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Abstract. Antibody-drug conjugates (ADCs) are cancer drugs composed of a humanized
antibody linked to a cytotoxic payload, allowing preferential release of payload in cancer
cells expressing the antibody-targeted antigen. Here, a systems pharmacology model is used
to simulate ADC transport from blood to tumor tissue and ADC uptake by tumor cells. The
model includes effects of spatial gradients in drug concentration in a three-dimensional
network of tumor blood vessels with realistic geometry and accounts for diffusion of ADC in
the tumor extracellular space, binding to antigen, internalization, intracellular processing, and
payload efflux from cells. Cells that process an internalized ADC-antigen complex may
release payload that can be taken up by other “bystander” cells. Such bystander effects are
included in the model. The model is used to simulate conditions in previous experiments,
showing good agreement with experimental results. Simulations are used to analyze the
relationship of bystander effects to payload properties and single-dose administrations. The
model indicates that exposure of payload to cells distant from vessels is sensitive to the free
payload diffusivity in the extracellular space. When antigen expression is heterogeneous, the
model indicates that the amount of payload accumulating in non-antigen-expressing cells
increases linearly with dose but depends only weakly on the percentage of antigen-expressing
cells. The model provides an integrated mechanistic framework for understanding the effects
of spatial gradients on drug distribution using ADCs and for designing ADCs to achieve
more effective payload distribution in solid tumors, thereby increasing the therapeutic index
of the ADC.
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INTRODUCTION

ADCs are a class of large molecular weight (~ 150 kDa)
cancer drugs that have extremely potent small molecule
drugs, referred to as the payload, conjugated to a humanized
antibody via a chemical linker (1). The number of payload
molecules per antibody is referred to as the drug-to-antibody
ratio (DAR). It has been established that higher DAR values
lead to both increased rates of DAR-dependent
deconjugation of payload from the antibody in plasma and

reductions in the half-life of the ADC in plasma (2–4).
Therefore, most ADCs in current development typically have
a DAR value of four or less (5). ADCs are transported to
cancer cells by passing through the walls of microvessels,
diffusing in the tumor tissue, and binding specifically to
preferentially expressed target antigens on cancer cells. The
antibody-antigen complex is internalized by the cell, where
cellular processing of the antibody in lysosomes causes the
toxic payload to be released in the cytosol to exert its
cytotoxic effect (Fig. 1a).

Some ADCs can induce a bystander effect, defined here
as non-targeted passive cellular uptake of payload released by
other cells that had previously internalized and processed an
ADC-antigen complex (6–10). The ability of an ADC to
induce a bystander effect is dependent on the physicochem-
ical properties of the linker, which must be designed so that
the processed payload catabolite is neutrally charged,
allowing for efflux from the cell and diffusion into neighbor-
ing cells (1). Typically, cleavable linkers leave the payload
catabolite in a neutral form while non-cleavable linkers result
in a charged catabolite that is unlikely to diffuse into
neighboring cells (7,11).
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The bystander effect provides a mechanism for exposure
to payload of cells that are distant from vessels and for cells
that do not express the antigen, i.e., antigen-negative cells
(Ag–). We introduce the terms spatial bystander effect (SBE)
and heterogeneous bystander effect (HBE), respectively, for
these cases. The SBE is relevant because rapid binding of the

ADC to the target antigen after extravasation from the
vessels has been implicated in poor tumor penetration (12),
resulting in accumulation of antibody around the periphery of
the vessels, a phenomenon referred to as the binding site
barrier (13) (Fig. 1d). Because of this, cells more distant from
the vessels receive lower concentrations of ADC. However,
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Fig. 1. ADC transport and reactions including bystander effects. Smooth boundary
denotes Ag− cell; wavy boundary denotes Ag+ cell; orange (blue) color denotes cell
containing free (no) payload. a Steps in ADC transport and reaction. (1) ADC (green
circles) is carried into the tumor via convection in plasma. (2) ADC passes across the vessel
wall into the tumor interstitial space. (3) ADC diffuses through the interstitial space. (4)
ADC binds to target antigen expressed on the cell membrane. (5) ADC-antigen complex is
internalized by the cell and undergoes lysosomal degradation to release payload. (6)
Payload passively effluxes from the cell (orange arrow) and diffuses to other cells, creating
a possible bystander effect. (7) Payload is released by the cell, enters blood vessels, and is
washed out in plasma. b–e Payload distribution in the absence and presence of bystander
effects. b Heterogeneous antigen expression. Cells containing ADC do not release
payload, so payload does not reach Ag– cells. c Heterogeneous antigen expression, with
heterogeneous bystander effect. Cells containing ADC release payload, which diffuses and
is taken up by Ag– cells, and also by more distant Ag+ cells. d Homogeneous antigen
expression, no bystander effect. ADC transport into cells is restricted by the binding site
barrier, and cells containing ADC do not release payload to reach distant cells. e
Homogeneous antigen expression with spatial bystander effect. Cells containing ADC
release payload, which diffuses and is taken up by more distant cells
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low molecular weight payload released by antigen-positive
(Ag+) cells close to the vessels may diffuse through the tissue
to cells that are more distant from blood vessels (Fig. 1e). The
potential of the SBE to contribute to the intratumoral
distribution of payload has not to our knowledge been
analyzed in detail, although its potential has been discussed
(14).

Since antigen expression is often heterogeneous in
solid tumors (15,16), the HBE has potential clinical utility
by indirectly targeting Ag– cells in a tumor region. Several
pre-clinical studies have been conducted to evaluate the
HBE, using ADCs with cleavable linkers. Okeley et al. (8)
demonstrated significant bystander killing of CD30+ and
CD30– cell lines in vitro. Kovtun et al. (7) demonstrated
cell killing of CanAg-positive and CanAg-negative cell
lines both in vitro and in vivo. Li et al. (9) demonstrated
bystander killing in vivo in admixed tumor models using
various payloads and Golfier et al. (10) demonstrated
bystander killing in vivo within tumor xenografts com-
prised of different percentages of Ag+ cells ranging from
20 to 100%.

For most ADCs targeting overexpressed antigens, a
binding site barrier is likely to be present, and the SBE is
expected to occur whenever free payload can be released and
taken up by cells. If, in addition, antigen expression is
heterogeneous, both types of bystander effect (SBE and
HBE) can occur simultaneously, provided that antigen
expression is high enough to induce a binding site barrier.

The release of free payload into the interstitial space by
Ag+ cells creates a concentration gradient across blood vessel
walls. If the walls are permeable to the payload, as is likely
for neutrally charged payloads, then some of the payload
released by cells can diffuse through the vessel wall,
whereupon it is washed out in the flowing blood. Washout is
particularly likely to occur for payload released by cells close
to the vessel, because the diffusion distance is short and it is
less likely to be taken up by other tumor cells before reaching
the vessels. Thus, the conditions that facilitate a SBE are also
likely to promote payload washout.

Various theoretical models have been developed to
predict ADC payload exposure and cell kill in solid tumors.
Studies by Shah and Singh (17–19) used mechanistic
compartmental models to describe the transport and kinetics
of a specific ADC including bystander effects. These models
assume that the tissue compartment is well mixed with
regard to ADC concentration and do not take into account
the effects of vessel geometry and the possibility of steep
gradients in ADC concentration. Models that do not account
for gradients in concentration may lead to inaccurate
predictions of cellular exposure. If a concentration threshold
of payload is needed for sufficient exposure that would lead
to cell death, well-mixed compartmental models will predict
either all or none of the cells sufficiently exposed (within a
compartment), while a model accounting for gradients will
predict a percentage of cells sufficiently exposed. Studies by
Cilliers et al. (20), Vasalou et al. (21), and Khera et al. (22)
account for spatial effects by using a Krogh cylinder to
represent the tissue surrounding a representative blood
vessel. Both models assume one-dimensional outward radial
diffusion of ADC and include ADC binding to antigen and
intracellular trafficking kinetics of payload. Vasalou et al.

(21) further examined the effects of bystander killing on
tumor volume and its dependence on the ratio of cellular
payload uptake to efflux. While these models represent the
essential transport processes and kinetics of ADCs in solid
tumors, the use of a Krogh cylinder model to represent
solute transport from blood to tissue can result in unrealistic
distributions of solute concentration (23,24). These models
have, nonetheless, improved understanding of ADC trans-
port and kinetics and supported decision making in ADC
drug development.

Here, a systems pharmacology model based on a
previously developed reaction diffusion model for solute
transport (25) is developed to simulate the transport and
reaction processes of ADCs in a three-dimensional tumor
vascular network with realistic geometry, including bystander
effects and payload washout. Model validation was
established by simulating pre-clinical experiments from sev-
eral previous studies (2,20,26) using parameter values from
the literature and showing good agreement between model
predictions and experimental results. The SBE is analyzed by
predicting the dependence of cellular exposure over different
distances to the nearest vessel for different payload diffusiv-
ities and different doses of ADC where the total payload
quantity is fixed. The HBE is analyzed by predicting the
dependence of cellular exposure to payload in Ag– cells on
the percentage of Ag– cells in the tumor region and on dose.

MATERIALS AND METHODS

Model Overview. The ADC and payload distribution in
tumor tissue are analyzed by considering several diffusible
and non-diffusible solute concentrations: ADC in the extra-
cellular space (diffusible), target antigen (non-diffusible),
ADC-antigen complex (non-diffusible), internalized ADC-
antigen complex (non-diffusible), intracellular payload of Ag+

cells (non-diffusible), extracellular payload (diffusible), and
intracellular payload of Ag– cells (non-diffusible). These
solutes may be restricted to specific tissue domains (e.g.,
intracellular space) and are subject to differing transport and
reaction mechanisms in the vessels and in the tissue space.
Solute concentration is calculated as function of position and
time within a region of tumor tissue supplied by a network of
microvessels with a given three-dimensional geometry and
given blood flow rate in each segment.

Vessel Network and Tumor Cell. Compartments. Solu-
tions are computed for the microvessel network shown in Fig.
2a, which was previously mapped in a 550 μm × 520 μm ×
230 μm region of a mammary carcinoma implanted in a rat
dorsal skin flap. The tumor was imaged using confocal
microscopy, and the vasculature was digitally reconstructed
(27). The distribution of distances from the nearest vessel to a
representative array of tissue points within the domain is
shown in Fig. 2b, together with the corresponding distribution
for a Krogh cylinder model with the same ratio of vessel
length to tissue volume. The network model gives a much
broader distribution of distances than the Krogh model,
including a significant fraction (12%) of tissue points more
than 80 μm from the nearest vessel. By contrast, the
maximum distance from the nearest vessel in the Krogh
model is 53 μm.
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Flows were estimated based on flow measurements in
the same tissue for vessels of corresponding diameters, with
the net flow entering and leaving each vessel branch point
constrained to be zero. Computationally, the vessels are
represented as a set of distributed sources or sinks for
solutes and are treated as part of the tissue space. The
intracellular and extracellular regions of the tissue space are
treated as two coexisting homogeneous media, each with its
own volume fraction. A continuum representation of the
cellular tissue structure is used since the length scale of a
typical cell (≈ 10 μm) is small compared with the length
scale of the vessel network (≈ 500 μm). In the case of
heterogeneous antigen-expressing cells, it is assumed that
Ag+ and Ag– cells are interspersed, consistent with
observation (20,28). It is assumed that the volume fraction
of cells remains constant throughout the simulation.
Changes in cell numbers resulting from cell kill or cell
growth are not included in the model.

Governing Equations. The governing equations for the
ADC diffusion in the tumor tissue and for reaction kinetics
including bystander effects are as follows:

∂CADC

∂t
¼ DADC∇2CADC−

1
ϕe

konCADCCAg þ koff CB

∂CAg

∂t
¼ kintCAgtot−

1
ϕe

konCADCCAg þ koff CB−kintCAg

∂CB

∂t
¼ 1

φe
konCADCCAg−koff CB−kintCB

∂CI

∂t
¼ kintCB−kdegCI

∂Cþ
ip

∂t
¼ DAR tð ÞkdegCI−koutCþ

ip þ
φþ

φe
kinCep

a

b

Fig. 2. Microvessel network. a Network used for computational model.
Flow rates in nl/min and flow directions are indicated for each vessel
segment. Vessel segment color indicates the magnitude of flow rate. b
Distribution of tissue point distances from the nearest vessel for the
microvessel network. For comparison, the distribution of distances for
the Krogh cylinder geometry with the same mean vessel diameter and
the same vessel length per tissue volume is also shown. The Krogh
cylinder has a tissue radius of 52.96 μm and a capillary radius of 5.59
μm
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∂C−
ip

∂t
¼ −koutC−

ip þ
ϕ−

ϕe
kinCep

∂Cep

∂t
¼ Dpayload∇2Cep þ koutCþ

ip þ koutC−
ip−

ϕ− þ ϕþ

ϕe
kinCep

The unknown variables CADC, CAg, CB, CI, Cþ
ip, C−

ip,
and Cep are the concentrations of extracellular ADC,
antigen, ADC bound to antigen, internalized ADC bound
to antigen, intracellular payload within Ag+ cells,
intracellular payload within Ag– cells, and extracellular
payload, respectively. The fixed total antigen concentration
is CAgtot =CAg +CB. The function DAR(t) represents the
time course of DAR and accounts for deconjugation of
payload from the antibody in plasma and was used in the
model validation case studies. The constant φe is the
extracellular volume fraction, and φ+ and φ– are the
volume fractions of antigen positive and negative cells,
respectively, where φ+ + φ– = 1 – φe. To ensure consistency
with the numerical method, all concentrations are defined
with respect to the total volume of the tissue region.
Defining concentration in this way requires the inclusion of
these volume fractions. Solutions are then converted to
concentrations with respect to the volume of interest. The
HBE is explicitly represented in the last two equations,
which describe the efflux, extracellular diffusion, and
uptake of extracellular payload. The SBE is implicitly
represented by accounting for diffusive transport and
binding of ADC to target antigen. Payload washout is
included in the diffusive term in the last equation. Other
parameters are described in Table II. The system of
equations is solved using the unsteady Green’s function
method (25), which is summarized in the Supplementary
Information.

Parameter Values. The model parameters derived from
measured values in the literature are shown in Table I.
Parameter values used for model validation are shown in
Table II. When possible, kinetic parameter values were
chosen to match the experimental setup in the study of
interest. For example, if several association rates of
antibody binding to antigen were found, the one corre-
sponding to the same antibody and antigen was chosen
when available. The parameters and the extent to which
they aligned with the study used for validation are
summarized in Supplementary Information, Table S1.
Plasma pharmacokinetics for ADCs (2,3,26) were esti-
mated by fitting the reported plasma levels from a single
dose of ADC to the parameters in Eq. A (Matlab 2014a,
lsqcurvefit, see Supplementary Information, Table S2). The
time course of DAR-dependent deconjugation of the
payload from the ADC was assumed to be of the form of
Eq. 1, and the corresponding parameters were similarly fit
from experimental observation (2,3) (see Supplementary
Information, Table S3). Parameter values used for by-
stander effect simulations were chosen each in a range
typical of observed values and are shown in Table III.

Measures of Cellular Exposure. The drugs used as
payloads for ADCs generally work either by interfering with

tubulin dynamics or with DNA integrity or replication. El-
Kareh et al. (36,37) analyzed existing in vitro experimental
data on cell as a function of drug concentration and exposure
time for drugs including doxorubicin (a DNA intercalator)
and paclitaxel (which interferes with tubulin dynamics). It
was shown that dose-response data for these drugs are
inconsistent with models in which cell kill is a function of
area under the curve (AUC), defined as ∫∞0 C

int tð Þdt. In
contrast, models in which cell kill was assumed to depend
on the time maximum of intracellular drug concentration
showed good agreement with the experimental data. There-
fore, in the present study, maximum intracellular concentra-
tion, denoted Cint

max, is estimated as a predictor of cellular
response.

RESULTS

Spa t ia l Var ia t ion of In t ra tumora l Ant ibody
Distribution. Figure 3 shows the model predictions for the
experimental setup in Rhoden et al. (26). In the study,
fluorescent intensity of sm3e antibody bound to CEA-
positive LS174T xenograft tumors (colorectal carcinoma)
was measured as a function of distance to the nearest vessel
for a range of doses (5–500 μg). The experiment illustrated
the effect of the binding site barrier and its dependence on
dose. Figure 3a shows the model prediction of concentration
of sm3e at tissue points of increasing distance to the nearest
vessel for doses of 5 to 500 μg at 24 h. Results from Rhoden
et al. were given in arbitrary units and were scaled by

Table I. Parameter Definitions

Parameter Definition

DADC Diffusivity of ADC
Dpayload Diffusivity of free payload
PADC Vessel permeability to ADC
Ppayload Vessel permeability to payload
kon ADC binding rate to antigen
koff ADC-antigen dissociation rate
kint Antigen internalization rate
kdeg Internalized ADC-antigen degradation rate
kout Free payload efflux rate from cells
kin Free payload uptake rate into cells
CAgtot Total antigen concentration
DAR Drug-antibody ratio
φe Extracellular volume fraction
φ+ Ag+ cell volume fraction
φ− Ag− cell volume fraction
α Fraction of ADC alpha phase clearance
β Fraction of ADC beta phase clearance
τα Half-life of ADC alpha phase
τβ Half-life of ADC beta phase
αDAR Alpha phase for DAR deconjugation
βDAR Beta phase for DAR deconjugation
τα, DAR Half-life of alpha phase for DAR deconjugation
τβ, DAR Half-life of beta phase for DAR deconjugation
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matching the profile for the highest dose with model
predictions. High doses resulted in complete saturation of
the available antigen, leading to uniform distributions of
antibody. Sub-saturating doses lead to gradients in fluorescent
intensity, as also predicted by the model. Results are in good
agreement with model simulations except for the lowest dose,
for which the model underestimates the experimental results.
Figure 3b–d illustrate the binding site barrier by showing
contours of the predicted antibody distributions for doses 5,
15, and 50 μg.

Intratumoral Payload Concentration. Figure 4 shows
model predictions for the experimental conditions in Alley
et al. (2) and Li et al. (20). Alley et al. measured the time
course of intratumoral concentration of MMAF released
from the h1F6-mcMMAF ADC in CD70-positive renal cell
carcinoma xenografts. Li et al. measured the intratumoral
concentration of MMAE from two different ADCs
(cAC10-vcMMAE, h1F6-vcMMAE) for three doses (0.5,
1, 3 mg/kg) in L82 xenograft models and the time course of
intratumoral MMAE concentration from cAC10-vcMMAE
in Karpas 299 xenograft models. Figure 4a shows the
model prediction for the 10-day time course of
intratumoral concentration of MMAF compared with the
measurements in Alley et al. The model prediction is in
good agreement with the observed accumulation and
elimination of MMAF as well as the peak intratumoral

concentration. Figure 4b shows the model predictions
compared with the observed intratumoral concentrations
in the L-82 xenograft models. The predictions for cAC10-
vcMMAE are in excellent agreement, whereas the predic-
tions for h1f6-vcMMAE are overestimated by approxi-
mately a factor of two. Figure 4c shows model predictions
compared with the measurements in Li et al. for the 10-day
time course of intratumoral concentration of MMAE in
Karpas 299 xenograft models. The predictions have a
similar profile of accumulation and elimination of MMAE
including peak intratumoral concentration. The model
prediction shows a 2-day delay in the predicted time
course, however, suggesting that some rates may be
underestimated.

Spatial Bystander Effect (SBE). The SBE is analyzed by
considering the payload exposure of cells at different
distances to the nearest vessel, as functions of payload
diffusivity and dose. To provide an index of exposure to

payload, Cint
max is defined as the peak intracellular payload

concentration, averaged over intervals of distance from

nearest vessel. Figure 5a shows the dependence of Cint
max on

distance to the nearest vessel for several values of the payload
diffusivity Dpayload for DAR = 4 and a dose of 1 mg/kg. Steep
gradients are evident, showing the effect of the binding site
barrier. For distances approximately 50 μm and greater, the

Table II. Model Validation Parameters

Parameter Units Fig. 3 Ref Fig. 4a Ref Fig. 4b
(cAC10)

Ref Fig. 4b
(h1f6)

Ref Fig. 4c
(cAC10)

Ref Notes

Transport
DADC μm2/s 25.4 (26) 25.4 (26) 25.4 (26) 25.4 (26) 25.4 (26)
Dpayload μm2/s 100 100 100 Assumed
PADC μm/s 0.0038 (26) 0.0038 (26) 0.0038 (26) 0.0038 (26) 0.0038 (26)
Ppayload μm/s 0.122 (29) 0.122 (29) 0.122 (29) Lipid permeability
Kinetic
kon (nM s)–1 2 × 10−4 (26) 2.8 × 10−4 (30) 4.6 × 10−4 (31) 2.8 × 10−4 (30) 4.6 × 10−4 (31)
koff s–1 1.25 × 10−6 (32) 4.7 × 10−6 (30) 1.1 × 10−3 (31) 4.7 × 10−6 (30) 1.1 × 10−3 (31)
kint s–1 1.38 × 10−5 (32) 3.2 × 10−4 * (33) 7.09 × 10−6 * (34) 3.2 × 10−4 * (33) 7.09 × 10−6 * (34) *Derived
kdeg 8.79 × 10−6 (35) 9.8 × 10−5 (18) 9.8 × 10−5 (18) 9.8 × 10−5 (18)
kout s–1 4.16 × 10−6 (35) 5.52 × 10−5 (18) 5.52 × 10−5 (18) 5.52 × 10−5 (18)
kin s–1 2.31 × 10−3 (18) 2.31 × 10−3 (18) 2.31 × 10−3 (18)
Tumor
CAgtot nM 332 (32) 440 (33) 460 (9) 23.2 (9) 230 (9) 10−3 nM ≈ 1 rec/cell
φe 0.4 0.4 0.4 0.4 0.4 assumed
φ+ 0.6 0.6 0.6 0.6 0.6
φ− 0 0 0 0 0
Plasma PK
α 0.204 (26) 0.51 (2) 0.52 (3) 0.51 (2) 0.52 (3) Fit from figure
β 0.796 (26) 0.59 (2) 0.48 (3) 0.59 (2) 0.48 (3) Fit from figure
τα h 0.16 (26) 1.84 (2) 1.48 (3) 1.84 (2) 1.48 (3) Fit from figure
τβ h 28.88 (26) 58.88 (2) 151.8 (3) 58.88 (2) 151.8 (3) Fit from figure
ADC properties
DAR0 2.3 (2) 4 (9) 4 (9) 4 (9)
αDAR 0.174 (2) 0.1 (3) 0.1 (3) 0.1 (3) Fit from figure
βDAR 0.846 (2) 0.9 (3) 0.9 (3) 0.9 (3) Fit from figure
τα, DAR h 5.03 (2) 1.03 (3) 1.03 (3) 1.03 (3) Fit from figure
τβ, DAR h 377.5 (2) 156.78 (3) 156.78 (3) 156.78 (3) Fit from figure
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payload levels are almost constant and non-zero due to the
SBE. In Fig. 5b, a total dose of 10 mg/kg was simulated with 1
mg/kg of DAR = 4 and 9 mg/kg of DAR = 0. These values
result in the same total payload dose, but with the lower
average DAR value of 0.4. Gradients are less steep for cells
near the vessels with overall higher levels of payload for cells
distant from the vessel because of direct cell targeting due to
the increased penetration distance of the higher dose. With
increasing payload diffusivity, overall cellular exposure de-
creases due to increasing payload washout. Figure 5c shows
computed values of payload AUC in blood up to time t.
Corresponding results for the 10 mg/kg dose (Fig. 5d) are
similar, indicating a weak sensitivity to DAR when the total
payload dose is fixed.

Heterogeneous Bystander Effect (HBE). When a fraction
of the cell population is antigen negative (Ag−, i.e., φ– > 0),
the conditions that permit the occurrence of the SBE also
lead to a HBE. Illustrating the combined effects of the SBE

and the HBE, Fig. 6 shows values of Cint
max averaged over

intervals of distance to the nearest vessels in Ag+ cells and
Ag– cells, for different values of φ– (10%, 50%, 70%) and
different doses (1, 5, 10 mg/kg). In all cases, the number of

receptors per cell remains fixed. In Fig. 6a–c, values of Cint
maxin

Ag+ cells decrease with increasing distance to the nearest
vessel, as a consequence of the binding site barrier. For lower
percentages of Ag+ cells, the same quantity of ADC binds to
fewer Ag+ cells, resulting in higher concentrations of
intracellular payload. The fractional antigen saturation was
computed for cells closest to the vessel for each percentage of

Ag+ cells and dose (see Fig. 6 caption). As a result of partial

saturation, values of Cint
maxat tissue points close to vessels do

not increase in proportion to dose.
In Fig. 6a–c, intracellular payload in Ag– cells is seen to

be independent of the percentage of antigen expression. This
occurs because antigen saturation is incomplete, and all
available ADC is catabolized independent of the percentage
of Ag+ cells, as is the amount of free payload released into the
extracellular space (results not shown). The free payload
diffuses readily in the extracellular space and results in
essentially uniform uptake by Ag+ and Ag– cells at different
distances to the nearest vessel. For 90% Ag+ cells and all
doses, the payload reaching cells approximately 75 μm or
more from the nearest vessel is a consequence of the SBE.
For lower percentages of Ag+ cells, payload reaches this
distance from combined effects of the SBE and ADC binding,
due to the greater penetration distance of free ADC. With

higher doses (Fig. 6b, c), gradients in Cint
max are less prominent

because ADC binding to Ag+ cells near the vessels saturates,
allowing more ADC to diffuse to distant cells. In Ag– cells,

Cint
max increases linearly with dose because cellular efflux and

uptake of free payload are assumed to be first order.
With regard to therapeutic effectiveness, it is relevant to

consider the minimum value of Cint
max attained within the tissue

domain, since cells receiving the lowest exposure are more
likely to survive treatment. Figure 7 shows the spatial

minimum values of Cint
max in Ag+ and Ag– cells for doses of

1, 5, and 10 mg/kg. These values increase linearly with dose in
Ag– cells, but the increase is non-linear for 30% Ag+ cells,

Table III. Parameters for Bystander Effect Simulations

Parameter Units Fig. 5 Fig. 6 Notes

Transport
DADC μm2/s 10 15
Dpayload μm2/s 1,10,100 100 Varies, see Fig. 5
PADC μm/s 0.003 0.003
Ppayload μm/s 1 1
Kinetic
kon (nM s)–1 2 × 10–4 2 × 10–4

koff s–1 10–5 10–5

kint s–1 10–4 10–4

kdeg s–1 10–5 10–4

kout s–1 10–4 10–4

kin s–1 10–3 10–3

Tumor
CAgtot nM 400 500
φe – 0.4 0.4
φ+ – 0.6 0.3, 0.5, 0.9
φ− – 0 0.7, 0.5, 0.1 Varies, see Fig. 6 caption
Plasma PK
α – 0.4 0.4 *Shorter beta phase half-life for faster simulation time
β – 0.6 0.6
τα h 2 2
τβ h 60* 60*
ADC properties
DAR* – 4,0.4* 1 *Effective average DAR resulting from

combination of DAR = 4 and DAR = 0 dose.
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because more ADC is available to distant cells due to
saturation of surface antigen binding. For higher
percentages of Ag+ cells, the dependence on dose is almost
linear and similar to that predicted for Ag– cells.

DISCUSSION

ADCs have shown strong potential for selective killing of
tumor cells both in vitro and pre-clinically in vivo, but success
in demonstrating clinical efficacy against solid tumors has
been limited. As of 2017, over 60 clinical trials using ADCs
for the treatment of solid tumors were reported, but nearly
half have been stopped and few are in phase III (38).
Currently, only one ADC is approved for the treatment of
solid tumors (trastuzumab emtansine). The complex transport
and kinetic properties of ADCs within solid tumors present
significant challenges for achieving efficacy. Notably, limited
penetration of ADCs from vessels into tumor tissue, i.e., the
binding site barrier, results in heterogeneous distributions of

ADC within the tumor. Some ADCs can induce a bystander
effect, in which payload released from a degraded ADC
within a cell is taken up by neighboring cells. Bystander
effects have potential therapeutic benefits, as they can cause
exposure to toxic payload of cells that are beyond the binding
site barrier (the spatial bystander effect) or that do not
express the target antigen (the heterogeneous bystander
effect), but their effects are difficult to predict in vivo. It
remains unclear whether bystander effects are even desirable
for ADCs and, if so, which design options should be chosen in
combination to create the maximum therapeutic index.

In view of the challenges mentioned above, a systems
pharmacology model based on reaction diffusion processes is
presented here as a tool to support preclinical ADC drug
development by predicting cellular exposure to payload in
solid tumors. The model simulates the transport and kinetics
of ADCs in a tumor region with realistic vessel network
geometry and accounts for convective delivery of ADC to the
tumor, ADC diffusion within the tumor, ADC-antigen
binding and internalization, intracellular degradation of the
ADC, cellular release of payload, uptake of payload by
neighboring cells, and payload washout by blood vessels. The
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Fig. 3. Intratumoral antibody distributions. a Comparison between results of Rhoden et al. (26) and model
simulations of antibody distribution in a solid tumor for doses 2, 15, 50, 100, and 500 μg of the sm3e
antibody. Experimental data: relative mean fluorescent intensity (MFI). Model predictions: fractional
antigen saturation defined as (total antibody)/(total antigen), where total antibody is the sum of bound
antibody and free antibody. b–d Predicted spatial distributions of antibody concentration in a plane through
the tissue domain for doses 5, 15, and 50 μg of antibody. Black and gray lines show projections of vessel
positions. Vessels whose midpoints are within 50 μm of the contour plane are shown in gray. Parameters
values are listed in Table II
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model utilizes parameters from the literature and uses fitted
parameters only for the time course of ADC in plasma. The
model was validated by showing agreement between model
predictions and experimental observations from previous
studies that examined the binding site barrier and
intratumoral payload concentrations. Simulations were per-
formed to analyze the bystander effects and their dependence
on payload and tumor properties. The model provides a
general framework that can be customized to the properties
of a specific ADC and tumor. More precise parameterization
can be achieved by designing experiments for the purpose of
quantifying unknown transport and/or kinetic parameters
(18,35).

Model predictions simulating the experimental condi-
tions of Rhoden et al., Alley et al., and Li et al. (2,9,26)
showed good agreement in predicting various spatial and
temporal ADC-related quantities. In Rhoden et al., the
relative magnitudes between the experimental fluorescent
intensity of the sm3e antibody and the model prediction of
antibody concentration relative to distance to the nearest
vessel are in close agreement. The model quantitatively
distinguishes between saturating and sub-saturating doses
and accurately predicts gradients in concentration as com-
pared with fluorescent intensity. The discrepancy in the
predictions for the lowest dose can be possibly explained by
a background level of fluorescence which influences the
relative difference in the fluorescent signals. Model predic-
tions for Li et al. show excellent agreement for intratumoral
concentration of payload using cAC10-vcMMAE, but poorer
agreement for h1F6-vcMMAE with model predictions ap-
proximately twofold higher than observations (Fig. 4b). In
this case, the values of kon and kint used for this prediction
were measured for CD70 but not h1f6 and may not be
reasonable surrogates for the kinetics of h1f6-CD70 complex.
In contrast, these parameters were measured for cAC10-
CD30 which likely correlates with the more accurate model
prediction for cAC10-vcMMAE. Predictions for the time
course of intratumoral concentration (Fig. 4a, c) are also in
close agreement with experimental observations of Li et al.
and Alley et al. Both model predictions show a slightly
delayed accumulation of intratumoral payload, suggesting
that one or more of the binding, internalization, or antibody
degradation rates are underestimated.

The model was used to analyze bystander effects,
including the SBE, defined here as the exposure of cells
distant from the vessels to freely diffusing payload, and the
HBE, defined here as exposure of Ag– cells to freely diffusing
payload. The SBE was investigated by predicting the
dependence of average peak intracellular concentration in
cells on distance to the nearest vessel, for various payload
diffusivities and doses, with total payload remaining fixed
(Fig. 5). The HBE was investigated by predicting exposure of
both Ag+ and Ag– cells to payload, for various Ag– cell
fractions and doses (Fig. 6).

Several notable findings arise from the simulations: (i)
Payload diffusivity strongly influences the extent to which the
SBE results in increased payload exposure to distant cells.
Relative to low payload diffusivities (< 10 μm2/s), higher
diffusivities (> 10 μm2/s) result in lower payload levels in cells
distant from the vessels, as a result of payload washout in
blood. These results highlight the importance of considering

a

b

c

Fig. 4. Intratumoral payload concentrations. a Model predictions and
experimental results from Alley et al. (2) of intratumoral payload
time course for a 1.5 mg/kg dose of h1f6-mcMMAF. b Model
predictions and experimental results from Li et al. (9) of intratumoral
concentration of MMAE from two ADCs (cAC10-vcMMAE, h1F6-
vcMMAE) for three doses (0.5, 1, 3 mg/kg) measured at 72 h. c
Model predictions and experimental results from Li et al. (9) of
intratumoral payload time course for a 2 mg/kg dose of cAC10-
vcMMAE. Parameter values are listed in Table II
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the diffusive properties of the payload in the interstitial space,
as described in Khera et al. (22). In that study, a potential
optimal diffusivity was evidenced. No such optimum arises in
this work, possibly because of the different vascular geometry
assumed here or because of different lipid/aqueous partition
coefficients of the payloads considered. (ii) Co-administration
of antibody without payload together with ADC increases the
number of cells receiving payload, for a given total payload
dose. This result is consistent with Cilliers et al. (20) where T-
DM1 was co-administered with increasing doses of
trastuzumab to increase tumor penetration. (iii) The payload
washout when antibody without payload is co-administered is
nearly identical to that without co-administration, suggesting
that the therapeutic window can be increased since potential
toxicity from free payload washout remains unchanged with
co-administration. (iv) Exposure of Ag– cells to payload is
insensitive to the percentage of Ag– cells. If the ADC dose is
sufficiently low such that saturation is not complete, then all

available ADC binds to target antigens and the same amount
of payload is expected to be released for passive uptake into
Ag– cells. This finding is consistent with previous studies
showing approximately the same reduction in tumor size for a
range of percentages of Ag– cells (9,10).

Several considerations should be taken into account
when interpreting the results. First, the simulations presented
here are based on a single vascular network geometry derived
from observations of a mammary carcinoma implanted in a
rat. The tumor is assumed to be well perfused, which is
reasonable for small tumors, but may not apply to larger
ones, which often contain necrotic cores. Relative to previous
models using compartmental models or a Krogh cylinder, the
present model has the advantage of providing a realistic
representation of the heterogeneity of vascular structures in
tumors, and the resulting wide distribution of distances of
tissue points to the nearest vessel (Fig. 2b). While it does not
represent the full range of variability in tumor vascular

a b

c d

Fig. 5. Cellular exposure to payload and payload washout. a, b Peak intracellular payload
concentration (Cint

max) averaged over 10-μm intervals of distance from the nearest vessel, for
three levels of payload diffusivity (Dpayload = 1, 10, 100 μm2/s). a Dose = 1 mg/kg, DAR = 4.
b Dose = 1 mg/kg, DAR = 4 together with 9 mg/kg, DAR = 0, resulting in an effective
average DAR = 0.4. c, d Area under the payload concentration curve in plasma at time t,
AUC(t), due to payload washout. c Dose = 1 mg/kg, DAR = 4. d Dose = 1 mg/kg, DAR = 4
together with 9 mg/kg, DAR = 0. No DAR-dependent deconjugation was assumed.
Parameter values are listed in Table III. In each case, results are also shown for a payload
with no bystander effect
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structure and perfusion, the conclusions of this study are not
dependent on the specific network simulated here, and similar
results would be expected for other network geometries and
flow distributions. Second, the model uses the metric Cint

max
while in reality, the actual metric is likely a combination of an
intracellular AUC and Cint

max, i.e., exposure to some minimum
concentration for some minimum duration of time. The use of
Cint

maxsimplifies the analyses, but a more precise metric could
be defined since concentrations are known at all tissue points
and time. Third, the model used here neglects the effects of
cell kill on the kinetics of payload release and on the resulting
bystander effects. In reality, tumor cells may undergo
apoptosis within the period considered in the simulations.

This would be especially important if there are relatively few
Ag+ cells. In this case, Ag+ cells would likely accumulate
higher concentrations of payload, which may decrease the
time to cell kill. After apoptosis, such cells would cease
internalizing and processing ADCs and therefore affect
overall cellular exposure to payload. In order to predict
these effects, the model could be combined with a spatially
dependent model for cellular pharmacodynamics to predict
overall tumor volume, since the predicted time course of
intracellular payload concentration at any given point in the
tissue is available. Lastly, the results are strongly dependent
on the assumed parameter values. The wide range of
potential kinetics for ADCs makes it difficult to extrapolate
parameters measured for a particular ADC or ADC

a

b

c

Fig. 6. Dependence of cellular exposure to payload on distance to the
nearest vessel, percentage of Ag+ cells, and dose. Values of Cint

max are
averaged over cells within 10-μm intervals of distance from the nearest
vessel, for 30%, 50%, and 90% Ag+ cells and correspondingly 70%,
50%, and 10% Ag− cells, and for doses of 1, 5, and 10 mg/kg. Bars
represent one standard deviation above the mean. The fractional
antigen saturation as defined in Fig. 3 caption was calculated for cells
within 10 μm to vessels: 0.15, 0.116, and 0.088 for 30%, 50%, and 90%
Ag+ cells at 1 mg/kg, respectively, 0.551, 0.448, and 0.36, for 30%, 50%,
and 90% Ag+ cells at 5 mg/kg, respectively, and 0.806, 0.681, and 0.574
for 30%, 50%, and 90% Ag+ cells at 10 mg/kg, respectively. Values of
Cint

maxfor 70%, 50%, and 10% Ag− cells are emphasized on the axes.
Parameter values are listed in Table III
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component to others. In this work, care was taken to identify
parameter values that matched the experimental conditions
of the study whenever possible.

The present work seeks to provide insights regarding the
potential clinical benefits of ADC bystander effects. The
choice whether the design of ADCs should include bystander
capabilities is a complex balance between efficacy and
toxicity. Mechanisms of toxicity may include free payload
washout, deconjugation of payload from the antibody in
circulation, non-specific ADC targeting, and hepatic clear-
ance. To build evidence for or against the use of bystander
payloads, these mechanisms should be quantified alongside
cellular exposure, which is itself highly dependent on the
characteristics of the ADC and the tumor. In general,
experiments providing estimates of the kinetic parameters
for a particular antibody, linker, payload, and cell line would
be of great benefit in the application of the present model in
support of decision making for design of ADCs.

CONCLUSION

ADCs have a complex design space based on the choice
of antibody, linker, and payload, and improved quantitative
tools for drug development are needed. Predicting the
effectiveness of ADCs in solid vascularized tumors requires
consideration of spatial gradients in concentration around
vessels. The model presented here provides a novel approach
for predicting the distribution of ADCs and payloads in
tumor tissues including bystander effects, taking into account
the heterogeneous structure of the tumor vasculature and the
kinetics of the ADC and payload. The model has potential
application in the development of more effective ADCs for
use in treating solid tumors.
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