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Abstract. The nonlinear mixed effects models are commonly used modeling techniques in the
pharmaceutical research as they enable the characterization of the individual profiles together with the
population to which the individuals belong. To ensure a correct use of them is fundamental to provide
powerful diagnostic tools that are able to evaluate the predictive performance of the models. The visual
predictive check (VPC) is a commonly used tool that helps the user to check by visual inspection if the
model is able to reproduce the variability and the main trend of the observed data. However, the
simulation from the model is not always trivial, for example, when using models with time-varying input
function (IF). In this class of models, there is a potential mismatch between each set of simulated
parameters and the associated individual IF which can cause an incorrect profile simulation. We
introduce a refinement of the VPC by taking in consideration a correlation term (the Mahalanobis or
normalized Euclidean distance) that helps the association of the correct IF with the individual set of
simulated parameters. We investigate and compare its performance with the standard VPC in models of
the glucose and insulin system applied on real and simulated data and in a simulated pharmacokinetic/
pharmacodynamic (PK/PD) example. The newly proposed VPC performance appears to be better with
respect to the standard VPC especially for the models with big variability in the IF where the probability
of simulating incorrect profiles is higher.

KEY WORDS: mixed-effect modeling; model diagnostic; models using input function; visual
predictive check.

INTRODUCTION

Nonlinear mixed effects models (NLMEM) are com-
monly used modeling techniques for drug development,
pharmacokinetic/pharmacodynamic (PK/PD) analysis, and
epidemiological studies because they are able to quantify
the individual and population parameters and to identify
the biological sources of inter-individual and intra-
individual variability. Using NLMEM, clinical trials can
be better designed to reduce costs and increase in efficacy,
dose regimens can be optimized and, in general, the
source of stochastic variability can be minimized.
However, as usual in any modeling analysis, before
drawing clinical conclusions driven by the model, it is
important to use correct diagnostics to evaluate the
NLMEM predictive performance. In these last two
decades, many sophisticated diagnostic tools were
proposed (1) that rely, for example, on numerical assess-
ment (e.g., objective function, standard error of the
parameter estimates), on graphical evaluation of model
predictions (e.g., individual/population residuals), or on a
simulation-based visualization that investigate the model

capability of reproducing the observed data (e.g., posterior
predictive checks (2) and normalized prediction distribu-
tion error (3)). Recently, a simulation-based diagnostic has
been particularly popular for its simplicity: the visual
predictive check (VPC) (4). The basic idea of VPC is to
assess by visual inspection whether the model is able or
unable to catch the variability of the observed data. To do
so, multiple simulations are performed using the individ-
ual parameters that are realizations drawn from the
population parameter estimates and keeping the structure
of the observed dataset. Then, the prediction interval (PI),
typically the 5th and the 95th percentiles of the simulated
datasets, is compared to the corresponding percentiles of
the observed data. To make the interpretation of the VPC
less subjective, the 95% CI of the percentiles of the
simulated data are used instead of just the PI (5). Many
VPC adaptations have been proposed since then (6–8) but
there are still pitfalls that have to be explored, for
example, during the simulation step. This step is particu-
larly critical because it is not always trivial to simulate
profiles that are consistent with the original dataset. For
instance, when models with time-varying known input
function (IF) are evaluated, there is a potential mismatch
between the set of simulated individual parameters and
the associated individual IF which can cause an incorrect
profile simulation. This kind of modeling strategy is well-
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established in the diabetes area where IFs are introduced
to partition the glucose-insulin feedback system and to
better identify the insulin action and secretion models (9–
13). In particular, the glucose and insulin system is
decomposed in two subsystems where the glucose signal
is modeled and the insulin signal is assumed as an error-
free time-varying input function and vice versa depending
on which part of the system needs to be described (14). In
PKPD modeling, IFs are used when no assumptions are
made on the PK model and the PD part needs to be
modeled. In these situations, the PD is fitted using the PK
data as a known input function. Note that to avoid
introducing further misspecification on the PD estimates,
the number of samples in the PK curve should be
sufficient and with a limited noise level.

This study aims to overcome this VPC limitation in
the simulation step by taking into account a term that
correlates the set of simulated parameters with the most
appropriate IF. This correlation term is the minimum
distance calculated for each set of simulated individual
parameters with the previously estimated individual pa-
rameters on the observed dataset in the estimation step of
VPC. We assessed the newly proposed corrected version
of VPC, the distance VPC (dVPC), and compared its
performance to the standard VPC on four models (the
intravenous glucose tolerance test (IVGTT) and the meal/
oral glucose tolerance test (meal/OGTT) glucose and C-
peptide minimal models (9–12)) and on a typical PKPD
example such as the warfarin model (15).

MATERIAL AND METHODS

Population Modeling

Nonlinear mixed effects models (NLMEM) are able
to quantify both the population and the individual
parameters and identify by a hierarchical approach the
biological sources of intra-individual and inter-individual
variability. More specifically, in a first step, the observed
data are described by:

yi j ¼ f Xi j; pindi ; IF Xi j
� �� �þ εi j 1≤ i≤n 1≤ j≤mi ð1Þ

where yij is the jth observation of the ith subject at some
known time instant Xij. Here, n is the number of
individuals and mi is the number of observation of
individual i. pi

ind is the vector of individual parameters
of the ith subject. Note that IF is defined as an error-free
input that varies along time and that represents an
individual sampled kinetic that is not modeled. The
v a r i a b i l i t y d ue t o mea s u r emen t a nd mode l
misspecifications, better known as the residual unknown
variability (RUV), is explained through εij which is
assumed to be independently distributed with a zero
mean and Gaussian distribution.

In a second step, the individual model parameters are
assumed to be a realization of usually a normal or
lognormal distribution that has mean (θ, fixed effects, i.e.,
values that are common to all subjects) and variability (Ω,

between subject variability—BSV) form, what will be
called in this article population parameters (ppop). In
case of a lognormal distribution, the individual
realization of a parameter is:

pindki ¼ θkeηki ð2Þ

where pki
ind is the kth model parameter of the ith subject, θk is

the typical value of the kth parameter common to the entire
population, and ηki is the random effect of the kth model
parameter of the ith subject that is assumed to be
independently distributed with a zero mean and Gaussian
distribution:

ηi∈N 0;Ωð Þ ð3Þ

VPC

The standard VPC is calculated from 1000 simulations
of the original observed dataset. For each simulated
dataset and in each bin, the median value together with
the 5th and 95th percentiles (the simulated prediction
interval—simPI) are calculated. Note that binning in this
article is chosen in a way that each bin corresponds to one
time point because the sampling time is the same for each
subject. From these collections of values, the 95% confi-
dence interval CI are calculated and then compared to the
median and observed prediction interval (obsPI) calculated
in the original dataset.

dVPC

The standard VPC approach does not take into account
the relation between the simulated set of individual param-
eters and the individual IF associated. The distance VPC
(dVPC) proposed in this article, as described in Fig. 1, creates
a correlation that drives the simulation, firstly, by calculating
for each set of individual simulated parameters a vector of
distances between the simulated set and all the previously
estimated sets of individual parameters on the observed data
and, subsequently, by looking for the minimum distance in
each vector. The minimum distance detects the closest set of
estimated parameters to the simulated one and consequently
associates in the simulation step the IF of the selected
estimated parameters to the simulated set of parameters.
The distances used are the Mahalanobis distance (MD) and
the normalized Euclidean distance (NED) that is a simplified
version of the first. The rationale to use one or the other is
based on how the covariance matrix (Ω) of the random
effects is declared in the model: if it has covariance terms, the
Mahalanobis distance is used; otherwise, the Euclidean
distance is employed. By definition, the distance represents
the distance between two random vectors X=[X1, …, XK]

T

and Y=[Y1, …, YK]
T that belong to the same multivariate

distribution with mean μ=[μ1, …, μK]
T and covariance Σ.

Note that K is the number of parameters that have a random
effect The covariance Σ matrix is diagonal when the
normalized Euclidean distance is calculated, whereas it
takes into account the off-diagonal terms when the

1456 Largajolli et al.



Mahalanobis distance is applied. In formula, the squared
Mahalanobis distance can be described as in Eq. 4:

Δ2¼ X−Yð ÞT∑−1 X−Yð Þ ð4Þ

Equation 4 can be simplified in the following way (Eq. 5)
when the normalized Euclidean distance is applied, since only
the diagonal terms are considered:

Δ2 ¼
X K

k¼1

Xk−Ykð Þ2X
kk

ð5Þ

Note that in our case, if we assume a normal distribution,
the mean vector μ is θ and the covariance matrix ∑ is Ω.

Models

The glucose and C-peptide meal/oral glucose tolerance test
(MTT/OGTT) and intravenous (IVGTT) models (9–13) are
commonly used tools to quantify the glucose-insulin system. All
these four models present at least one known input function.
The dataset consist of 120 healthy volunteers (16) (71 males and
49 females age 62±17.5 and body weight 79.2±13.5 kg) that
underwent both an MTT and IVGTT. The MTT (10 kcal/kg,
45% carbohydrate, 15% protein, and 40% fat) contains 1
±0.02 g/kg glucose, and plasma samples are collected at −120,
−30, −20, −10, 0, 5 10, 15, 20, 30, 40, 50, 60, 75, 90, 120, 150, 180,
210, 240, 260, 280, 300, 360, and 420 min for the measurement of
plasma glucose, insulin, and C-peptide concentrations. The
insulin-modified IVGTT consists of an administration of a dose
of 330 mg/kg glucose at time 0 and a dose of 0.02 units/kg of
insulin at time 20 min. Blood samples are collected at −120, −30,
−20, −10, 0, 2, 4, 6, 8, 10, 15, 20, 22, 25, 26, 28, 31, 35, 45, 60, 75,
90, 120, 180, and 240 min for measurement of glucose, insulin,
and C-peptide concentrations.

The process used to generate MTT simulated glucose
and C-peptide data was the following. First of all, the
individual parameter values of each subject were estimated
using the NLMEM approach. Once the individual estimates
were obtained, they were considered as true and used to
simulate new concentration profiles using their corresponding

individual IF as input functions and by introducing the
previously estimated measurement error.

MTT Glucose and C-Peptide Minimal Models

The MTT glucose minimal model (11,13) has two input
functions: insulin and rate of appearance (IF=[I, Ra]) (Eq. 8).
The parameters SG (min−1), V (dL kg−1), SI (μU

−1 mL min−1),
and p2 (min−1) are declared lognormal with mean equal to the
fixed effects θ and variance Ω that is a diagonal matrix:

Q
:

Ra; tð Þ ¼ − SG þX I; tð Þ½ �⋅Q Ra; tð Þ þ SG⋅GSS⋅V þRa tð Þ Q 0ð Þ
¼ Gb⋅V X

:

I; tð Þ ¼ −p2⋅X I; tð Þ þ p2⋅SI⋅ I tð Þ−Ib½ � X 0ð Þ ¼ 0

ð6Þ
where Q (mg kg−1) is the glucose mass in plasma; Gss and Gb

(mg dL−1) the steady state and the basal glucose
concentration in plasma, respectively; I (μU mL−1) insulin
plasma concentration and Ib (μU mL−1) its basal value; X
(min−1) insulin action; and Ra (mg kg−1 min−1) the glucose
rate of appearance in plasma.

The MTT C-peptide minimal model (12,13) has two input
functions: the glucose and the first derivative of glucose (IF=[G,
dG]) (Eq. 9). The parameters are β (min−1 mg−1 dL pmol L−1)
that represents the static sensitivity, k (min−1) the dynamic
sensitivity, α (min−1) a constant rate, and CPb (pmol L−1) the
basal C-peptide. They are declared lognormal with mean equal
to the fixed effects θ and variance Ω that is a full matrix. Note
that k01, k12, and k21 (min−1) are the C-peptide kinetic
parameters fixed to standard population values following the
method proposed by Van Cauter et al (17).

CP1

:

tð Þ ¼ − k01 þ k21ð ÞCP1 tð Þ þ k12CP2 tð Þ þ SR tð Þ CP1 0ð Þ ¼ 0

CP2

:

tð Þ ¼ −k12CP2 tð Þ þ k21CP1 tð Þ CP2 0ð Þ ¼ 0

Y
:

G; tð Þ ¼ −α Y G; tð Þ−β G tð Þ−Gbð Þ½ � Y 0ð Þ ¼ 0

SR tð Þ ¼ SRs tð Þ þ SRd G; tð Þ

SRs tð Þ ¼ Y G; tð Þ

SRd G; tð Þ ¼ k
dG tð Þ
dt

if
dG tð Þ
dt

> 0

0 otherwise:

(

Fig. 1. Schematic representation of the VPC and dVPC diagnostics

(7)

1457Visual predictive check with input function



where CP1 and CP2 (pmol L−1) are C-peptide concen-
tration above basal in the accessible and peripheral compart-
ments, respectively; G (mg dL−1) the glucose concentration;
Gb its basal value; and SR the pancreatic secretion made up
of two components: a static (SRS) and a dynamic (SRd)
component controlled by glucose and glucose rate of change,
respectively.

IVGTT Glucose and C-Peptide Minimal Models

The IVGTT glucose minimal model (9) (Eq. 6) has one
input function insulin (IF=[I]). The estimated parameters are
glucose effectiveness (SG—min−1), distribution volume
(V—dL kg−1), insulin sensitivity (SI—min−1pmol−1 L), and
insulin action (p2—min−1). They are all declared lognormal
with mean equal to the fixed effects θ and variance Ω with
only two covariance term between SG and V and SI and p2 as
in Denti et al (18).

Q
:

tð Þ ¼ − SG þX tð Þ½ �⋅Q tð Þ þ SG⋅GSS⋅V Q 0ð Þ ¼ Gb⋅V þD

X
:

I; tð Þ ¼ −p2⋅X I; tð Þ þ p2⋅SI⋅ I tð Þ−Ib½ � X 0ð Þ ¼ 0

where Q is the glucose mass in plasma (mg kg−1); Gss and Gb

the steady state and basal glucose concentration in plasma
(mg dL−1), respectively; I insulin plasma concentration
(pmol L−1) and Ib its basal value; X the insulin action
(min−1); and D the dose (mg kg−1). Note that glucose
measurements prior to 8 min are excluded from the
parameter estimation, because the 1-compartment minimal
model is not designed to account for the fast glucose kinetics
after the glucose bolus.

The IVGTT C-peptide minimal model (10) (Eq. 7) has
glucose as input function (IF=[G]). The estimated parameters
are the first phase secretion index (X0—pmol L−1), the second
phase secretion index (β—pmol L−1 dL mg−1 min−1), the basal
C-peptide (CPb—pmol L−1), and the secretion parameters
(m—min−1 and α—min−1). They are all declared lognormal
with mean equal to the fixed effects θ and variance Ω that is a
full matrix. Note that k01, k12, and k21 (min−1) are the C-
peptide kinetic parameters fixed to standard population
values following the method proposed by Van Cauter et al
(17).

CP1

:

tð Þ ¼ − k01 þ k21ð ÞCP1 tð Þ þ k12CP2 tð Þ þmX tð Þ CP1 0ð Þ ¼ 0

CP
:

2 tð Þ ¼ −k12CP2 tð Þ þ k21CP1 tð Þ CP2 0ð Þ ¼ 0

X
:

tð Þ ¼ −mX tð Þ þ Y G; tð Þ X 0ð Þ ¼ X0

Y
:

G; tð Þ ¼ −α Y G; tð Þ−β G tð Þ−Gbð Þ½ � Y 0ð Þ ¼ 0

where CP1 and CP2 (pmol L−1) are the C-peptide
concentration above basal in the accessible and in the
peripheral compartments, respectively, G glucose concentra-
tion (mg dL−1), whereas X (pmol L−1) and Y (pmol
L−1 min−1) are the C-peptide amount and provision in the β
cells, respectively.

Warfarin Model

To demonstrate the approach feasibility in a different
area, we applied the method on a well-known PKPD example
such as the warfarin model (15) where the PK of the drug
(C—mg L−1) is assumed to be the known input function and
the PD of the effect, the prothrombin (PCA), is the fitted data
sampled at time 0, 24, 36, 48, 72, 96, and 120 h. In particular,
the dataset is based on a simulation of 128 subjects obtained
from the population estimates of 32 healthy subjects that
underwent an oral single dose of warfarin (1.5 mg/kg) (19).
On these subjects, 250 samples of warfarin concentrations
together with 232 samples of prothrombin complex activity
(PCA) were measured. The model was implemented as a
turnover model as in Mager et al (20) to characterize warfarin
delayed effect with an indirect mechanism of action due to
the interaction between the drug and the endogenous
enzymes (the prothrombin) (20). The estimated parameters
p=[E0, Emax, C50, Tover] are declared lognormal with mean
equal to the fixed effects θ and variance Ω that is a diagonal
matrix. Note that Tover is the turnover half-life and that Rin
is set be equal to kout×E0 whereas kout is equal to ln2/Tover.

dPCA tð Þ
dt

¼ RinPD c; tð Þ−KoutPCA PCA 0ð Þ ¼ E0

PD c; tð Þ ¼ 1þ Emax
c tð Þ

C50þc tð Þ
� �

Analysis of the Results

We investigated the performance of the VPC and dVPC
in some simulated examples (MTT glucose and C-peptide,
warfarin) and in some real data scenarios (IVGTT glucose
and C-peptide). Within the simulated example of the MTT C-
peptide model, we investigated the capability of the dVPC to
detect misspecifications in the model. In particular, the C-
peptide model was simulated with the structure declared in
Eq. 7 and then was est imated introducing two
misspecifications in the model: the Ω matrix was declared
diagonal and the C-peptide kinetics were described by a one-
compartment model. The results that were obtained using the
standard VPC and the newly proposed dVPC were firstly
evaluated by visual inspection of the graphs and, then,
compared in a more quantitative way. In particular, the sum
of squared residuals (RSS) was calculated among the 5th,
95th percentile and the median values calculated in the
observed dataset and the median of the corresponding values
calculated in the simulated dataset. Finally, some VPC
statistics were calculated: the percentages of false positive
(FP) and false negative (FN). Note that an observation is
defined as false positive if it lay inside its corresponding
simulated PI but outside the VPC PI, whereas it is defined
false negative if it lies outside its corresponding simulated PI
but inside the VPC PI. All the estimation steps were done
using NONMEM 7.2 (21) and the algorithm First-Order
Conditional Estimation (FOCE) approximation with eta-
epsilon interaction, whereas all the simulation steps were
done using Matlab R2010a (22).

(9)

(8)

(10)
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RESULTS

Preliminary, the standard goodness of fit was checked in
all models by examination of scatter plots of predicted versus
measured data and weighted residuals both at the population
and at the individual level. The results (not shown) indicate
that all the models well describe the data, and the weighted
residuals match the measurement error assumptions.
Shrinkage (23) values both in the individual parameter
estimates (η-shrinkage) and in the residual error (ε-
shrinkage) were below the suggested critical threshold of
30%. In Fig. 2 is presented the motivational example based
on simulated MTT glucose data where a standard VPC
simulation of unrealistic glucose profiles is shown. Note that
there are glucose profiles that are significantly lower than the
5th percentiles and significantly higher than the 95th percen-
tiles calculated on the observed dataset. These profiles are
not physiologically plausible for a healthy population.

MTT Glucose and C-Peptide Minimal Model

In Fig. 3, we present the standard VPC of the MTT
glucose and C-peptide minimal models applied on simulated
data. The simulated profiles without the correction were
sometimes not physiological and, as a consequence, the CIs of
the percentiles calculated on the simulated data do not match
the reference percentiles calculated on the observed data. If
we take into consideration in the simulation step, respectively,
the Mahalanobis distance for the C-peptide model as its Ω
matrix is not diagonal and the normalized Euclidean distance
for the glucose model as its Ω matrix is diagonal, the VPC
performance improves: the CIs of the percentiles calculated
on the simulation with the dVPC better match the percentiles
of the observed data (Fig. 3). In Table I, the average sum of
squared residuals (RSS) show that dVPC performs better
than the standard VPC in both models as the RSS are smaller
in both examples using the dVPC. Moreover, the percentages
of FP and FN that were obtained using the new dVPC
(Table II) are smaller than the percentages that were
obtained with the standard VPC. In Fig. 4 is shown that the

dVPC is able to detect a misspecified model. By looking at
the highest percentile in the misspecified case, it is evident
that the dVPC is able to detect the misspecification as the CIs
of the simulated percentile are not matching perfectly the
corresponding observed percentile.

IVGTT Glucose and C-Peptide Minimal Model

In Fig. 5, we present the standard VPC of the IVGTT
glucose and C-peptide minimal models. The CIs of the
percentiles calculated on the simulated dataset present some
mismatch with the corresponding percentile calculated on the
observed data. In particular, the VPC of the IVGTT glucose
shows a clear mismatch in the 5th percentile, whereas the
VPC of the C-peptide shows clear mismatches in the 95th
percentile and the median. Note that the VPC of the IVGTT
glucose minimal model is presented from min 8 since the
model explains the dynamics of glucose from that minute on.
In this case, the difference between the simulated profiles and
the observed one is less marked than the one obtained in the
MTT data. In Fig. 5, the new dVPCs are presented applied to
both the IVGTT glucose and C-peptide minimal models.
Note that since the Ω matrix has covariance terms in both
models, the Mahalanobis distance was calculated. The CIs of
the percentiles calculated on the simulated dataset follow
better the dynamics of the observed percentiles. In Table I,
the RSS for the standard and the new dVPC for both the
IVGTT models are presented. The RSS are smaller in both
IVGTT models using the new dVPC compared to the
standard VPC. In Table II, the percentages of FP and FN
are presented: for both the IVGTT models, the percentages
again are smaller using the new dVPC approach.

Warfarin Model

In Fig. 6, we present the standard VPC of the PD of the
warfarin model together with the new dVPC technique of the
same data, respectively. The improvement due to the
correction obtained using the new technique can be noted
from the graphs by looking at the 95th percentile. Note that

Fig. 2. Spaghetti plots based on simulated MTT glucose data of time versus observed glucose concentration (on the left) and
of time versus simulated glucose concentration profiles (on the right) through the standard VPC procedure. The solid line is
the median of the observed data and the dashed lines are the 5th and 95th percentile of the observed data
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the distance calculated in this example is the normalized
Euclidean distance as its Ω matrix is defined diagonal. In
Table I, the average RSS shows that the new VPC is better
performing than the standard as the VPC has larger RSS.
Moreover, the percentages of FP and FN (Table II) are bigger
or comparable using the standard VPC compared to the new
dVPC.

DISCUSSION

During model building, it is fundamental to evaluate the
model performance with appropriate tools. In the PKPD
area, the VPC is a commonly used diagnostic to test whether
or not the model is able to reproduce the variability and the
main trend of the data. However, this diagnostic tool still
presents pitfalls in the simulation step when models are
identified with input functions (IF). In fact in this case, there
is a lack of correlation between each set of individual
simulated parameters and the associated individual IF which
can cause an incorrect simulation profile. This problem is
illustrated in a plot (Fig. 2): the standard VPC simulation
procedure generates some unrealistic simulated glucose
profiles that reach, for example, a glucose steady state at
50 mg/dl which is physiologically implausible. Note also that
this lack of correlation, due to fact that the system is

separated in two subparts, would have not been present if
there had been a simultaneous fit of the two signals that
would have offered a flexible full parameter framework that,
in turn, would have allowed simulation of consistent profiles.
This study aims to overcome this VPC limitation by taking
into account in the simulation step a correlation term using

Fig. 3. VPC (on the left part of the panel) and dVPC (on the right part of the panel) of the MTT glucose and C-peptide
minimal models applied on simulated dataset. The solid line is the median of the observed data and the dashed lines are the
5th and 95th percentile of the observed data. The grey bands correspond to 95% CI of the median and 5th and 95th
percentiles in the simulated data

Table I. The Average Among the 5th, 95th Percentiles and the
Median of the Sum of Squared Residuals (RSS) Between These
Values Calculated in the Observed Dataset and the Median of the
Same Values Calculated in the Simulated Dataset for both the
Standard VPC and the new dVPC in the Four Metabolic Examples
and the Warfarin Model

RSS

Models VPC dVPC

Glucose IVGTT 31 21
C-peptide IVGTT 897 854
Glucose MTT 57 30
C-peptide MTT 769 465
Warfarin 12 8

RSS median of the sum of squared residuals, VPC visual predictive
check, dVPC distance VPC, IVGTT intravenous glucose tolerance
test, MTT meal tolerance test
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the Mahalanobis or normalized Euclidean distance (depend-
ing on the Ω matrix) that bounds the set of individual
simulated parameters with the most appropriate individual
input function. We assess the performance of this new
diagnostic dVPC on simulated and real metabolic data
examples and in a simulated PKPD case.

By looking at the graphs, the standard VPC in the
various presented examples shows some mismatch between
the CI of the percentiles calculated on the simulated dataset
and the percentiles of the observed data (Figs. 3, 4, 5, and 6).
This mismatch is more evident in the metabolic examples
relative to MTT (Fig. 3) that, by definition, is a less controlled
experiment compared to IVGTT (Fig. 5) since it includes
additional variability due to the gastrointestinal tract. MTT
produces very variable glucose and insulin profiles and, as a
consequence, a wrong association of the individual simulated
parameters with IF is more likely, which it translates into an
incorrect profile simulation. Moreover, there is a clear
underperformance of the standard VPC of the MTT glucose
minimal model with respect to the MTT C-peptide minimal
model (Fig. 3), where we can see in both the 5th and the 95th
percentile a mismatch with the CI of percentiles calculated on
the simulated dataset. This might be due to the fact that the
input functions of the glucose minimal model are two
different signals (rate of appearance of glucose and insulin),
whereas in the C-peptide minimal model the IFs are the

glucose signal and its first derivative. Regarding the standard
VPC relative to the IVGTT and the warfarin models (Figs. 5
and 6), they present fewer mismatches in the CIs of the
simulated percentiles with the observed percentiles because
the profiles measured are less variable among the subjects.
Moreover, note that the warfarin model is the only example
that presents one parameter with 27% of shrinkage (the rest
of the examples have shrinkage lower than 20%) that might
introduce some bias in the association procedure at the
individual parameter level and contribute to make the impact
of the dVPC technique less evident. It is interesting to point
out that the glucose and insulin model examples have a close
loop mechanism of control in which the data (output) has an
effect on the IF (input) and the input has an effect on the
output. The warfarin model instead presents an open loop
mechanism of control in which only the input has an
effect on the output. This might explain why the impact of
the dVPC is less evident in the warfarin PKPD example
as there is less dependency between the input and output
of the system. The new VPC, the dVPC, is a clear
improvement compared to the standard VPC, and it is
easy to grasp this from visual inspection of the five
examples (Figs. 3, 4, 5, and 6) where the CI of the
percentiles calculated on the simulated dataset are better
matching the corresponding percentiles of the observed
data.

Table II. Percentages of FP and FN with the VPC and with the New dVPC in the Four Metabolic Examples and in the Warfarin Model

FP FN

Models VPC dVPC VPC dVPC

Glucose IVGTT 3 1 3 1
C-peptide IVGTT 4 2 6 2
Glucose MTT 3 1 10 2
C-peptide MTT 5 1 8 2
Warfarin 0 1 8 0

Note that an observation is defined a false positive when it lays inside its corresponding simulated PI but outside the VPC PI, whereas it is
defined false negative if it lies outside its corresponding simulated PI but inside the VPC PI
FP false positive, FN false negative, VPC visual predictive check, dVPC distance VPC, IVGTT intravenous glucose tolerance test, MTT meal
tolerance test

Fig. 4. dVPC of a misspecified MTT C-peptide minimal model (on the left) and dVPC of a non-misspecified C-peptide
minimal model (on the right) applied on simulated dataset. The solid line is the median of the observed data, and the dashed
lines are the 5th and 95th percentile of the observed data. The grey bands correspond to 95% CI of the median and 5th and
95th percentiles in the simulated data
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In Fig. 4 is shown that the dVPC diagnostic is able to
detect misspecifications in a simulated C-peptide example as
the 95th observed percentile is not well described by the
simulated CI of the corresponding percentile.

As far as the sum of squared residuals is concerned, the
underperformance of the standard VPC method with respect

to the newly proposed dVPC is evident in all the five
examples as the average of RSS is larger (Table I) using the
standard VPC. Moreover, the relative largest drops of RSS
between VPC and the dVPC are detectable, as expected, in
the glucose (47%) and the C-peptide (40%) oral minimal
models since the MTT produces more variable signals. Note

Fig. 5. VPC (on the left) and dVPC (on the right) of the IVGTT glucose and C-peptide minimal models applied on real
dataset. The solid line is the median of the observed data and the dashed lines are the 5th and 95th percentile of the
observed data. The grey bands correspond to 95% CI of the median and 5th and 95th percentiles in the simulated data

Fig. 6. VPC (on the left) and dVPC (on the right) of the warfarin model applied on simulated dataset. The solid line is the
median of the observed data and the dashed lines are the 5th and 95th percentile of the observed data. The grey bands
correspond to 95% CI of the median and 5th and 95th percentiles in the simulated data
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that this is in agreement with the previously discussed results
obtained by visual inspection of the graphs. In the C-peptide
and warfarin models, the relative RSS drop is still large,
around 32%, for both, whereas in the warfarin example the
drop is less significant, around 5%.

Finally, the VPC statistics presented in Table II also
yields the same results: dVPC is better performing as the
percentages of FP and FN are smaller or comparable to the
percentages obtained with the standard VPC. It is interesting
to note that looking at the standard VPC results, the oral C-
peptide minimal model and the oral glucose minimal model
have, respectively, the largest percentage of FP and FN which
again confirms the same trend that has been previously
discussed in VPC graphs and RSS.

This newly proposed dVPC is an informative tool to
evaluate correctly models with IF because it maintains the
characteristic of easy visualization and interpretation of
standard VPC, while avoiding simulating unrealistic profiles.
Moreover, dVPC is appealing because it preserves the
dynamics of the profiles in the time course unlike other
methods proposed in literature, such as pcVPC (8) that, even
if it is still suitable to handle input functions, has both data
and predictions corrected or where, instead of the
measurements, the percentiles in which the observed data is
falling with respect to its simulated distribution are plotted (7)
or where the distribution of the observed data around the
model predicted median at each observation time is plotted
(6). Drawbacks of dVPC are that to have robust results the
dataset under analysis needs a relevant number of subjects
and a rich sampling of the input function. The first prereq-
uisite guarantees a good characterization of the population
and, consequently, a good coverage of the possible combina-
tions of the individual simulated set of parameters with the
input functions. This in other words means avoiding associ-
ating IF based on too big distances between parameter
vectors and avoiding sampling a relevant number of times
the same IF. The second prerequisite ensures a reliable IF.
This prerequisite is a common feature of all models with
known input functions, i.e., IFs rich in sampling and with
small measurement error allow not to introduce further bias
in the analyzed model. Finally, it is important to underline
that since the method relies on an association process at the
individual parameter level, the individual estimate precision
needs to be satisfactory and the shrinkage level needs to be
low in order to guarantee a reliable matching step. Note also
that the drawbacks that we discussed, such as small number of
subjects and sparse and noisy data, are potential weak points
of not only the dVPC per se but also of the standard VPC.

CONCLUSION

This work proposes a refinement of the standard
diagnostic VPC, the dVPC, which is built for a particular
class of models that present a time-varying known input
function that cannot be modeled or it is not relevant to
model. Despite the simplicity of the method, the results show
both on real and simulated examples that dVPC is a more
appropriate diagnostic with respect to the standard VPC. We
suggest using the dVPC during model building for a more
accurate performance evaluation of this class of models and,

as a consequence, to obtain more reliable model-based
clinical conclusions.
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