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Abstract. Disease status is often measured with bounded outcome scores (BOS) which
report a discrete set of values on a finite range. The distribution of such data is often non-
standard, such as J- or U-shaped, for which standard analysis methods assuming normal
distribution become inappropriate. Most BOS analysis methods aim to either predict the data
within its natural range or accommodate data skewness, but not both. In addition, a frequent
modeling objective is to predict clinical response of treatment using derived disease
endpoints, defined as meeting certain criteria of improvement from baseline in disease
status. This objective has not yet been addressed in existing BOS data analyses. This
manuscript compares a recently proposed beta distribution–based approach with the
standard continuous analysis approach, using an established mechanism-based longitudinal
exposure-response model to analyze data from two phase 3 clinical studies in psoriatic
patients. The beta distribution–based approach is shown to be superior in describing the BOS
data and in predicting the derived endpoints, along with predicting the response time course
of a highly sensitive subpopulation.

KEY WORDS: change from baseline; discrete data; latent variable; NONMEM; population
pharmacokinetic/pharmacodynamic modeling.

INTRODUCTION

Exposure-response analysis is important in drug devel-
opment to optimize clinical dose and dosing regimens (1).
Disease status measures in clinical studies are often bounded
outcome scores (BOS) which take restricted values on finite
intervals and achieve boundary value (2). An example of
BOS is the Psoriasis Area and Severity Index (PASI), ranged
0–72 with 0.1 increments (3). Such endpoints are ordered
categorical in nature, but due to the typically large (> 10)
number of possible values, they are often analyzed as
continuous data. The standard continuous data analysis
approach, assuming normally distributed errors, may not
handle skewed data well and may predict the data outside
of its natural range. Several approaches have been proposed
to describe BOS data distributions (2,4,5). The coarsened grid
approach (2), assuming an underlying normal latent variable,
predicts the data within its natural range but is still limited in
its ability to handle skewed data. The censoring approach
treats the boundary data as censored and applies a

transformation to handle skewness (4), but treats data inside
the boundary as continuous and thus violates the natural
range of the data. The beta regression approach, perhaps the
earliest and most often used in pharmacometrics, has its
origin from psychology data analysis (5). An additional linear
transformation Y* =Y(1 − δ) + δ/2 with a small correction
factor δ, e.g., 0.01, is used to map the original BOS data Y
inside the interval (0,1). Y* is then modeled with a beta
distribution with density

f xð Þ ¼ Γ αþ βð Þ= Γ αð ÞΓ βð Þ½ � yα−1 1−yð Þβ−1 ð1Þ

where α > 0, β > 0, and Γ denotes the gamma function. It has
recently been pointed out that the approach is ill-behaved at
the boundary and lacks statistical rigor (6).

Clinical study endpoints may be either the direct
disease status measure or derived metrics based on varying
degrees of improvement from baseline, such as PASI 75,
PASI 90, and PASI 100, defined as 75, 90, or 100%
improvement from baseline in PASI, respectively (7). All
of the existing BOS approaches, while having varied
degrees of success in describing the original data, have not
been shown to predict derived endpoints well, especially for
PASI 75, PASI 90, and PASI 100 (7). For the PASI scores,
while exposure-response (E-R) models have been devel-
oped (3,8–10), no published models has yet shown their
ability to fully characterize the entire observed distributions
(7). Because of this difficulty, PASI 75, PASI 90, and PASI

Electronic supplementary material The online version of this article
(https://doi.org/10.1208/s12248-020-00441-4) contains supplementary
material, which is available to authorized users.
1 Clinical Pharmacology and Pharmacometrics, Janssen Research &
Development, LLC, 1400 McKean Road, PO Box 776, Spring
House, Pennsylvania 19477, USA.

2 To whom correspondence should be addressed. (e–mail:
CHu25@its.jnj.com)

The AAPS Journal (2020) 22:
DOI: 10.1208/s12248-020-00441-4

1550-7416/20/0300-0001/0 # 2020 American Association of Pharmaceutical Scientists

61

http://dx.doi.org/10.1208/s12248-020-00441-4
http://crossmark.crossref.org/dialog/?doi=10.1208/s12248-020-00441-4&domain=pdf


100 have been modeled directly as ordered categorical
variables (7,11). However, these derived categorical end-
points reduce the granularity from the original PASI scores,
as evidenced by the fact that the between-subject variability
(BSV) could be modeled only at the average level (12). This
inability in distinguishing between BSVs from different
sources, e.g., potency, rate of onset, results in the limited
ability of predicting subpopulations of different patient
sensitivity, which is important in the analysis and design of
response-adaptive clinical studies (13). The need of BOS
analysis methodology development has recently been em-
phasized (14).

Recently, a new latent variable approach of using the
beta distribution has been proposed in the statistical literature
without a need for the problematic linear transformation (15).
In the current manuscript, we applied this approach to the
longitudinal E-R modeling of PASI scores, using data from
two phase 3 clinical studies in patients with psoriasis (11). A
previously established type I indirect response (IDR) model
was used in the current modeling analysis (6,7,11–13,16,17).
The results from this approach were compared with those
from the standard continuous analysis approach, both for
PASI scores and for the derived endpoints PASI 75, PASI 90,
and PASI 100.

METHODS

Study Designs

Model development and evaluation were performed
using data from two pivotal phase 3 clinical studies of
guselkumab (11). Briefly, these were randomized, double-
blind, placebo-controlled, parallel, multicenter studies in
patients who have moderate to severe plaque psoriasis. In
study 1, approximately 450 patients, in a 2:1 ratio, were
treated with guselkumab SC 100 mg at weeks 0, 4, 12, and
every 8 weeks (q8w) through week 44; or placebo at weeks
0, 4, and 12 followed by guselkumab 100 mg at weeks 16
and 20, and q8w through week 44. Study 2 was similarly
designed, enrolled approximately 750 patients to receive
guselkumab or placebo (2:1 randomization), and included a
randomized withdrawal portion beginning at week 28. In
both phase 3 studies, guselkumab concentration and clinical
efficacy were evaluated through week 48. More details of
the study design have been reported in a previous analysis
on PASI 75, PASI 90, and PASI 100 (11).

PK and PASI Assessments

In both studies, pre-dose PK samples were collected
from each patient at weeks 0, 4, 8, 12, 16, 20, 24, 28, 36, and
44. Additionally, in study 1, a random PK sample was
collected in actively treated patients between weeks 16 and
24; in study 2, PK samples were collected also at weeks 40 and
48. The PASI scores were collected at week 2, 4, and every
4 weeks (q4w) thereafter until week 40 (18,19). The final
dataset contained 1218 patients with 16,531 PASI
observations.

The “Sustained-Responder” Population

In the randomized withdrawal portion beginning at week
28 of study 2, it is of interest to understand the proportion of
subjects maintaining PASI 100 over time without receiving
additional active treatment. The ability to predict this
“sustained-responder” population, who maintained clear skin
(PASI 100) without receiving additional treatment after week
28, is important to the design of dose-optimization studies
(20).

Population PK Model

A confirmatory population PK (21,22) analysis based on
the previously developed model was implemented to describe
guselkumab PK in patients with psoriasis. The structural
model is one-compartment with first-order absorption and
first-order elimination, with parameters including apparent
clearance (CL/F), apparent volume of distribution (V/F), and
absorption rate constant (ka). Between-subject random ef-
fects on CL/F, V/F, and ka were included using log-normal
distributions. A correlation between the BSV on CL/F and
V/F also was included, and the impact of baseline body weight
effects on CL/F and V/F was described with a power model
standardized to the median baseline body weight of 87.1 kg.
This is consistent with previous psoriasis studies (23), but
comparisons with other patient populations are less straight-
forward than using a standard weight of 70 kg with a theory-
based allometric model (24). Diabetic comorbidity and race
(Caucasian vs. non-Caucasian) both were identified as
significant covariates on CL/F and were included in the final
population PK model. Shrinkage estimates were low (15%
and 4%, respectively) for random effects of V/F and CL/F.
Details of the population PK modeling results have been
reported elsewhere (23).

E-R: Continuous Analysis Model

In this approach, the PASI score was modeled by
adopting a semi-mechanistic approach applied in an earlier
E-R analysis (8) as

PASI tð Þ ¼ b− f p tð Þ− f d tð Þ þ ε ð2Þ

where PASI(t) is the observed PASI score at time t, b is the
baseline PASI score, fp(t) is the placebo effect and fd(t) is the
drug effect, and ε is the residual error with a normal
distribution [N(0,σ2)]. The placebo effect was modeled
empirically as

f p tð Þ ¼ b Fp 1−exp −kp t
� �� � ð3Þ

where 0≤ Fp≤ 1 is the fraction of maximum placebo effect
and kp is the rate of onset. It is plausible that placebo
responses may decrease after week 12, however this is
confounded with the drug effect. In our experience of
analyzing placebo-controlled clinical trial data, more complex
models usually could not be supported. For example, a
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Bateman function was attempted in a similar circumstance
without success (6).

The drug effect was modeled as

f d tð Þ ¼ b 1 − Fp
� �

Emax 1 −R tð Þ½ � ð4Þ

where 0≤Emax≤ 1 represents maximum drug effect, with
R(t) governed by:

dR tð Þ
dt

¼ kin 1−
Cp

IC50 þ Cp

� �
−kout R tð Þ ð5Þ

where Cp is the model estimated individual drug concentra-
tion at time t, and kin (disease formation rate), IC50 (half-
maximal inhibitory concentration), and kout (disease amelio-
ration rate) are the parameters in a type I indirect response
model (25). It was further assumed that R = 1 at baseline, i.e.,
R(0) = 1, yielding kin = kout. Formally, this implies that there is
no disease progression throughout the study. While disease
progression is an actual possibility (26), its effect would be
largely confounded with that of placebo, in part because the
placebo effect was only observed for the initial 16 weeks. An
alternative could be to interpret fp(t) as the combined effect
of placebo and disease progression. Note that Eq. 4 links the
placebo and drug effects such that the prediction of Eq. 2
remains ≥ 0. For more details on the theoretical characteris-
tics of latent variable IDR models, see Hu (12).

BSVs on Fp and Emax were modeled assuming logit-
normal distributions to restrict their values between (0, 1). In
our previous experience with analyzing placebo-controlled
clinical trial data, the currently applied placebo model seems
sufficient (6–8,13,16,17,27,28). However, as a sensitivity
analysis, the possibility of negative responses was assessed
by assuming a proportional random effect on Fp and Emax

(26). BSVon other parameters were modeled with lognormal
distributions. The covariance between the random effects was
modeled (see NM-TRAN code in the Supplementary
material).

Latent-Beta BOS Analysis Model

As a general notation, the original BOS variable Y can
be standardized onto the closed interval [0,1] by a linear
transformation. Thus Y takes possible values in the form of k/
m, where k = 0, 1, …, m. In the case of PASI scores, m = 720.
Ursino and Gasparini (15) postulated that a latent variable Y*

exists on the open interval (0,1) such that

Y ¼ k if and only if Y�∈ k= mþ 1ð Þ; kþ 1ð Þ= mþ 1ð Þ½ Þ:

In a more compact mathematical notation, Y = ⌊(m +
1)Y*⌋/(m + 1), where ⌊·⌋ is the floor function. Y* is then
modeled with a beta distribution given in Eq. 1 with a re-
parameterization of

α ¼ μϕ;β ¼ 1−μð Þϕ ð6Þ

where 0 < μ < 1 and ϕ > 0. The mean and variance of the beta
distribution under this parameterization are μ and μ(1 − μ)/
(1 +ϕ), respectively. This leads to the PASI score being
analyzed as an ordered categorical variable, with the cumu-
lative probability

prob PASI score ¼ kð Þ ¼ B kþ 1ð Þ=721ð Þ−B k=721ð Þ ð7Þ

for k = 0, 1, …, 720, where B(x) =B(x, μ, ϕ) is the cumulative
beta distribution. An implementation in NONMEM is given
in Supplementary material.

The beta distribution is flexible enough to describe
skewness. When μ = 0.5, the distribution is symmetrically
centered on the interval (0,1), and the 3 statistics of mode,
mean, and median are equal, similar to a normal distribution.
As μ moves closer to 0 or 1, the 3 statistics differ more, which
indicates the appropriate skewness that results in a shorter
tail on the respective boundary. The larger the variance,
scaled by (1 +ϕ), the wider the difference between the 3
statistics, which is conceptually appealing.

E-R: BOS Analysis Model

A semi-mechanistic model similar to that used in the
continuous analysis approach was used to model the mean
parameter μ under the beta distribution as follows:

logit μð Þ ¼ logit μbð Þ þ f p tð Þ þ f d tð Þ ð8Þ

where logit(x) = log[x/(1 − x)], μb is the baseline on the
transformed scale (0,1), fp(t) is the placebo effect, and fd(t)
is the drug effect (12).

The placebo effect was modeled empirically:

f p tð Þ ¼ Pmax 1−exp −kp t
� �� � ð9Þ

where Pmax is the maximum placebo effect and kp is the rate
of onset.

The drug effect was modeled using a latent variable R(t)
in the same form of Eq. 4, i.e.,

dR tð Þ
dt

¼ kin 1 −
Cp

IC50 þ Cp

� �
− kout R tð Þ ð10Þ

where Cp is the drug concentration, and kin, IC50, and kout are
the parameters in a type I IDR model. It was further assumed
that at baseline R(0) = 1, yielding kin = kout. The reduction of
R(t) was assumed to drive the drug effect through:

f d tð Þ ¼ DE 1−R tð Þ½ � ð11Þ

where DE is a parameter to be estimated that determines the
magnitude of drug effect fd(t).

Theoretically, the representation of drug effect in Eqs. 8–11
has been shown to be equivalent to a change-from-baseline latent-
variable IDR model (28), under which kout may be empirically
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interpreted as the rate constant of drug effect onset and offset, and
DEmay be interpreted as the baseline of the latent variable prior
to normalization (12). Note that for latent variable IDR models,
the Emax parameter under the standard IDR models (25) is not
separately identifiable and is set to equal 1.

BSV on logit(μb) was modeled with a normal distribu-
tion. BSVs on other parameters were modeled with log-
normal distributions. The covariance between the random
effects was modeled (see NM-TRAN code in the Supplemen-
tary material). As a sensitivity analysis, the possibility of
negative responses was assessed by assuming a proportional
random effect on Pmax and DE.

Model Estimation and Evaluation

A sequential approach was used for the E-R model
estimation by first fixing individual PK parameters to their
respective empirical Bayesian parameter estimates obtained
from the population PK model (29). Parameter estimation for
the E-R model was implemented in the NONMEM (30)
version 7.4.3 with a gFortran compiler, using the SAEM
option followed by an importance sampling step for the
objective function evaluation (31). E-R model selection was
based on the NONMEM objective function values (OFVs),
which are approximately − 2 times log-likelihood. A change
in OFV of 10.83 corresponding to a nominal p value of 0.001
was judged as significant evidence for including an additional
parameter for the comparisons within the continuous and the
BOS analysis models, respectively. Conceptually, AIC and
BIC are more appropriate for non-nested models, which were
not used in this context. This is because the structural models

were essentially pre-specified based on previous experiences,
thus only the random effect models were compared. For more
on BOS model comparisons, see (14).

Visual predictive checks (VPCs) (32) were used to
evaluate model performance by simulating 500 replicates of
the dataset and comparing simulated and model-predicted
responses grouped by the planned observation times.

RESULTS

Continuous Analysis Model

Equations 2–5 were fitted to the PASI score data. Model
exploration based on changes in NONMEM OFV led to BSV
terms on b, kout, and IC50, with a correlation between kout and
IC50. The sensitivity analyses assuming a proportional ran-
dom effect on Fp and Emax did not result in improved fit of
the data. Parameter estimates are given in Table I. The
relative standard errors (RSE) were all within 20%, which
was reasonable. VPC results by treatment groups and studies
were shown in Fig. 1. For the 100-mg treatment groups, the
model reasonably described the median observed data
median and the upper end, i.e., 95th percentile, of the
observed data distribution. However the lower end, i.e., 5th
percentile, of the model predicted distribution were negative
and outside the data range after 8 weeks. For the placebo
treatment groups, the 5th percentile of the model predicted
distribution also became negative approximately 8 weeks
after switching to the 100-mg treatment. In addition, the 5th
percentile and the median of the model predictions were
higher than the observed during the placebo-treated periods.

Table I. Parameter Estimates for the Continuous and the BOS Exposure-Response Analysis Models

Parameter Unit Description Continuous model
(% RSE)

BOS model
(% RSE)

ϕ Residual variability indicator 44.9 (0.0806)
μb Transformed baseline;

BOS model
0.298 (1.22)

b Baseline; continuous model 19.9 (1.18)
Fp Fraction of maximum placebo effect 0.118 (19.8) 0.27 (19.6)
kp 1/day Placebo effect onset rate constant 0.0319 (10.5) 0.0175 (11)
kout 1/day Drug effect onset rate constant 0.031 (1.96) 0.00854 (4.39)
IC50 μg/mL Potency 0.00492 (16.2) 0.288 (19.5)
DE Maximum drug effect on the latent variable scale 5.94 (4.46)
Var(ηb) [SD] Variance of between-subject variability, baseline 0.154 (4.39)

[0.392]
0.325 (5.9)
[0.57]

Var(ηkout) [SD] Variance of between-subject variability, rate of drug effect onset 0.299 (8.02)
[0.547]

0.805 (8.84)
[0.897]

cor(ηkout,ηDE) Correlation of between-subject variability, rate of drug effect onset
and maximum drug effect

− 0.602 (9.67)

Var(ηDE) [SD] Variance of between-subject variability, maximum drug effect 0.663 (8.4)
[0.814]

cor(ηkout,ηIC50) Correlation of between-subject variability, rate of drug effect onset,
and potency

− 0.591 (14.6)

Var(ηIC50) [SD] Variance of between-subject variability, potency 8.39 (7.96)
[2.9]

σ2

[SD]
Variance of residual error 6.82 (7.25)

[2.61]

RSE, relative standard error; SD, standard deviation
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For the derived PASI improvement criteria, i.e., PASI 75,
PASI 90, and PASI 100, VPC results by treatment groups and
studies are shown in Fig. 2. In general, the model consistently
underpredicted the observed data. The difficulty of using
PASI score models to predict the derived PASI improvement
criteria has been previously noted (7).

For the “sustained-responder” population, i.e., the
proportion of subjects maintaining PASI 100 in the random-
ized withdrawal portion of study 2 without receiving active
treatment after week 28, VPC results by treatment groups
and studies are shown in Fig. 3. The model consistently
underpredicted the observed data.
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Fig. 1. The continuous analysis model predicted and observed PASI score median, 5th and
95th percentiles, at planned observation times. pbo, placebo
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Fig. 2. The continuous analysis model predicted and observed PASI response criteria
median, 5th and 95th percentiles, at planned observation times. pbo, placebo
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Latent-Beta BOS Analysis Model

Equations 6–11 were fitted to the PASI score data.
Model exploration based on the changes in NONMEM OFV
led to BSV terms on b, kout, and DE, with a correlation
between kout and DE. The sensitivity analyses assuming a
proportional random effect on Pmax and DE did not result in
improved fit of the data. Parameter estimates are given in
Table I. The RSEs were all within 20%, which was
reasonable. VPC results by treatment groups and studies are
shown in Fig. 4. For the 100-mg treatment groups, the model
reasonably described the observed data. For the placebo
treatment groups, the 5th percentile and the median of the
model predictions were also higher than the observed during

the placebo-treated periods. Note that in all treatment
groups, by 8 weeks after receiving the 100-mg treatment,
the 5th percentiles of model predictions were no longer
negative as compared with the continuous analysis model;
they were now near 0 and overlapped with the observed data.
The estimate of μb of 0.298, corresponding to a baseline PASI
score of 21.5, is close to the observed data (median = 18.9,
mean = 21.7). Considering the fact that the variance affects
the mean for categorical data (12,33), this indicates that the
baseline random effect variance was overestimated. The
observed and model-predicted placebo effect trends parallel,
suggesting accurate estimation of the magnitude of the
placebo effect. As noted earlier in the “METHODS” section,
this interpretation depends on the assumption of no disease
progression throughout the study.

For the derived PASI improvement criteria, i.e., PASI 75,
PASI 90, and PASI 100, VPC results by treatment groups and
studies are shown in Fig. 5. In general, the model reasonably
predicted observed data except after 28–40 weeks in study 2,
which is the randomized withdrawal portion.

For the “sustained-responder” population, VPC results
by treatment groups and studies were shown in Fig. 6. The
model reasonably predicted observed data.

DISCUSSION

There are two main desirable goals in BOS data analysis:
(1) to predict data within its natural range and (2) to
accommodate skewed data distributions. Most of the existing
methods can handle one goal but not both. An exception is
the recent emergence of applying the standard ordered
categorical analysis method (34), which has been shown to
be accurate and robust when the sample size is sufficiently
large. However, the method becomes impractical when the
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Fig. 3. The continuous analysis model predicted and observed PASI
100 responder rates when active treatment was withdrawn after week
28
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number of possible data categories becomes large, e.g., 721 in
the case of PASI scores. The importance of accurately
describing the data distribution has been emphasized for the
accurate prediction of derived endpoints such as PASI 75,
PASI 90, and PASI 100 (7). The flexibility of the beta
distribution makes it appealing in BOS data analysis.
However, the earlier attempt, in essence assuming the BOS
data following the beta distribution (termed beta regression),
is intuitive and lacks statistical rigor (6). The newly proposed
beta-latent variable approach (15) corrects this problem.
Consequently in this application, it has predicted the PASI
scores within their natural bounds and showed superior
performance in describing the derived endpoints of PASI
75, PASI 90, and PASI 100. In support of this, the outcome
shown in Fig. 1 where the lower end, i.e., 5th percentile, of

the model predicted distribution were negative and outside
the data range after 8 weeks, was expected because the PASI
score distributions become highly skewed after treatment,
which the continuous analysis approach could not effectively
handle.

While the beta distribution can accommodate skewed
data distributions, it still has only 2 parameters, same as the
normal distribution. In principle, more complex distributions
could potentially improve the fit, depending on the applica-
tion scenarios. For example, the components of PASI score
involves multiples of 0.1, 0.2, 0.3, and 0.4 (35), therefore the
distribution of PASI scores may not be homogenous in terms
of 0.1 increments. Refining the beta distribution to accom-
modate this feature may warrant further investigation. In this
regard, the most flexible distribution is that used in the
standard ordered categorical data analysis (34), with the
number of parameters close to the number of data categories.
In addition, the latent-beta IDR model inherits all limitations
of the latent variable IDR models (12), including those on
parameter identification and interpretations. The over-
estimation of baseline random effect by the latent-beta IDR
model is in part because the data could not support the
estimation of random effects for all parameters, e.g., Fp, IC50,
and the random effects are usually confounded to certain
degrees. This may also be in part due to the fact that 12 weeks
of placebo data is too short to allow its variability to be fully
characterized; indeed, model convergence could not be
achieved when additional BSV terms were attempted. The
latent-beta IDR model also appears to have some biases in
the response-adaptive portion of study 2. The biases were
unlikely to be caused by informative dropout (36,37) due to
the low total dropout rates (near 6–7%) by the end of both
studies. A difficulty of modeling data with such response-
adaptive designs has been previously noted as the
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Fig. 5. The BOS analysis model predicted and observed PASI response criteria median,
5th and 95th percentiles, at planned observation times. pbo, placebo
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responder rates when active treatment was withdrawn after week 28

Page 7 of 9 61The AAPS Journal (2020) 22: 61



underidentification of random effects (13). The need of
corrections due to the correlation between the response and
dosing to avoid VPC bias has been proposed in the case of
analyzing continuous response variables (38).

Although PASI 75, PASI 90, and PASI 100 could be
directly modeled accurately with the standard ordered
categorical analysis approach (7), the ability to estimate
BSVs from different sources is limited and usually could not
be separated from that of baseline (12). This is due to the loss
of information caused by not fully using the granularity of the
PASI scores. The importance of accurately identifying BSVs
from different sources has been emphasized in the analysis of
response-adaptive study data (13). In particular, accurately
predicting the proportion of “sustained-responders” is impor-
tant for the design of flexible-dose clinical studies. The
previously developed model of direct modeling PASI 75,
PASI 95, and PASI 100 falls short in this regard. In contrast,
the current latent-beta BOS analysis approach performed
reasonably well, as Fig. 3 and Fig. 6 show.

PASI scores have been analyzed numerous times before,
and the difficulties of accommodating data skewness and
predicting the derived endpoints have been duly noted (7).
The current investigation has shown that the latent-beta BOS
analysis approach could alleviate these difficulties. Further-
more, the approach could allow better characterization of
BSVs, which in turn facilitates better predictions of popula-
tion characteristics such as the “sustained-responders,” and
thus the effective designs of dose-optimization clinical studies
(20). The difficulty of predicting subpopulation responses
with different sensitivity has been noted before (13).

CONCLUSION

The latent variable approach provides a more theoreti-
cally sound application of the beta distribution in BOS
analysis than that was previously used in pharmacometrics
publications. In the currently illustrated example, this ap-
proach showed the ability to (1) handle skewed BOS data, (2)
describe derived endpoints, i.e., the PASI improvement
criteria, and (3) describe a highly sensitive subpopulation.
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