in pH and bile salt
content occur during the postprandial state. For example, in a
study comparing the bile salt and phospholipid content in the
mid-jejunum of four Labradors and in the duodenal segment
of healthy human adults following a 500-mL meal of Ensure
PlusR (41), the bile salt content was 18 mM and 11.8 mM in
dogs and humans, respectively, at 60 min following the meal.
The corresponding phospholipid content (mM) was 19.4 mM
and 4.31 mM in dogs and humans, respectively.

The bile salt composition in dogs varies as a function
of diet, a result believed to be linked to diet-induced
modification of the gut microflora (42, 43), and potentially
reflecting similar diet-associated variation in bile salt
composition in humans.

There also appears to be a difference in the canine vs
human bile associated ratios (μM/μM) of phospholipid

(cytoprotective) to bile acid (0.19 dog vs 0.3 humans) and of
cholesterol (prevents phospholipid cytoprotection) to phos-
pholipid (0.044 vs 0.2 for dog and humans, respectively) (44).
Thus, although the relative amount of phospholipid may be
lower in dogs as compared to humans, the markedly higher
content of cholesterol in humans relative to dogs may have
implications regarding differences in hepatotoxicity in the
presence of elevated bile acid concentrations (45).

Unstirred Boundary Layer (UBL)

The UBL (the complex colloidal system that coats the
intestinal mucosa) can create a barrier to the absorption of a
number of compounds (46), particularly those which have low
solubility and high permeability (47). Although its thickness
has been estimated to be about 40 μm in dogs and humans
(based upon intestinal perfusion studies involving glucose and
warfarin) (47), its composition and thickness is recognized to
vary as a function of intestinal segments (48). Unfortunately,
there is not sufficient information describing the differences in
the mucous layers in humans versus dogs or its relationship to
diet, genetics, or disease (49).

GUT MICROBIOME

The gut microbiota has been implicated as a potential
source of population variability in human drug PK (50–52)
and for drugs undergoing enterohepatic circulation in dogs
(52, 53). Alterations in gut microbiome have also been
implicated in a number of pathologies, including irritable
and IBD and psychiatric disorders in humans (54–56) and
dogs (57).

The dog gut anatomy, physiology, and diet have adapted
to that of humans during domestication (58, 59). Conse-
quently, a 60% taxonomic and functional overlap was
identified between the gut microbiota of dogs and humans,
in contrast to only 33% and 10–20% similarity observed
between humans versus pigs and mice, respectively [based
upon short sequencing reads from each host associated gut
microbiome (57)]. Furthermore, the gut microbial changes
observed in the presence of colorectal cancer (40), IBD (60,
61), and diabetes mellitus (62) are comparable between

Fig. 2. Relative fecal composition of bile salts in dogs (a) versus
humans (b). Note that the dog relative amounts are based upon
average of individual dog values estimated across all diets studied.
Values are based upon information provided by Bazzoli et al. (1982)
(39) and Herstad et al. (2018) (40). Key: CA = cholic acid, CDCA =
chenodeoxycholic acid, DCA = deoxycholic acid, LCA = lithocholic
acid, UDCA = ursodeoxycholic acid

The AAPS Journal (2021) 23: 59 Page 3 of 16 59



humans and dogs. This makes health and drug-specific PK
consequences that may accompany changes in the canine
microflora relevant not only from a veterinary perspective but
also in terms of its potential extrapolation to humans.

The predominant fecal bacteria both in humans and dogs
are Firmicutes, Bacteroidetes, and Clostridium but unlike
humans, Fusobacteria also appears to be abundant in dog
feces. However, the microbiome captured in the feces
(luminal microflora) may not fully correlate with the
microbiome adhering onto the gut wall (63–65).

COMPARISON OF DRUG PERMEABILITY AND
ABSORPTION

The interrelationship of factors influencing effective
permeability (Peff) is provided in Supplement Section 1.

Membrane Passive Intrinsic Transcellular Permeability
(Ptrans,0)

Although Ptrans,0 tends to be similar in humans and dogs,
the overall Peff needs to be considered from the perspective
of absorptive surface area. In terms of intestinal length,
unlike the human small intestine (cadaver) which is largely
comprised of the ileum (66), the predominant segment of the
canine cadaver GI tract is the jejunum (67). The shorter
canine small intestine segments and rapid intestinal transit
time can lead to challenges in optimizing drug product
dissolution and subsequent absorption (68). In contrast,
although the canine small intestinal length is about half that
of humans, the long and slender villi of the canine small
intestine enhances absorptive surface area, providing at least
partial compensation for the shorter intestinal length (69, 70).
However, the surface area in humans is further increased by
the presence of the plicae circularis, which is not present in
the dog (71). This additional component needs to be factored
into the differences in absorptive surface area between the
two species.

Paracellular Absorption

Based upon an in vitro permeability study using Caco-2
cells (which are reflective of immature small intestinal
enterocytes), human intestinal pore diameter was estimated
to include a restriction component of 4.3–4.5 Angstroms, Å
(71). As indicated by bioavailability studies of both drugs and
polyethylene glycol oligomers of varying molecular mass
(Daltons, Da), the intestinal pore diameter and abundance
in dogs exceeds that of humans (72, 73), leading to a tendency
for greater canine paracel lular drug absorption
(Supplemental Section 1, Table 2S). Generating a semi-log
plot of these values, we estimated that 50% polyethylene
glycol bioavailability via the paracellular pathway occurs at a
pore radius of 6 Å in humans (R2 for regression = 0.97;
~PEG350) and 7.14 Å in dogs (R2 for regression = 0.88;
~PEG700).

This difference in pore radius may also affect the
magnitude of bioavailability enhancement associated with
absorption-modifying excipients (74, 75).

Active Transport (See Intestinal Transporter Section Below)

Lymphatic Absorption

Data pertaining to lymphatic uptake in humans are not
available because such investigations necessitate invasive and
non-reversible surgery of the intestinal and/or thoracic
lymphatic duct. (76, 77). Nevertheless, such data are available
in lymph-cannulated dogs, showing that food increases the
cumulative amount of triglycerides in lymph from 0.3 to 18.4 g
during the first 4 h and cumulative lymph flow (g) from 174
(fasted) to 483 (fed). The impact of prandial state is even
greater 8–12 h after meal (78).

While qualitatively similar effects of food on the
absorption and metabolism of drugs such as halofantrine
(Hf) have been reported in humans and dogs (79, 80), when
administered as an amorphous solid dispersion, the fed state
increased canine Hf lymphatic transport from 1.3% in the
fasted state to 54% in the fed state (79). Postprandial
administration increased Hf oral bioavailability by 3-fold in
humans and 12-fold in Beagles and reduced the hepatic Hf
metabolism by 2.4-fold in humans and by 6.8-fold in dogs
(79). Similar findings of meal-enhanced lymphatic absorption
and oral bioavailability were observed when the antiparasitic
agent, moxidectin, was administered via intragastric lavage to
lymph-cannulated dogs (81).

The canine-human comparison of lymphatic uptake and
its relationship to drug physicochemical characteristics re-
mains a topic for additional investigation.

EXTRAPOLATING DRUG CLASSIFICATION
BETWEEN DOGS AND HUMANS

To better understand the impact of the differences
described above, the appropriateness of extrapolating drug
classifications developed for humans to dogs was explored
using either the Biopharmaceutics Classification System
(BCS), the Biopharmaceutics Drug Disposition Classification
System (BDDS), or the Extended Clearance Classification
System (ECCS) (82–84). While none of these systems could
reliably predict human vs dog differences in drug oral
bioavailability, the ECCS suggested greater canine-human
correlations for weak acids, zwitterions, and compounds not
undergoing pre-systemic metabolism (82).

DRUG DISTRIBUTION

Interspecies Differences in Organ-Specific Distribution of
Cardiac Output (CO)

The CO (in L/h/kg body weight) is much higher in the
Beagle dog as compared to that of the human [e.g., one
estimate is 12.3 and 4.54 for the dog and human, respectively
(Supplemental Tables 3S and 4S)]. The dog CO values exceed
that predicted on the basis of allometric scaling (see
Supplemental material for further discussion). The brain
receives about 15–20% of the CO in young adult humans
but this decreases with age (cerebral blood flow/CO ratio
decreased by 1.3% per decade due to changes in cerebral
blood flow) (85). In contrast, canine cerebral blood flow
comprises only about 2–3% of the CO (86). Other than the
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brain (and possibly muscle), the Beagle-human CO distribu-
tion to all other organ systems is similar (85 and
Supplemental Section 2, Table 3S).

Interspecies Differences in Steady State Volume of
Distribution (Vdss)

Using data published on 152 marketed compounds
covering a range of physicochemical characteristics, only
57% of the Vdss values (L/kg body weight) measured in dogs
were within 2-fold that of humans (87). Plasma protein
binding could not explain this disparity (88). It was concluded
that species variation in Vdss reflected the tissue composition
(protein vs lipid) and pH (for ionizable compounds).

Alternatively, differences in resting potential (mV)
across the tissue membranes could be an indicator of possible
canine-human differences influencing the diffusion of ionized
drug molecules across cell membranes which, in turn, could
contribute to differences in the Vdss for certain drugs.
However, reported canine-human tissue-specific resting mem-
brane potentials tended to be similar [e.g., red blood cells (−
9, − 11), muscle (− 90, − 80), and gut tissue (− 58, − 44) for
dog and humans, respectively] (89–93). With regard to pH
differences, an attempt to compare the intracellular pH of
canine versus human healthy tissues revealed the sparseness
of data contained within the published literature. Available
data (brain, lung, muscle, red blood cells, plasma) indicate
similar intracellular pH values (i.e., within a range of 7.0–7.4).
Assessments of small differences in tissue intracellular pH
and its impact on drug Vdss would need to consider the drug
pKa, Log P, blood-plasma ratio, plasma protein binding,
intracellular tissue binding, and finally the relative proportion
of that particular tissue within the given species.

Given the likelihood that pH differences have negligible
influence on the Vdss of most drugs, the primary cause of
observed species inconsistencies appears to be differences in
species tissue composition. To that end, additional insights
into factors influencing canine versus human drug Vdss values
were obtained from the work of Ruark et al. (94). These
investigators conducted a meta-analysis of tissue composition
and organ characteristics. Using a bottom-up approach, they
evaluated the passive tissue/plasma water partition coefficient
(Kpassive

t:p ) as a function of compound characteristic and

species. The predicted Kpassive
t:p for neutral substances with

low Log PO:W was greater in dogs than humans, similar at
Log PO:W ~ 2, but much greater in humans than dogs for Log
PO:W > 3. As compound lipophilicity increased, the Kpassive

t:p of
all organs examined tended to be substantially higher in
humans than dogs. These differences are consistent with that
reported by others (87, 95). Nevertheless, similar canine-
human binding to brain tissue homogenates is observed,
which has been attributed to the markedly higher lipid vs.
protein content of the brain and therefore higher non-specific
binding to the lipid in the dog brain versus the potential for
specific binding to proteins (96).

Interspecies Differences in Free Drug Concentrations

In humans, albumin comprises 50–60% of blood plasma
proteins, translating to about 3.5–5.5 g/dL (https://

emedicine.medscape.com/article/2054430-overview). Normal
amounts of albumin in dogs range from 2.5 to 4.3 g/dL
(http://webcanine.com/category/health/lab-normal-values/).
The alpha1-acid glycoprotein (AAG) in healthy humans and
Beagle dogs range from 0.45–1.12 mg/mL and 0.25 to 0.5 mg/
mL, respectively (97). While human AAG has a wide drug
binding region for basic, acidic, and neutral compounds, dogs
have basic and steroid binding sites that overlap and affect
each other. The dog does not appear to contain an acidic
ligand binding region (98).

Colclough et al. (2014) evaluated the plasma protein
binding of 574 compounds (acids, bases, neutral compounds,
and zwitterions) (99). The ratio of % drug unbound in dog to
human ranged from 0.065 to 122, with the majority of ratios
between 0.5 and 5 (Fig. 3a, b).

The authors concluded that for the given dataset,
although on average, plasma protein binding in dogs was 1.5
times lower than to that of humans, there were also some
drugs where the binding in dogs exceeded human plasma
protein binding. The authors acknowledged that they did not
distinguish between the different plasma proteins and as-
sumed serum albumin to be the major binding protein.

With regard to binding to serum albumin, acidic drugs
exhibit the largest differences in dog versus human protein
binding while that of bases and possibly zwitterions are the
most consistent. Potential reasons for this observation include
interspecies differences in the amino acid composition of
serum albumin and drug binding sites. For example, despite
high levels of binding to human Sudlow site I (by hydropho-
bic or by static interactions) for warfarin and phenylbutazone,
similar Sudlow site I binding for both compounds appeared to
be absent in dogs. This was attributed to canine-human
difference in the microenvironment of the binding site and its
effects on the size and/or hydrophobicity of the binding
pocket (100). In contrast, for drugs like diazepam and
ibuprofen, Sudlow site II binding kinetics, appeared to be
similar in dogs and humans (100, 101).

Drug binding sites (Sudlow sites I and II) are located
within subdomains IIA and IIIA (102). Although human and
canine albumin share 79.8% amino acid sequence homology,
there are critical differences in the helical domains (102). As
compared to human albumin, canine serum albumin exhibits
an expansion of Sudlow site I, leading to both greater space
and water accessibility within that binding site, thereby
interfering with albumin binding to warfarin and phenylbuta-
zone (102). It is the Sudlow site I that appears to exhibit the
greatest magnitude of dissimilarity in drug binding in dogs as
compared to that seen in humans.

Species differences in globulins, free fatty acids, bilirubin, or
metabolites can either competitively displace drugs from albumin
binding sites and/or induce conformational changes (98). More-
over, albumin can also undergo posttranslational modifications
affecting its ability to interact with some drugs (103).

Species differences in drug distribution can occur due to
differences in plasma constituent fractions, such as proportion of
plasma lipoprotein, cholesterol, triglycerides, and apolar lipids
(104). This can influence drug distribution characteristics within the
blood. For example, as compared to humans, dogs have a
significantly higher proportion of intravenously administered free
and liposomal nystatin carried within the high-density lipoproteins,
potentially influencing drug PK, toxicity, and activity (104).
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METABOLISM

Humans possess N-acetyltransferase 1 (NAT1) in all tissues,
and N-acetyltransferase 2 (NAT2) in the liver and intestine. In
contrast, dogs do not express the NAT enzymes, thereby affecting
their ability to activate or deactivate carcinogenicmetabolites via this
pathway (105, 106). Similarly, while humans are capable of
synthesizing a single functional aldehyde oxidase (AOX1), the dog
does not produce hepatic aldehyde oxidase (107).

Dog liver microsomes are about 55-fold more efficient
than human in the conversion of cyclophosphamide (CP, a
prodrug) to 4OHCP, the cytotoxic metabolite (108). In
humans, this conversion is primarily a function of CYP2B6,
with a far smaller involvement by the CYP2C subfamily
(where the role of CYP2C19 exceeds that of CYP2C9) (109,
110). In dogs, Cyp2c21 and Cyp2c41 are the isoforms
primarily responsible for this enzymatic conversion (108).

Rifampin is a strong inducer of CYP3A4 in humans. While
induction of canine Cyp3a12 does occur (111), it is far less potent
than in humans (based upon changes in mRNA levels observed in
humanhepatocytes versus canine liver slices) (112). Furthermore, for
22 xenobiotics (including nicardipine, rifampin, clotrimazole, and
nifedipine), therewas a lack of correlation between the resulting fold
change in mRNA expression levels in the human (> 30-fold
induction) versus canine (approximately 8-fold induction) gene. To
understand the reason for this difference, the amino acid sequence of
the dog and human pregnane X receptor (PXR), the predominant
nuclear receptor responsible for CYP3A expression, was compared.
Despite 86%homology, existing amino acid differences may cause a
slight reduction in the hydrophobic region of PXR, which in turn,
may impact its interaction with an inducer (112).

Metabolism Enzyme Abundance

A comparison of the fractional total composition of the
various CYPs in dog versus human liver (113, 114) and intestine
(113, 115) is shown in Fig. 4a and b, respectively. Human liver and
intestinal cytochrome P450 distributions are provided by Paine
et al. (2006) (113) and Ho et al. (2017) (117).

Liver Enzymes

Human. The percent contribution, based on total
immunoquantified P450 content, is 40% CYP3A, 25%
CYP2C, 18% CYP1A2, 9% CYP2E1, 6% CYP2A6, 2%
CYP2D6, and < 1% CYP2B6 (114). Similar values were
reported by Achour et al. (2014) (118), who examined the
pmol CYP enzymes/mg hepatic microsomal protein.

Dog. Considering the average protein abundance of 11
cytochrome P-450 isoforms and 2 accessory proteins across 59
dogs of varied breeds (14, 119):

a) the most highly expressed enzymes (> 120 pmol/mg
microsomal protein) are Cyb5a > Cyp2d15 >
Cyp3a12.

b) intermediately expressed (40–89 pmol/mg microsomal
protein) are Cyp1a2 = Cyp2b11 = Cyp2e1 > Cyp2c21
> P450 oxidoreductase (POR)

c) poorly expressed (< 12 pmol/mg microsomal protein):
Cyp2a13 = Cyp2a25 = Cyp2c41 (the latter absent in
the livers of many dogs) > Cyp3a26 = Cyp1a1.

In terms of interindividual variability in protein
abundance:

a) high = Cyp1a1 > Cyp1a2 (%CV = 105–276%).
b) intermediate = Cyp2c41 = Cyp2a13 > Cyp2b11 =

Cyp3a26 = Cyp2a25 > Cyp3a212 = Cyp2c21; (%CV =
36 to 67%)

c) low = POR = Cyp2e1 = Cyp2d15 > Cyb5a (%CV =
16–28%).

Intestinal Enzymes

The abundance and diversity of the cytochrome P450’s is
far greater in the liver than in the intestine of dogs and
humans (Fig. 4a, b).

While Cyp3a and 2b11 provide the largest contribution
in dogs, in humans, CYP2C9, 2C19, 2D6 (detected in most

Fig. 3. Boxplot of ratio of % unbound drug in dogs versus humans as a function of drug acid/base
properties. a Full range of values. b Y-axis truncated to define mean, median, and quartiles. Where X =
mean, upper and lower limits of box are the 25 and 75 percentiles of values. Line in the middle = median.
Whiskers are Q1 + 1.5 interquartile range, and points = outliers. Based upon data by Colclough et al.
(2014) (99)
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but not all individuals), and 2J2 have also been identified
(113). The canine equivalent of CYP2J2 has not as yet been
identified, although we have reason to believe that low levels
may also be present in the canine upper small intestine (120).

The most abundant canine (Beagle) intestinal enzymes
are Cyp3a12 (primary) and Cyp2b11 (secondary), with
abundance and activity declining from small intestine to
colon (based on enterocytes lining the intestinal villi) (121).
Cyp3a12 and Cyp2b11 represent 90 and 10%, respectively, of
the intestinal cytochrome P450’s in the upper small intestine
(duodenum and upper jejunum), changing to 70 vs 30%,
respectively, in the lower portions of the jejunum and below
(116, 122). Despite the importance of intestinal drug metab-
olism on limiting the fraction of drug making it through the
gut into the portal circulation, the same enzymes represent
only a fraction of the pmol amount of expressed enzyme in
the liver (116). For example, assuming 0.88 μmol and
1.45 μmol for Cyp2b11 and Cyp3a12, respectively, in Beagle
whole liver, the relative expression levels across the small
intestinal segments ranged from 1.59 × 10−4 (ileum) to 5.76 ×
10−3 (duodenum/upper jejunum) for Cyp2b11 and from 2.92 ×
10−4 (ileum) to 6.59 × 10−3 (duodenum/upper jejunum) for

Cyp3a12. Similarly, activities of testosterone 6β- and 16α-
hydroxylation (6β- and 16α-OHT), a marker of Cyp3a12
activity was markedly higher in the liver as compared to the
small intestine, and this activity decreased along the length of
the small intestine (123).

In contrast to the availability of human abundances and
activities of uridine 5′-diphospho-glucuronosyltransferases
(UGTs) in the literature, these data are sparse in dogs. In
humans, the most abundant intestinal UGT is UGT2B17,
followed by UGT1A1 and UGT1A7. In terms of canine Ugts,
Ugt1a11 is the most abundant in the intestine, but also
present is 1a1, 1a2, 1a3, 1a4, and 1a9 (115, 124). We are not
aware of a human orthologue of Ugt1a11.

TRANSPORTERS

A summary of the assorted influx and efflux transporters
found throughout the human body has been published in the
2019 international transporter consortium report (125). A
synopsis of the various human and canine transporters
involved in intestinal absorption (126–128), hepatic

Fig. 4. Comparison of cytochrome P450 composition (expressed as fraction of total CYPs)
in the liver and intestine of dogs and humans. a Comparison in canine (116) versus human
liver (Paine et al. (2006) (113); Shimada et al. (1994) (114). b Comparison of dog (digitized
values estimated from Heikkinen et al. (2015) (115) versus those of humans (113) as a
function of intestinal segment and cytochrome P450
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metabolism (10, 129), biliary secretion (130), renal elimina-
tion (131), and the blood-brain barrier (132–137) is provided
in Fig. 5.

For the sake of brevity, our discussion will focus
primarily on transporters of the liver and kidney. Data on
the brain can be found in the Supplement Section 6.

Liver

Published reports need to be interpreted with caution,
because the interspecies comparisons are frequently based
upon levels of mRNA, even though mRNA levels are often
poorly correlated with the abundance of expressed protein or
of transporter activity (121, 138).

In contrast to the human liver, where Solute Carrier
Organic Anion Transporter Polypeptide (OATP) OATP1B1
and OATP1B3 are the most abundant transporters (about
29% of the hepatobiliary transporters), the most abundant
canine transporter is Oatp1b4 (about 50% of the canine
hepatobiliary transporters) (138). Using plated hepatocytes,
Matsunaga et al. (139) observed that while the intracellular
protein binding in humans and dogs was similar, transporter
activity was not. Estimates of cell to medium concentration
ratio for unbound drug (Kpuu), which reflects the interplay of
active uptake, passive diffusion, and metabolism/biliary
secretion, were markedly different in dogs and humans
(corrected for species hepatocellularity, refer to Table 10S).
Moreover, the relationship between human vs. canine uptake
efficiency was compound specific. Although Wilby et al.
(2011) observed somewhat greater similarity in the activity
of Oatp1b4 and OATP1B3, they too found this to be
substrate specific (140).

Interference in bile salt transport can result in drug-
induced liver injury (DILI). Inhibition of bile salt export
protein (BSEP) activity (in vitro hepatocyte assay of 24
compounds) also showed species differences, with 7 com-
pounds having much lower IC50 values in dogs than humans,
10 of similar sensitivity (dog/human IC50 ratios ranging
between 0.60 and 4.4), 3 being somewhat less sensitive in
dogs (IC50 dog/human ratios of 7.39–24), and 3 compounds
for which the dog failed to reflect compound’s ability to
inhibit human BSEP (141).

In order of abundance, after the OATPs, the next most
abundant family of transporters in the human liver are the
organic cation transporters (specifically hepatic OCT1) and
the multidrug resistance protein 2 (Mrp2) in dogs. In terms of
the sinusoidal efflux transporters, the MRP/Mrp 3-6 were
typically present in relatively small amounts in the healthy
liver both of dogs and humans (138). Although this cited
study did not account for transporter losses due to tissue
digestion and membrane extraction [e.g., see (142)], it did
provide one of the few reports containing a within-study
canine-human transporter comparison.

The relative expression estimated between species pro-
vides the basis of comparisons of human versus dog as shown
in Fig. 6b. Although the dog data were obtained from Wang
et al. (2015) (138), the human data were taken from the meta-
analysis results included in the Simcyp Simulator, Version 19.
The human data provided in Fig. 6 represents data for
healthy humans (adult, 20–50 years, Caucasian).

Further discussions of the relative abundance of the
hepatic transporters in dogs and humans are provided in
Supplemental Section 3, Table 5S. In addition, Supplemental
Section 4 describes how two hepatic transporters (BSEP/Bsep
and MDR3/Mdr3) can interact in the formation of bile
micelles.

Kidney

The toxicity for certain renally eliminated compounds
in dogs, such as the phenoxyacetic acids and related
organic acids (143), has been linked with the lower
capacity of dogs to secrete organic acids from the kidney.
Conversely, for the acyclic nucleoside phosphonates, lower
OAT-associated accumulation of these compounds in the
kidney of dogs versus humans has been implicated in the
corresponding lower renal toxicity of these compounds in
dogs (144). This dissimilarity likely reflects the deficiency
of transporters in the SLC22 family in dogs [e.g., including
Oat 2, 3, 4, Oct1 (present, but at very low quantities),
Oct2, Oct3, and Octn1]. Also absent in the dog is Oatp4c1
(145). Conversely, the higher affinity (lower Km value) of
human vs canine OAT1 for acyclic nucleoside phosphates
was responsible for renal accumulation and nephrotoxicity
of many antiviral compounds in humans but not in dogs
(144).

In terms of the ABC transporters, although Basit et al.
(2019) concluded that breast cancer resistance protein (Bcrp)
is not conserved in the canine proximal tubule (131),
Wittenburg et al. (2019) were able to quantify this transporter
using LC/MS/MS in the canine renal cortex (137).

A comparison of the human and canine renal transporter
abundance data based upon the findings of Basit et al. (2019)
is provided in Table I (131).

Scaling of the renal transporter abundance to amount
per gram of dog or human kidney is provided in Supplemen-
tal Section 5 and Tables 6S and 7S.

Fig. 5a Influx and efflux transporters in the human and canine liver, kidney,
and intestine (based upon figures provided by Lai 2009 (130), Pan 2019
(10), Basit et al. (2019) (131), Estuadante et al. (2013) (126), the US FDA/
University of Southern California collaborative transporter portal http://
transportal.compbio.ucsf.edu/organs/small-intestine/, Burt et al. (2016)
(129), Harwood et al. (2019) (128), Giacomini et al. (2010) (127), and
Morris et al. (2017) (134). b Influx and efflux transporters in the humans
and dogs at the blood-brain barrier (135–140). The authors also wish to
express our appreciation to Dr. Matthew Harwood for conducting the meta-
analysis of dog brain transporters (see Supplemental Section 6, Table 7S).
Abbreviations: apical sodium-dependent bile acid transporter (ABST),
breast cancer resistance protein (BCRP), bile salt efflux transporter (BSEP),
equilibrative nucleoside transporter (ENT), L-amino acid transporters
(LAT), multi-antimicrobial extrusion protein (MATE), monocarboxylate
transporter (MCT), multidrug resistance proteins (MRP), organic anion
transporter (OAT), solute carrier organic anion transporter protein (OATP),
organic cationic transporter (OCT), sodium/bile acid cotransporter (NCTP),
organic solute transporter (OST), peptide transporter (PEPT), P-glycopro-
tein (P-gp, also known as multidrug resistance protein 1, MDR1), plasma
membrane monoamine transporter (PMAT). Greyed out canine transporters
have not been investigated to date. # not detected * <LLOQ (below the
lower limit of quantification of the analytical method)

b
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Other Tissues

Dog. Tissues from healthy dogs were obtained during
necropsies conducted at Colorado State University (breed
not indicated) (145). In the canine brain (Supplemental
Table 8S), the most abundant cortical ABC transporter is
Bcrp, followed by P-gp. Bcrp was present in the liver,
renal cortex, duodenum, and jejunum (none in the ileum).
Mdr2 was found in low amounts in dog brain and liver.
Mrp 6 and 7 were seen only in the liver and duodenal
samples, respectively. P-gp was in the brain, liver, renal
cortex, duodenum, and jejunum (duodenum higher than
jejunum) and Mrp2 was only found in the renal cortex.
Among the ATP-binding cassette transporters evaluated in
canine tissues, the MRP family had the lowest expression

in most dogs, being either present or not identified in
some animals. However, tissue transporter content was
based on an assumption of a linear relationship between
the amount of signature peptide whose reference sequence
was derived from a single boxer dog, leading to potential
bias if signature peptide sequences contain variants from
that of the boxer.

Human. The relevance of tissue transporter function
was underscored by statin movement into cultured human
skeletal muscle fibers transfected with adenovirus to over-
express several transporters (146). Incubation of these
in vitro muscle fibers in statin-containing media led to an
association between OATP2B1 expression and muscle
toxici ty whi le MRP1 express ion tended to be

Fig. 6. Relative contribution of hepatic transporter in the dog (a) and humans (b). The data for dogs are
from Wang et al. (2015) (138). The data for humans were extracted from the figure captions

Table I. Comparison of Proximal Tubule Protein Abundance in Dog Versus Humans for Those Transporters Expressed in the Dog Kidney
(Based upon Information in Basit et al. (2019) (131)). Values Were Based on pmol/gm Kidney Using LC/MS/MS Methodology

Human
[pmol/g kidney]

Dog
[pmol/g kidney]

Dog/human

SLC22A6/OAT1 107.7 ± 56.83 75.4 ± 43.07 0.70 (blood to tubule)
1.1. SLC22A7/OAT2 19.8 ± 8.36 NC
1.2. SLC22A8/OAT3 78.5 ± 37.38 NC
1.3. SLC22A11/OAT4 10.6 ± 5.64 NC
1.4. SLCO4C1/OATP4C1 0.3 ± 0.03 NC
1.5. SLC22A1/OCT1 BLQ NC
1.6. SLC22A2/OCT2 164.2 ± 53.27 NC
1.7. SLC22A3/OCT3 0.03 ± 0.01 BLQ
1.8. SLC22A4/OCTN1 27.2 ± 13.44 NC
1.9. SLC22A5/OCTN2 13.1 ± 5.8 16 ± 5.84 1.22 (bidirectional tubule cell and urine)
1.10. ABCB1/MDR1 42.3 ± 16.16 32.1 ± 9.34 (32.6 ± 8.06) 0.76 (tubule cell to urine)
1.11. SLC47A1/MATE1 105.6 ± 47.52 NC
1.12. ABCG2/BCRP NC NC (16.13 ± 11.01)
1.13. ABCC1/MRP1 20.1 ± 4.54 42.2 ± 10.95 2.10 (tubule cell to urine)
1.14. ABCC2/MRP2 30.1 ± 16.52 NC (5.632 ± 1.408)
1.15. ABCC3/MRP3 20.1 ± 1.78 NC (4.096 ± 1.536)
1.16. ABCC4/MRP4 19.5 ± 20.58 NC (9.47 ± 7.68)
1.17. SLC5A2/SGLT2/ 76.4 ± 41.25 356.7 ± 84.85 4.67 (urine to tubule cell)
1.18. ATP1A1/Na+K+ATPase 20.1 ± 1.17 70.7 ± 15.19 3.52 (tubule cell to blood)

Numbers in brackets are estimates from Wittenburg et al. (2019), who expressed data as pmol/gram membrane protein using an LC/MS/MS
quantification procedure (137). For unit conversion, see Supplemental Section 5, Table 5S
NC, not conserved peptide; BLQ, below the limit of quantification
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cytoprotective. Benet et al. (2019) further expand upon
the importance of understanding transporter function in
interpreting potential population variability both in terms
of clearance and Vdss (147).

Using data generated on the basis of either protein or
mRNA expression, a wide array of transporters were
identified on the blood-brain barrier (BBB) and in the blood
cerebrospinal fluid barrier (BCSFB) (134). The suggested
arrangement in the human brain is included in Fig. 5b and
Supplement Section 6, Table 8S.

USE OF IN SILICO PHYSIOLOGICALLY BASED PK
MODELS TO SUPPORT INTERSPECIES
EXTRAPOLATION

The interspecies PK extrapolation from preclinical
species to humans using physiologically based pharmacoki-
netic (PBPK) models has gained much traction in recent
years. Despite successes, as shown in Supplemental Section 7,
Table S9, challenges remain regarding the extrapolation of
drug metabolism or transport between the dog. A compar-
ison of hepatic and intestinal scaling factors of dogs versus
humans is provided in Supplemental Section 7,
Table S10 (120, 148–152).

FUTURE TECHNOLOGIES TO SUPPORT
INTERSPECIES EXTRAPOLATIONS

Consistent with efforts to streamline methods for
characterizing candidate drugs, there is increasing interest
in the development and use of miniature organs (so-called
3D organoids) derived from stem cells collected in animal
or human patients (153). The goal is that through the use
of these in vitro systems, it may be possible to increase
our understanding of the species-specific differences in
drug transport and metabolism that can influence systemic
and local exposure to both parent drug and its metabo-
lites. This information, when used to inform our PBPK
models, could greatly improve our interspecies predictions.

Recent research has demonstrated that 3D intestinal
organoids can be successfully maintained from healthy dogs
and from dogs with naturally occurring IBD (154–157).
Organoids have also been developed from dogs with
urothelial carcinoma (158). These 3D systems have the
potential to positively impact healthcare (e.g., in patients
with bladder cancer) and streamline the development of new
therapeutic strategies in humans and dogs.

CONCLUDING COMMENTS

This review reflects an effort to provide a broad
overview of the factors that can lead to differences in the
drug PK characteristics in dogs and humans. Despite recog-
nized population variability that can occur in both species, an
appreciation of where the greatest degree of similarities exist
can support a determination of when dog-human interspecies
extrapolations may be most appropriate.

One of the challenges is the proportionally small
amount of information on canine enzymes and

transporters as compared to that in humans. Furthermore,
a major drawback is the frequent reliance on mRNA for
identification of location and changes in transporters and
drug-metabolizing enzymes (159). It is difficult to compare
human and canine enzyme and transporter activity on the
basis of anything other than expressed activities.

Given the utility of parallel drug product development,
particularly as it comes to shared diseases, our goal is to
encourage research efforts that fill remaining data gaps using
technologies such as (but not limited to) human or canine
organoids that can support use of PBPK models to accelerate
veterinary and human drug development. With increased
harmonization between human and animal drug develop-
ment, there will be expanded opportunities to address the
therapeutic needs both of humans and dogs.

GAP ANALYSIS—QUESTIONS FOR FUTURE
RESEARCH

Based upon our analysis, these are the current gaps
where additional research is needed:

& Bile salts in dog intestinal fluids under fed and
fasted conditions.

& Factors that can affect canine GI fluid volumes and
composition under fasted and fed conditions and how
these fluids may be altered by experimental conditions.

& Mucous layer thickness and composition in dog
and humans.

& Speciation of canine regional gut microflora, the
impact of diet on gut microflora, and how changes in
this microbial population can influence drug PK and
health.

& UGT expression and activity in dogs.
& Species differences in drug-associated nuclear
receptor (e.g., PXR) activation.

& Information on canine transporter across the
various tissues and their abundance and activity
relative to that in humans.

& Canine-specific organ scalars (e.g., MPPGL,
HPGL, PTCPGK)

& Quantitative information on the lymphatic path-
way in humans and dogs.

Lastly, there is the need to develop reproducible and
easy to use organoid assays that are linked via in vivo-in vitro
extrapolation to PBPK models. If we can address these gaps,
then organoids and PBPK modeling will be better suited to
address the 3R’s and will indeed reduce, refine, and replace
studies in animal and humans equally.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material
available at https://doi.org/10.1208/s12248-021-00590-0.
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