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Abstract. It is envisaged that application of mechanistic models will improve prediction of
changes in renal disposition due to drug-drug interactions, genetic polymorphism in enzymes
and transporters and/or renal impairment. However, developing and validating mechanistic
kidney models is challenging due to the number of processes that may occur (filtration,
secretion, reabsorption and metabolism) in this complex organ. Prediction of human renal
drug disposition from preclinical species may be hampered by species differences in the
expression and activity of drug metabolising enzymes and transporters. A proposed solution
is bottom-up prediction of pharmacokinetic parameters based on in vitro-in vivo extrapola-
tion (IVIVE), mediated by recent advances in in vitro experimental techniques and
application of relevant scaling factors. This review is a follow-up to the Part I of the report
from the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25th–29th October
2015) which focuses on IVIVE and mechanistic prediction of renal drug disposition. It
describes the various mechanistic kidney models that may be used to investigate renal drug
disposition. Particular attention is given to efforts that have attempted to incorporate
elements of IVIVE. In addition, the use of mechanistic models in prediction of renal drug-
drug interactions and potential for application in determining suitable adjustment of dose in
kidney disease are discussed. The need for suitable clinical pharmacokinetics data for the
purposes of delineating mechanistic aspects of kidney models in various scenarios is
highlighted.

KEY WORDS: active renal excretion; human kidney transporters; human renal drug clearance; kidney
disease; non-hepatic drug metabolism.

INTRODUCTION

Renal metabolism and excretion can be important deter-
minants of the local and systemic exposures of drugs and their
metabolites. The rates at which drugs and metabolites are

excreted from the blood and tubular cells into urine are
determined by various processes: glomerular filtration, active
transport into and out of proximal tubule cells, and passive
permeation across the nephron tubular epithelium. These
processes can be experimentally studies using a variety of
available in vitro techniques and systems, as described in Part I
of this review (1). However, quantitative translation of informa-
tion obtained from these in vitro systems using physiologically
based pharmacokinetic (PBPK) models is currently incomplete.
PBPK models are widely used during drug development to
address a variety of systems pharmacology questions, and can be
integrated with the in vitro-in vivo extrapolation (IVIVE)
paradigm (2). Mechanistic organ models, which may be
incorporated into PBPK models, can be used to account for
the interplay of enzymes, transporters and binding proteins/
lipids that determine drug concentrations of cells, tissues and
biological fluids. Mechanistic kidney models rely upon in-depth
quantitative knowledge of renal physiology to inform the many
different system parameters. Literature analysis of many of the
relevant elements of renal physiology was discussed in detail in
Part I of this review (1).
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The IVIVE approach uses physiologically relevant
scaling factors to scale in vitro data to the level of the tissue
or organ. As discussed below, these scaling factors are often
determined by measuring particular biological differences
between the in vitro system and the tissue/organ (or other
in vitro systems), but can also be determined in a more
empirical manner using clinical data. While other methods for
prediction of pharmacokinetic parameters, such as quantita-
tive structure-activity relationships (QSAR) and scaling from
preclinical species, may give adequate prediction accuracy,
IVIVE approaches based on physiological assumptions are
favourable because of the mechanistic basis and advantages
this approach brings (2). Further, species differences in the
function, expression or localisation of drug metabolising
enzymes and transporters in kidney is a potential limitation
of the interspecies scaling approach for certain drugs. In
particular, the human CLR for several drugs was poorly
predicted based on rat CLR, even after species differences in
fu,p and kidney blood flow had been accounted for (3). No rat
homologue exists for multidrug and toxin extrusion 2-K
(MATE2-K/SLC47A2) which is expressed at the apical
membrane of the proximal tubule cells in human kidney.
Furthermore, a number of organic anion transporting poly-
peptides (OATP) are expressed at the apical membrane of
proximal tubule cells in rat (e.g. Oatp1a1 [Slc21a1], Oatp1a3
[Slc21a4], Oatp1a6 [Slc21a13] and Oatp4c1 [Slc21a20; con-
flicting evidence concerning apical or basolateral membrane
localisation]), whereas OATP4C1 (SLC21A20) is expressed
at the basolateral membrane of proximal tubule cells in
human (Part I, Table II (1)). Validated mechanistic models
have the advantage in their ability to predict the impact of
pathophysiological changes, such as those encountered in
chronic kidney disease, or in population sub-groups that have
not been investigated in clinical studies. As a high proportion
of drugs (>40%) approved in 2013 and 2014 did not have
dose recommendations for severe renal impairment (4),
mechanistic models may guide the design of clinical studies
and dose recommendations (5).

The overall aim of this part of the review is to examine
the progress required to achieve quantitative predictions of
renal drug disposition using PBPK-IVIVE with specific focus
on the efforts to develop and validate mechanistic kidney
models. This will include the prediction of renal drug
metabolism and renal excretion as clearance routes. In
addition, attempts to use mechanistic models to predict renal
drug-drug interactions (DDI) and impact of kidney disease on
renal drug elimination will be critically assessed. The need for
generation of appropriate clinical data will be discussed and
implications for modelling discussed.

There is an increasing interest in the developmental aspects
of paediatric PBPK models, as illustrated in the recent paper
from European Medical Agency (EMA) on extrapolation to
paediatrics from adult data using mechanistic approaches (6).
However, this topic is not discussed in the current review.
Nonetheless, it is important to note that modelling of renal drug
disposition in paediatrics requires special consideration to
account for the maturation of renal function and ontogeny of
protein expression. For those interested in this topic, modelling
efforts and reviews have previously been reported (7–9).Another
topic outside the scope of the current review is research into renal

disposition in preclinical species. In this respect, it is important to
recognise that such research (e.g. knock-out mouse models) can
be used to understand the contributions of individual transporter
in the tubular excretion of drugs, and assessment of the rate-
limiting step (influx vs. efflux) in tubular drug secretion (10).

USE OF MODELS FOR STUDYING
PHARMACOKINETICS IN KIDNEY: CURRENT
STATUS AND IVIVE OPPORTUNITIES

Mechanistic models of renal drug excretion, static or
dynamic, need to account for the overall anatomical organisation
of the nephron. Various mechanistic kidney models have been
reported that allow simulation of different processes (filtration,
metabolism, transport, passive permeation) individually and in
combination. In general, static models typically consider filtra-
tion, secretion and/or reabsorption in isolation and as separate
mechanisms contributing to overall CLR (11–13). Conversely,
dynamic models that are comprised of compartments
representing physiological spaces (e.g. plasma, cells, tubular
filtrate) support simulation of drug concentrations within these
spaces. This allows for metabolism, passive permeability and
various transport processes to be considered simultaneously (14).
Understanding of intracellular drug and metabolite concentra-
tions through simulation can provide important insight into
potential liabilities with respect to nephrotoxicity and DDIs that
might otherwise not be obtained from clinical data alone.

Prediction of Renal Drug Metabolism Within PBPK
Paradigm

The scaling of in vitromicrosomal metabolism data using the
microsomal protein content as IVIVE scaling factor is widely
used for scaling of hepatic metabolism data (15). This approach
has also been adopted for the IVIVE of renal drug metabolism
(Table I). Overview of relevant in vitro systems and correspond-
ing scaling factors was discussed in detail previously (1).Although
a lack of suitable clinical data for assessment of IVIVE-based
predictions of renal drugmetabolism is a profound limitation (see
below for details), several examples of IVIVE of human kidney
microsomal metabolism data have been reported, mostly within
the last decade. Chronological data shown in Fig. 1 illustrate that
microsomal protein content measured in human liver, rat liver
and rat kidney were used for IVIVE of human kidney
microsomal metabolism data up until 2006. Since then, a
microsomal protein per gram kidney (MPPGK) value of
12.8 mg/g has most commonly been used, which is substantially
lower than the values reported for human liver (25,26). Scaling of
in vitro data generated in S9 and cytosol fractions is through
analogous scalars (S9 protein (S9PPGK) and cytosolic protein
(CPPGK) per gram of kidney; Table I). Due to a lack of CPPGK
data, the combination of the human MPPGK and the liver
cytosolic scaling factor has been applied for the IVIVE of renal
hydrolysis clearance data (e.g. mycophenolatemofetil) generated
in S9 fractions (16).

The scaling of in vitro data generated in recombinantly
expressed enzyme systems is performed using the relative
expression factor (REF), relative activity factor (RAF) or
inter-system extrapolation factor (ISEF) scaling factors (Ta-
ble I). Enzyme abundances were found to be between 7- and
11-fold and 19- and 43-fold higher in recombinant expression
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systems than in human kidney microsomes for uridine
diphosphate glucuronosyltransferase (UGT) 1A9 and
UGT2B7, respectively (17,27,28). These data suggest that
for calculation of the appropriate REF values for IVIVE,

enzyme abundance data should be collected for every batch
of recombinantly expressed UGT. In addition, the presence of
inactive forms of recombinant UGTs in insect cell expression
systems may invalidate the assumption of proportional

Table I. Summary of Scaling Factors Proposed for IVIVE of Renal Drug Disposition

Scalar (abbreviation) [units] Type of in vitro data to scale (units) Literature values and applications

Microsomal or cytosolic protein
per gram kidney
(MPPGK or CPPGK)

[mg protein/g kidney]

Metabolic activitya

(per min/mg microsomal or
cytosolic protein)

• MPPGK—12.8 mg/g commonly used
(Fig. 1), mostly applied to glucuronidation.
See also Part I, Table V (1)

• CPPGK—no relevant studies found
9000 g supernatant (S9) protein

per gram kidney (S9PPGK)
[mg protein/g kidney]

Metabolic activity
(per min/mg S9 protein)

• 121 (value for liver) and 93.5 mg/g kidney
(based on MPPGK (12.8 mg/g)
and CPPGL (80.7 mg/g)) used to scale
hydrolysis CLint data from kidney S9 (16)

Relative expression factor (REF)
[Dimensionless, or refers to
different scales data
may be normalised to
(e.g. mg protein/million cells)]

Activitya in expression systemsb

(per min/mg microsomal protein;
per min/mg protein; per min/million
cells; per min/cm2)

• rhUGT1A9 Supersomes: 0.1 (MHKM) (17)
• rhUGT1A9 Supersomes: 0.023 (MHKM) (17)
• Empirically determined valuesc of 5.3
(HEK-OAT3, pemetrexed (18)), 3 and 2.3d

(HEK-OCT2, metformin (19)) from plasma
concentration data
• Empirically determined valuesc of 3 and 1d

(HEK-MATE1, HEK-MATE2-K, metformin (19)),
from urinary excretion data

Relative activity factor (RAF)
[Dimensionless, or refers to
different scales data
may be normalised to
(e.g. mg protein/million cells)]

Activitya in expression systemsb

(per min/mg microsomal protein;
per min/pmol of specific protein;
per min/mg protein; per min/million
cells; per min/cm2)

• rhUGT1A9 Supersomes: 1.3 (Xenotech HKM,
propofol (20)) and 1.6 (MHKM, propofole)

• rhUGT2B7 Supersomes: 1.64 (Xenotech HKM,
AZT (20)), 2.6 (MHKM, morphine-3-gluc.e) and
3.4 (MHKM, morphine-6-gluc.e)

• Applied for laropiprant (Xenotech HKM (20))
• Probe substrates lacking for transporters

Absolute protein expression
or abundance scalar

[pmol enzyme/mg protein]

Activitya in expression systemsb

(per min/pmol protein)
• Several studies for UGT1A6, 1A9 and 2B7
(See Part I (1))

• Data recently reported for renal transporters (21)
Inter-system extrapolation factor

(ISEF)
[Dimensionless]

Activitya in expression systemsb

(per min/pmol protein)
• rhUGT1A9 Supersomes: 15 (MHKM, propofole)
• rhUGT2B7 Supersomes: 100 (MHKM,
morphine-3-gluc.e) and 86 (MHKM, morphine-6-gluc.e)
• Not yet applied to different drugs

Surface area
[cm2]

Activitya (per min/cm2) or permeabilityf

(cm/s) across kidney cellsg
• Applied for scaling Papp data for passive tubular
reabsorption and secretion (19, 22, 23)

Proximal tubule cells
per gram kidney (PTCPGK)
[million PTC/g kidney]

Activitya in kidney cellsg

(per min/million cells)
• Implemented in SimCYP MechKiM, but
physiological data lacking (14)

• Estimates range 30–09 million PTC/g kidney (1)
Kidney weight
[g]

Uptake into precision cut
kidney slices

CLint (mL/min/g kidney)

• Application for kidney slice uptake resulted
in 10-fold under-prediction (24)

CLint intrinsic clearance, CPPGL cytosolic protein per gram of liver, HEK human embryonic kidney cells, HKM human kidney microsomes,
MATE multidrug and toxin extrusion transporter, MechKiM mechanistic kidney model in SimCYP simulator, MHKM mixed (i.e. cortex and
medulla) human kidney microsomes, OAT organic anion transporter, OCT organic cation transporter, Papp apparent permeability, (rh)UGT
(recombinantly expressed human) uridine glucuronosyltransferase
aActivity includes intrinsic clearance (CLint; μL/min/?) and maximum rate of reaction (Vmax; nmol/min/?), where ? depends on the way data
are normalised (e.g. per mg protein or per million cells etc.)
b REF ¼ In vivo expression or abundance

In vitro expression or abundance, RAF ¼ In vivo activity
In vitro activity and ISEF ¼ In vivo activity

In vitro activity � Protein abundance in vivo, in vitro expression systems are
recombinantly expressed drug metabolising enzymes, and transfected cell lines and derived membrane vesicles
cEmpirically determined scalar may also be identified as RAF
dBefore and after model refinement accounting for electrogenic OCT2 mediated transport
eCalculated using data reported in Knights et al. (17)
f Permeability can be the apparent permeability (Papp) or be the membrane permeability (Pmem), and may refer to the total drug or specifically
the unionised/ionised drug
g In vitro kidney cells refers to immortalised kidney cell lines or primary cultured renal tubule cells
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abundance-activity relationship, which the REF-based scaling
relies upon (17,29). These considerations, along with current
challenges associated with quantitative proteomics (e.g. not
common practice, technical challenges), suggest that a more
pragmatic approach is to determine RAF using selective
probe substrates. UGT probes have been proposed
for UGT1A9 (e.g. propofol) and UGT2B7 (e.g. 3′-azidothy-
midine) (20,30,31), although selectivity remains a challenge
(1).

Perfusion rate-limited kidney models, analogous to those
traditionally used for hepatic metabolism, have been applied for
IVIVE of renal metabolic clearance (17,20,25,32). This includes
limited use of PBPK models, allowing for simulation of plasma
concentration-time profiles (33). There is a trend for under-
prediction of overall glucuronidation clearance using IVIVE,
even when both hepatic and renal glucuronidation are
accounted for (17,32,33). Use of the well-stirred model may
bias IVIVE predictions for renal metabolism (17,32), although
no suitable alternative, kidney-specific, model has yet been
proposed. Conversely, kidney-specific permeability-rate-
limiting mechanistic models of drug metabolism, suitable for
investigating excretion-metabolism interplay of drugs
and metabolites (e.g. enalapril), have been reported (34,35). In
such models, the impact of co-localised expression (in the cortex
or medulla, or particular tubular region) of relevant enzymes
and transporters could be an important consideration. There-
fore, although mixed kidney microsomes (containing both
medulla and cortex) are proposed as suitable when using
the well-stirred model (17), kidney cortex microsomes, as well
as cortex-specific MPPGK, could be more appropriate for
certain modelling tasks involving IVIVE, depending on the
question of interest.

Prediction of Renal Excretion of Drugs Within PBPK
Paradigm

Filtration clearance can be predicted relatively easily,
from the glomerular filtration rate (GFR) and the fraction
unbound of drug in plasma (fu,p), whereas predicting secre-
tion and/or reabsorption is more challenging. Various ap-
proaches for IVIVE of transporter mediated secretion or
reabsorption have been proposed that allow for scaling of
data from different in vitro assay formats (Table I). In order
to scale CLint or Vmax in vitro data, not only must appropriate
scaling factors be available, but the in vitro data must be
normalised (e.g. per mg protein, per million cells, etc.) in a
way that allows for IVIVE. If Km values are available from
in vitro experiments, these can typically be used directly as
model parameters, providing appropriate analysis of the
in vitro data has been performed, as discussed in Part I
(1,13,36,37). Another important consideration is that values
for transporter kinetic parameters often differ widely between
experimental systems and between laboratories, and this can
translate into uncertainty in model parameters (38).

The scheme presented in Fig. 2 is the proposed approach
for IVIVE of activity data generated using transfected cell lines
that is implemented within the mechanistic kidney model
(MechKiM) module of the SimCYP simulator. This approach
uses the REF, PTCPGK and kidney weight scaling factors.
PTCPGK is currently of limited use as a scaling factor due to a
lack of relevant experimental data available (1). Likewise, the

appropriate abundance data that are needed to calculate REFs
for renal drug transporters (i.e. abundances in human kidney
and in vitro systems) are lacking, and therefore the proposed
IVIVE approach is not currently feasible (1). Instead, empirical
optimisation of transporter activities or REF/RAF parameters
using clinical data has been applied to adequately describe
clinically observed CLR (18,19,39) (Table I). In some instances,
as illustrated in the case of veliparib, REF scaling was not
necessary for successful IVIVE of CLR (40). In this study. the
uptake activity in 1 mg protein in transfected HEK cells was
assumed to be equivalent to the activity found in 1 million
proximal tubule cells in vivo, although justification for this
assumption was not given.

In contrast, sufficient physiological data are available for
scaling in vitro data using surface area to predict CLR,sec (22).
The success of this approach may be hindered by any
potential differences in the characteristics (e.g. protein
expression, cell morphology) of the in vitro system and the
kidney in vivo, if these are not accounted for. However,
scaling of Papp data from the Lewis lung carcinoma pig kidney
(LLC-PK1) cell line by surface area was used to predict CLR

of net secreted drugs with reasonable success using the well-
stirred model (22). CLint, Vmax (when expressed per cm2) and
membrane permeability (expressed cm/s) data obtained using
proximal tubule cell monolayers (e.g. (41,42)) could all be
scaled by surface area for CLR,sec predictions, although has
not yet been reported in the literature.

For IVIVE of uptake rates into kidney tissue slices,
kidney weight is used as a scaling factor (Table I). Empirical
correction was required in order to recover observed CLR

data following IVIVE of kidney slice uptake data (43). This
empirical correction was explained mechanistically as ac-
counting for blood flow-mediated perfusion which is present
in vivo but not in the in vitro assay.

Reported models of active secretion and reabsorption
have different structures and levels of complexity (14,44–46).
Both active secretion and reabsorption can be described using
well-stirred or parallel tube models, relating the intrinsic
secretion clearance to the renal blood flow (secretion), or the
tubular filtrate flow (reabsorption) (11,22). Few studies have
compared different structures or refined versions of mecha-
nistic kidney models in specific scenarios (19,37), and further
studies of this nature are recommended.

Mechanistic models have recently been developed that
incorporate IVIVE of passive tubular reabsorption from
in vitro Papp data (22,23). In these models, tubular surface
areas are used as IVIVE scaling factors to convert Papp data
to CLint (Table I). An important physiological feature of the
kidney is that the tubular filtrate formed at the glomerulus
decreases in volume of the along the length of the nephron
due fluid reabsorption as its composition changes to become
the urine. Models of drug reabsorption in particular should
account for the different tubular filtrate flow rates found
along different regions of the nephron. This can be achieved
by either mathematically describing the simultaneous reab-
sorption of water and drug along the length of the tubule, or
using a model with multiple compartments that each repre-
sents a region of the tubule with respective tubular flow rate
value (14,23,47–50). The latter approach was applied in
models of transporter mediated renal reabsorption of γ-
hydroxybutyric acid in rat (36,44). The advantage of using a
multiple compartment model of passive tubular reabsorption
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is that it can be readily extended to account for metabolism
and transport processes in particular compartments. Further
validation work and refinements are required for these
models of tubular reabsorption to ensure they adequately
describe the impact of changes in urine flow rate and pH on
CLR for relevant drugs. Notably, altering the tubular filtrate
pH parameters in the dynamic kidney models (e.g. MechKiM
in the SimCYP simulator) will change the fraction unionised
and subsequently the overall permeability of the total drug
(14); however, there is no possibility in this model to specify
the pH at which the in vitro data were generated.

Prediction of Renal Drug-Drug Interactions Within PBPK
Paradigm

Investigation of potential drug-drug interactions during
drug development is recognised as an important step towards
proper assessment of a drug’s safety and effectiveness (51).
Decision trees have been proposed for prediction of renal
DDIs (51–53) with the main aim to prioritise in vitro and
clinical DDI studies, ensuring appropriate labelling require-
ments are met. Recent studies have reported static models

(54,55) and a PBPK kidney model (14) for prediction of
transporter mediated renal DDIs. By using the same trans-
porter kinetics parameters as those reported for the PBPK
models (18,39,40), area under the curve (AUC) ratios for
renal transporter DDIs with five victim drugs were predicted
well using the static model (54) (Fig. 3). AUC ratio
predictions were generally in agreement with predictions
based on the PBPK approach for three inhibitors investi-
gated, with neither approach providing a clear advantage
over the other (Fig. 3). The analysis highlights that if kidney is
not relevant with respect to pharmacology or drug toxicity,
static models may be sufficient for assessing clinical relevance
of renal DDIs mediated by uptake transporters (54,55). The
advantages of PBPK kidney models are more apparent when
simulating complex DDIs involving multiple organs and
mechanisms, including metabolism-transport interplay. The
static approach does not support consideration of relation-
ships between uptake, intracellular drug concentrations and
efflux of the victim drug. Similarly, when perpetrator drugs
exhibit permeability-limited pharmacokinetics, concentrations
in relevant compartments should be considered, i.e. intracel-
lular concentrations for efflux transporters and filtrate

Fig. 1. Chronological presentation of literature reporting experimental measurement of the microsomal protein content in kidney (open
boxes) and liver (shaded boxes) for human (blue boxes) and rat (red boxes) (lower section), as well as studies using some of these data to
inform the MPPGK scaling factor in order to perform IVIVE of human kidney microsomal metabolism data (upper section). Arrows
indicate the cited source of microsomal protein content data used to inform the MPPGK scaling factor for each study. Full references are
listed in the supplementary material
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concentrations for apical uptake transporters. Therefore in
cases where there is simultaneous inhibition (or induction) of
both uptake and efflux transporter (18,39,40), or renally
formed metabolites are perpetrators (as proposed for DDI
between non-steroidal anti-inflammatory drugs and metho-
trexate (57)), the PBPK approach would be favoured for DDI
assessment.

Assessing Dosage Adjustment in Chronic Kidney Disease

Covariate relationships between pharmacokinetic (and/or
pharmacodynamics) parameters and demographic information
may be used for designing appropriate dose adjustment
recommendations for particular population groups (58). For
example, statistical analyses of data from clinical pharmacoki-
netics studies using patients with and without chronic kidney
disease can be used to determine whether any relationships
between pharmacokinetic parameters (e.g. CLR, CL, AUC, V)
and markers of renal function (e.g. creatinine clearance (CLCR)
or estimated glomerular filtration rate (eGFR)) exist (59). Such
statistical relationships are based on pharmacokinetic parame-
ters obtained from non-compartmental analysis, or in some
cases population-pharmacokinetic compartmental modelling is
used. While these approaches are currently used during drug
development and supported by regulatory bodies (60,61), there
are certain limitations. In particular, as limited mechanistic
insight is obtained using the statistical approach, predictive
extrapolation to untested population groups (e.g. paediatric
patients with renal impairment), and therapeutic interventions
(e.g. polypharmacy in renally impaired patients) is not possible.
By contrast, the possibility to extrapolate into untested scenarios
is a key advantage of the PBPK approach (2,5). In addition, the
PBPK approach allows for the key mechanisms underpinning

altered pharmacokinetics in different pathophysiological states
(e.g. diabetes mellitus, acute kidney disease, augmented renal
clearance in critically ill, chronic kidney disease) to be investi-
gated and better understood. Regulatory bodies appear open to
the prospect of using of PBPKmodels for prediction of the effect
of renal impairment and consideration of any dosage adjustment
in this patient population (39,60).

Studies reported to-date using PBPK models have mostly
been limited to investigating impact of changes in GFR and
plasma protein binding in renally impaired patients on the CLR

(39,40,62). However, CLR may reduce linearly with GFR for
many drugs, even when secretion or reabsorption contributes, in
accordance with the intact nephron hypothesis (63,64).

Fig. 2. Proposed IVIVE scaling approach for renal transporter data implemented in the SimCYP MechKiM module. With kind permission
from Springer Science+Business Media: Neuhoff et al. (14), Fig. 7.4, page 165.

Fig. 3. Comparison of predictions of AUC ratio for renal uptake
transporter mediated DDIs with observed data (39,56). AUC ratios
were predicted using the static model (54), or taken from published
predictions using PBPK model (18,39,40). Full details are listed in the
supplementary material, Table S-I
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Accounting for reduced tubular secretion in a physiological
manner is challenging, as there are a number of plausible
causative mechanisms (65). A simulation study found that
reducing the PTCPGK parameter in MechKiM by 15-fold was
needed, in addition to changing GFR, to recover the observed
AUC ratio between severe renal impairment and normal renal
function subjects (39). However, other potential causes of
reduced renal secretion include a downregulation of transporter
expression, increased internalisation of renal drug transporters,
and inhibition of transporters by uremic toxins that can
accumulate in renal impairment (66–68). As accounting for
reduced tubular secretion in a mechanistic manner is challeng-
ing, an alternative approach is to empirically estimate the extent
that tubular secretion is reduced for several drugs, and apply this
as a disease-specific scaling factor (69). An analogous approach,
involving meta-analysis of relevant clinical data, has been used
to understand the impact of renal impairment on the pharma-
cokinetics of drugs where renal elimination is not the dominant
mechanism (e.g. telithromycin) (70). Some additional consider-
ations for PBPK models of renal impairment are discussed
below, including the use of virtual populations, relevance of
different markers of renal function, and challenges associated
with system data collation.

PBPK modelling software such as GastroPlus and
SimCYP feature predefined virtual populations and associ-
ated system parameters. The categorisation of the moderate
and severe renal impairment virtual populations in the
SimCYP simulator is based upon the updated GFR cut-off
values suggested by the 2010 FDA draft guidance (61,71).
However, the cut-off values for these categories are not
necessarily relevant to pharmacokinetics, as they were
determined for the purpose of diagnosis of kidney disease
and the need for therapeutic intervention. In contrast, the
more recent guidelines from EMA and recommendations
from Kidney Disease: Improving Global Outcomes (KDIGO)
suggest that categories used in dose adjustment recommen-
dations should be based upon cut-off values derived from
understanding pharmacokinetics and exposure-response
(60,72). This approach is particularly important for drugs
with narrow therapeutic index such as digoxin (73) and can be
achieved by determining the relationships between renal
function and pharmacokinetic parameters, considering each
as continuous variables rather than categorical variables (72).
When using PBPK models, it would therefore be more
pragmatic to simulate patients drawn from a single virtual
renal impairment population, rather than multiple popula-
tions. This should allow more flexibility in data analysis and
simpler comparison with clinical data.

Several approaches are available for assessing kidney
function, and the advantages and limitation of these were
discussed in part I (1). Dosage adjustment recommendations
for patients with impairment renal function have historically
been based upon creatinine clearance (CLCR), which can
either be measured directly following urine collection or
estimated from serum creatinine concentrations (61). Dosage
adjustment based on estimated glomerular filtration rate
(eGFR) is also included in the draft FDA guidance for

industry (61), when eGFR is calculated using the modification
of diet in renal disease (MDRD) equation from serum
creatinine. More recently, a number of equations were
developed by the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) to estimate GFR from serum
creatinine and/or serum cystatin C (another endogenous
substance eliminated primarily by glomerular filtration) (74).
Subsequent publications have suggested that CKD-EPI
equations are superior to MDRD and C-G equations
(75,76), and therefore CKD-EPI equations may become
more widely used in clinical settings. The latest trend appears
to be towards equations that more accurately and precisely
estimate GFR, and away from C-G equation for estimating
CLCR (60). The EMA guidelines propose that the modelling
and subsequent dosage adjustment recommendations should
have the flexibility to use eGFR or estimated CLCR (60). This
trend should be encouraged particularly by those developing
and using mechanistic kidney models. This is because GFR is
a key system parameter in mechanistic kidney models (Part I,
(1)), and increased accuracy of physiological data in relevant
patients should improve predictive performance of models.

Beyond GFR, lack of relevant physiological data under-
mines the use of current kidney PBPK models for investigat-
ing pharmacokinetic changes in kidney disease (Part I, (1)).
Collating these data is challenging, especially because
aetiological and/or comorbidity differences between patients
with kidney disease could affect the extent or rate at which
certain physiological parameters change (58,77,78). This was
noted for kidney weight in Part I (Table IV (1)), and it is also
proposed that kidney damage can occur without changes in
GFR, due to compensation by hyper-filtration in the remain-
ing functional nephrons (79). Furthermore, recent attempts to
standardise definitions and classifications of chronic kidney
disease and acute kidney injury may confound the collation
and categorisation of physiological data taken from historical
scientific literature (80,81).

APPROPRIATE CLINICAL DATA ARE NEEDED FOR
MODELLING RENAL DRUG ELIMINATION

Ensuring Parameters Are Identifiable

Models are often described as ‘tools’ that are useful for
intended purpose. This purpose will determine the criteria
used to evaluate a model (as being ‘fit-for-purpose’) and also
the approaches that are permissible for determining values
for key parameters in the model. Parameters of PBPK models
may be informed solely by in vitro and physiological data
through IVIVE (i.e. ‘bottom-up’), though fitting to clinical
data (i.e. ‘top-down’) or a combination of both (82). The
priority given to ensuring parameters are identifiable will
depend upon the both the purpose of the model and the
number of parameters that are informed/evaluated by partic-
ular clinical datasets. If certain parameters cannot be
unambiguously informed from available clinical data then
such parameters may be non-identifiable and therefore prone
to bias and uncertainty. This problem is well documented for
complex mechanistic models and particularly relevant when
parameters estimated are to be used for extrapolation (83).
Although these issues have been discussed in detail in
relation to hepatic disposition (83,84), they are particularly
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pertinent to mechanistic kidney models, due to the high
number of parameters used in these models. As knowledge of
specific drugs and biological systems are improved, such
uncertainties are likely to become reduced, providing more
confidence in model predictions (5,85).

It is important to highlight that uncertainty in PBPK
model parameter values and/or less-than-perfect accuracy in
describing clinical data may not preclude a model from
fulfilling its purpose. This may apply in cases where a purely
bottom-up approach is applied, and clinical data are not used
in the model development. This could also apply in cases
where the impact of relative changes (rather than absolute
changes) on CLR are important. Assessment of relative
changes may be useful to determine if certain physiological
parameters are more important (e.g. to define the conse-
quence of pathophysiology, investigate effect of change in
urine flow rate), and for simulating CLR with or without
inhibitor effects on certain transporters.

As a specific example, uncertainties in tubular flow rate
values were noted during development of a tubular reabsorp-
tion model; despite such uncertainty, reasonable prediction of
CLR for several drugs undergoing extensive tubular reab-
sorption was achieved (23). Discrepancies between the
predicted and observed CLR of basic drugs in this study
highlighted an area where the mechanistic understanding
appears to be incomplete and requires further investigation.
Thus when disseminating results from modelling and simula-
tion studies, uncertainties in input parameters or model
structure must be recognised up-front to allow audiences to
understand the limitations of any conclusions drawn and
subsequent simulations that may or may not be possible.
Wider debates surrounding parameter identifiability and
model evaluation for mechanistic and systems models are
ongoing, and interested readers are referred to these
publications (86,87).

Renal drug disposition as a result of multiple processes

In the absence of renalmetabolism, CLR is determined by a
combination of glomerular filtration, active transport into and/
or out of tubular epithelial cells, and passive tubular reabsorp-
tion (12). Determining the actual contribution of a given active
transport or passive permeability process from typical clinical
CLR data represents a substantial challenge, even when data
from repeated measurement of drug excretion in short intervals
in the urine are available. The presence of active tubular
secretion can be inferred when CLR is greater than the
estimated filtration clearance (CLR,filt), i.e. net secretion,
whereas presence of passive or active reabsorption can be
inferred when CLR is lower than CLR,filt. However, a finding of
net secretion or net reabsorption for a particular drug does not
exclude the possibility of other processes contributing. The
presence of such processes can be indicated by alterations in
CLR in different clinical scenarios. For example, assuming
negligible renal metabolism, urine flow rate-dependent CLR is
a strong indicator for a role of passive tubular reabsorption. For
ionised drugs, correlation of changes in CLR with urine pH may
be indicative of passive tubular reabsorption of the unionised
species, although the potential role of pH-dependent active
transport should also be considered in this case. Clinical data
from drug-drug interaction studies, whereby CLR is altered

following co-administration of known transporter inhibitors or
inducers, can also provide valuable insight into the processes
involved in CLR of a drug.

The simultaneous involvement of renal metabolism and
excretion may lead to erroneous interpretation of urine drug
concentration data (i.e. CLR) if clinical studies are not
appropriately designed (12). This can lead to problems for
assessment of predictions of CLR and renal metabolic clearance
(CLR,met) using IVIVE and other methods. When assessing the
contributions of excretory processes, erroneous assumption of
negligible renal metabolism can lead to over-estimation of
reabsorption and/or under-estimation of secretion. Renal me-
tabolism will decrease the urinary excretion of the parent drug
while also contributing to the clearance of parent drug from the
plasma. However, a disparity between plasma elimination rate
and urinary excretion rate is unlikely to be large enough to be
distinguished in order to infer renal drug metabolism, given the
variability present in typical pharmacokinetic datasets, and the
long periods between urine collections, particularly as hepatic
metabolism or other routes of drug elimination may also be
present. The isolated perfused kidney model can be used to
establish, refine and validate generic IVIVE approaches in
preclinical species (35,88). However, species differences can
confound translation of preclinical data to the situation in
human. Therefore data from clinical studies designed for
assessment of intrarenal metabolism are required for validation
of IVIVE approaches and mechanistic models.

Several clinical study designs have been reported from
which the presence of CLR,met in human has been inferred.
Firstly, the rate of appearance of metabolite in urine can be
compared with the concentration of metabolite in plasma. If the
apparent CLR of the metabolite is greater than the renal blood
flow or CLR of metabolite following direct administration of
metabolite alone, this indicates metabolite formation in kidneys
(12,89). Secondly, as demonstrated for mycophenolic acid acyl-
glucuronidation, renal metabolism might be inferred after
comparison of the AUC of the plasma concentration time
profile and renal excretion of the metabolite following i.v. and
oral administrations (90). Furthermore, for certain drugs such as
propofol, CLR,met has been investigated by analysing plasma
drug and/or metabolite concentrations during the anhepatic
stage of liver transplant (91). Importantly, the availability of the
data from the anhepatic stage enabled IVIVE-PBPK-based
predictions of propofol CLR,met and the relative contribution of
kidney to overall propofol metabolism to be assessed (33).
Finally, lower CLR of tacrolimus by cytochrome p450 (CYP)
3A5 expressers compared with non-expressers, along with
experimental in vitro data generated using human kidney
microsomes, suggests that renal metabolism of tacrolimus is
relevant in CYP3A5 expressers (92). In summary, in order to
assess predictions of CLR and CLR,met using IVIVE and
mechanistic kidney models, appropriate clinical data, from
carefully designed clinical studies, are required.

Utility and challenges in predicting intracellular
concentrations

An important feature of mechanistic kidney models,
particularly PBPK models, is the ability to simulate drug and
metabolite concentrations within particular cells/regions. The
advantages of this approach have been discussed in general
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terms in previous publications (93,94), and relevance to renal
drug toxicity and renal DDIs are highlighted in the sections
above and below. However, validating such models can be
challenging due to lack of suitable clinical data. For example,
models of proximal tubule mediated secretion typically define
parameters corresponding to uptake from the plasma into the
tubule epithelium, and efflux from the epithelial cells into the
tubular filtrate. One of these steps (uptake or efflux) is likely to
be rate-limiting; this is often assigned to the uptake parameter in
models of renal tubular secretion (18,39,40), although this is not
always the case (46). Clinical plasma concentration data alone
(where urinary data are not available or adequate) cannot be
used to infer which the rate-limiting step is. Plasma data will also
be affected by non-renal elimination and distribution processes.
When clinical urinary excretion data are also available, this
often allows for estimation or validation of either of the uptake
or efflux parameters with a higher degree of confidence than
plasma data alone. However, given the typical urinary collection
intervals, the non-rate-limiting factor often remains non-
identifiable or associated with higher uncertainty (18,39,40).
Decreasing time between the urine and plasma sampling events
may reduce this problem for some drugs, e.g. by using urinary
catheters and/or maintaining diuretic and fluid intake during
study (45,89).

An alternative approach for validation or estimation of
parameters for both uptake and efflux transporters in a
mechanistic kidney model is obtaining intracellular concen-
tration data during clinical studies. Available tools for
studying intracellular concentrations have previously been
reviewed for liver and are in principle applicable to kidney
(93,95). In particular, techniques such as fluorescence confo-
cal microscopy and imaging mass spectrometry enable
assessment of intracellular drug concentrations in tissue
following animal in vivo studies (96,97). For clinical develop-
ment, positron emission tomography (PET) imaging may be a
useful tool, although spatial resolution is not particularly high,
and metabolites are indistinguishable from parent drug using
this technique, which could confound interpretation of such
data (98).

As these features are not typically included in clinical
trial design, more frequently the parameter that is not the
rate-limiting step is set to a very high value, and then the
clinical data are used to estimate/validate only the rate-
limiting transport parameter (18,46). If uptake is the non-
identifiable parameter, this will require that efflux from the
cell to the blood is also parameterised in order to prevent
simulation of unlimited accumulation of drug within the
proximal tubule cell, effectively resulting in blood-flow

Fig. 4. Proposed framework for applying physiologically based pharmacokinetic (PBPK) kidney models for prediction of nephrotoxicity risk in
human following translation of in vivo studies in preclinical species. The steps involve: [1] Carrying out nephrotoxicity studies in lab animals and
establish relationship between toxicity biomarkers and measured proximal tubule cell (PTC) drug concentrations. [2] Constructing PBPK kidney
model to mechanistically describe relationship between drug concentrations measured in proximal tubule cells and systemic circulation in animal. [3]
Estimating the doses which may lead to nephrotoxic drug exposure in human proximal tubule cells using the PBPK model, after accounting for
relevant species differences in renal physiology (e.g. GFR, blood flow, renal drug transporter expression/substrate affinity (1)). [4] Accounting for any
potential species differences in the apparent toxicodynamics in the prediction of human nephrotoxicity risk from estimated proximal tubule cell
exposure (by linking the effect to the concentration at the site of the effect)

1090 Scotcher et al.



limited uptake into the cells (46). If an uptake or efflux
transporter parameter is non-identifiable, then subsequent
simulations of proximal tubule cellular concentrations and
extrapolation involving this non-identifiable parameter (e.g.
special populations, DDIs) will not be quantitatively mean-
ingful (see above).

CONCLUSION AND FUTURE DIRECTIONS

The possibility for simulating a myriad of scenarios is a
key strength of mechanistic kidney models. Such models may
have promising applications including assessment of DDIs
and impact of pathophysiology as described above, as well as
investigation of drug-induced nephrotoxicity. For example, a
framework that may lead to improved translation of preclin-
ical species nephrotoxicity studies for prediction of toxicity
risk in human is suggested here, as presented in Fig. 4. This
framework provides the opportunity to account for species
differences in renal physiology (e.g. drug transporter expres-
sion (1)) that may affect drug exposure at sites of potential
toxicity (e.g. proximal tubule cells). This is not possible when
using pharmacokinetic-toxicodynamic models because they
directly link toxicity to systemic exposure (or dose), which
may not reflect local exposure. It is proposed that in this
framework, known species differences in renal physiology will
be accounted for using PBPK kidney models (Fig. 4).
Practical applications of this are anticipated as part of many
ongoing research activities such as Horizon 2020 or Innova-
tive Medicines Initiatives (IMI) projects, and will require
improvements in measurement of intracellular drug concen-
trations from in vivo studies, as described above.

The application of bottom-up approaches such as IVIVE to
inform PBPKmodel parameters helps in overcoming challenges
that are encountered when fitting such complex models to
clinical data. From the modelling perspective, the dependency
on data taken from disparate literature sources, presented in a
variety of ways, can be a profound limitation. In this sense, the
reporting of basic inter-system scalars for in vitro systems (e.g.
number of cells per cm2, mg protein per million cells, etc.)
alongside activity or abundance data by laboratory-based
scientists, which is not currently common practice, could be of
assistance to those using mechanistic models.

In Part I of this review, gaps in our knowledge of
physiologically based scaling factors was discussed, and has
been highlighted here as a key limitation of IVIVE-PBPK in
kidney (1). Much attention is being given to the promise of
quantitative proteomics as a means to determine REF scalars
by measuring protein abundances in tissue samples and
in vitro systems (17,21,99). However, abundance data are
currently scarce due to limited use of mass spectrometry-
based quantitative proteomics outside of specialist academic
laboratories (1), and may not represent all variations in
patients who are the target of drug treatment. In addition,
protein abundance may not accurately reflect activity (e.g.
recycling of transporters between the plasma membrane and
an intracellular pool (100)). Therefore additional activity data
are currently needed to determine whether activity-based
scalars (ISEF, RAF) will be required in addition to or instead
of REFs. Generating relevant activity data for this requires
specific substrates that can be used both in vitro and in vivo.
This is a problem for transporters, which can exhibit marked

overlap in substrate specificity (101). Metabolomics ap-
proaches could be useful for identifying highly specific
endogenous substrates of transporters that would be suitable
for characterisation of activity in vivo (102).

Further refinement of mechanistic modelling of transporter
kinetics may result in a more mechanistic input in PBPK kidney
models, as illustrated with consideration of electrochemical
gradient on organic cation (OCT) mediated uptake of metfor-
min (19). Other features of transporter kinetics that may be
considered in the future include role of ATP concentrations,
impact of concentration gradients (pH, sodium or other ions)
and differences between antiporters and symporters.

There is an urgent need for suitable clinical data to
validate various elements of IVIVE-PBPK for renal drug
disposition. This includes data suitable for distinction of renal
drug metabolism from renal excretion and/or non-renal drug
metabolism and for validation/estimation of uptake and efflux
transport rate parameters, as described above. Enhanced
clinical trial design may be warranted to study relevant drugs,
including rich sampling of urine and plasma, measurement of
metabolite concentrations in plasma and urine, and assess-
ment of intracellular or tissue concentrations.

In conclusion, the complexities involved in mechanistically
modelling renal drug dispositionwithin the framework of IVIVE-
PBPK were discussed. Many challenges were identified, such as
knowledge gaps in physiological data and the need to refine and
characterise in vitro systems (see Part I, (1)), and requirement for
suitable clinical data. However, the tangible benefits (e.g. safe
dosage adjustment in renal impairment/paediatric patients,
prediction of renal DDIs, prediction of nephrotoxicity risk)
justify the efforts required to meet these challenges, and thereby
make mechanistic modelling of kidneys a success.
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