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Abstract. This work demonstrates the use of a combination of feedforward and feedback
loops to control the controlled release coating of theophylline granules. Feedforward models
are based on the size distribution of incoming granules and are used to set values for the
airflow in the fluid bed processor and the target coat weight to be applied to the granules.
The target coat weight of the granules is controlled by a feedback loop using NIR
spectroscopy to monitor the progress of the process. By combining feedforward and feedback
loops, significant variation in the size distributions and ambient conditions were accommo-
dated in the fluid bed coating of the granules and a desired dissolution profile was achieved.
The feedforward component of the control system was specifically tested by comparing the
performance of the control system with and without this element by Monte Carlo simulation.
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INTRODUCTION

Pharmaceutical manufacturing relies upon feedback
controls to maintain the conditions necessary to manufacture
quality products. Feedback loops are typically quite successful
at maintaining prescribed conditions (1). However, standard
feedback controls are susceptible to input disturbances and
uncertainties (2). Thus, it is important that a control system
be designed to accommodate foreseeable variation in the
input to the process (3). Examples of typical disturbances in a
pharmaceutical process include changes in raw material
properties (4,5). Such disturbances can arise from chemical
and physical properties of APIs and excipients. In response to
such disturbances, feedback systems must wait until the
disturbance has an observable effect on the control system,
produce reduced quality product, or create an instability in
the loop (6). In each of these scenarios, the quality of the
product is at risk until the disturbance has been mitigated.
Addition of a feedforward structure has the potential (7,8) to
mitigate all of these risks to the quality of the product in a
pharmaceutical manufacturing process.

Feedforward/feedback loops are used in this work in a
control system for the application of a controlled release

coating to granules in a fluid bed processing system. The
granules contained theophylline as a model drug and the
coating was a polyvinyl acetate-based coating (Kollicoat).
Polyvinyl acetate forms pH-independent aqueous-insoluble
film (9). The minimum film formation temperature was
reported as 18°C without plasticizer and curing was found
unnecessary (10,11). The intent of the coating was to
modulate the dissolution of the API to match a twice-daily
dosing regimen for theophylline (12). The ultimate goal of the
coating process is to produce granules with a consistent
release profile that meets appropriate specifications. Process
models were created to predict the dissolution response based
on the processing parameters.

A significant challenge in this process is the batch-to-
batch variation in the sized distribution of the input material
(granules). This has an impact on both the uncoated
dissolution characteristics of the granules and the quantity
of coating required (coat weight). As illustrated in Fig. 1,
feedforward controls were built to account for the variability
in the size distribution of the incoming granules and provide
the coating process (and the feedback loops associated with
it) set points that will convert a given batch of granules to a
coated system that meets the required dissolution specifica-
tions. The specific set points from the feedforward loops are
the fluidization air volume and the total quantity of coating to
be applied. In essence, the feedforward loops establish set
points for the process and the feedback loops achieve those
set points. In this system, the feedback loops are inherently
static, while the feedforward loop creates a dynamic response
to changes in the input material. The feedback loop for
controlling coat weight of the granules was based on a process
analytical technology sensor. Near infrared spectroscopy
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(NIRS) was used to monitor the coating process and stop the
process based on the required coat weight from the
feedforward loop. The combination of feedforward and
feedback loops created a control system that was capable of
mitigating variation in the input materials and producing a
product with consistent dissolution profiles.

This paper is organized as follows: in BMaterials and
Methods^, statistically designed experiments are used to
understand the change of dissolution output in response to
the designed variability in coating material and process
variables. A Weibull curve fitting function that simplifies the
dissolution profiles into two dissolution parameters is pre-
sented. In BResults and Discussion^, process modeling and
the optimization strategy for the feedforward loop are
demonstrated. The NIRS predictive model for the feedback
loop is then described. Finally, a Monte Carlo simulation is
applied to demonstrate the capability of the combined
feedforward-feedback control system.

MATERIALS AND METHODS

Materials

The theophylline-loaded granuleswereobtained fromPurdue
University, West Lafayette, IN. The granules were composed of
60% theophylline anhydrous, 19.5% lactose monohydrate, 18.5%
microcrystalline cellulose, and 2% hydroxypropyl methylcellulose.
They were produced by high shear wet granulation using a 10-L
capacity granulator (Diosna P/VAC 10-60, Osnabruck, Germany)
and dried in the oven at 45°C for 48 h. Aqueous polyvinyl acetate
polymer dispersions (Kollicoat SR 30D, Lot #: 57675147G0 and
58378447G0) were donated by BASF, Ludwigshafen, Germany.
Triethyl citrate (TEC, 99% purity, Lot #: C09Y001), used as a
hydrophilic plasticizer, was obtained from Alfa Aesar, Ward Hill,
WA. Talc (USP Grade, Lot #: iEF0433), used as an anti-tacking
agent, was obtained from Spectrum, New Brunswick, NJ. FD&C
blue 1 lake (Lot#: A992), obtained from Warner Jenkison
Company, St Louis, MO, was employed as a color marker to track
the coating progress. All reagents utilized for assay and dissolution
testing were HPLC grade.

Design of Experiments

This study focused on the development of a control
system for fluid-bed coating of granules to control dissolution.
A process model that predicts dissolution output from process
and material variables is necessary, since it serves as the
foundation of the control system. Two experimental designs
(Fig. 2) were developed and conducted: (1) a full factorial
design (calibration design) to gain process understanding and
develop the process model and (2) a D-optimal design (test
design) to test the process model. Full experimental designs
are found in Appendix 1 and 2.

The calibration design included 10 coating runs using a three-
factor full factorial design with two replicated center points. The
center points were produced to determine pure error (random
batch-to-batch variability) and check the non-linear effect. The
factors were granule size distribution, relative humidity, and
fluidization air volume. A fourth factor, target weight gain, was
studied at three levels for each of the design points. The other
process parameters, such as inlet air temperature, spray rate,

atomization air pressure, and product temperature, were explored
in preliminary studies and were kept constant in all experiments to
prevent agglomeration of granules during coating. The levels of
factors are shown inTable I. Five levels of granule size distributions
were identified from the received granule batches. The lowest,
medium, and highest levels of the five granule size distributions
were included in the calibration design. The variability of relative
humidity was caused by the change of seasons and thus the levels
were ranges (20–30%, 40–50%, and 70–80%RH) instead of exact
values. The seasonal dependence of relative humidity constrained
the randomization of experiments in both calibration and test
designs. Fluidization air volume was an experimentally controlled
process parameter that was adjusted at two extreme and one
center levels. The design levels of the three factors (granule size
distribution, air volume, and relative humidity) are illustrated in
Fig. 1, including both calibration and test sets. Target coating
weight was the fourth factor and was varied by sampling granules
after spaying for 80, 110, and 140 min. This target weight gain is
expected to have a substantial impact on the quality attributes of
the product as it is known to control dissolution of coated granules
(13,14). The sample size was 10 g per time point. However, the
weight gain cannot be accurately controlled without real-time
monitoring due to variable polymer deposition efficiency. There-
fore, NIR spectra were recorded during the coating process to
facilitate the development of the NIRS-weight gain model. The
calibration set included 30 design points in total (10 coating
experiments × 3 sampling times = 30).

The test design included all five particle size levels of
incoming granules. A total of nine coating runs were
conducted using a D-optimal design (based only on granule
size distribution, air volume, and relative humidity) to
accommodate the limitation of granule supply. The D-
efficiency was optimized using JMP software (Version 13,
SAS institute, Cary, NC). Samples were taken at 85, 105, and
125 min after spraying for weight gain measurements and
corresponding NIR spectra were recorded. The sample size
remained as 10 g per time point. The sampling time points
were adjusted to allow the weight gain of test samples being
within the range of calibration samples. The test set included
27 design points in total (9 coating experiments × 3 sampling
times = 27).

Granule Coating

The theophylline granules were coated in a minilab top-
spray fluid bed processer (Diosna Dierks & Söhne GmbH,
Osnabruck, Germany). The fluid bed processor was com-
posed of a 3-l bowl with two sensors (a temperature sensor
and a near infrared spectroscopic probe) and a 1-mm nozzle
two-fluid spray gun. The coating suspension was supplied by a
peristaltic pump. Atomization air pressure was manually
controlled by adjusting the air gauge on the fluid bed. The
fluidization air volume, inlet air temperature, and pump
rotation speed were controlled by a DeltaV control system.

The coating dispersion (Table II) was prepared by
diluting the aqueous polyvinyl acetate polymer dispersion
with water. Triethyl citrate was added with continuous stirring
of a magnetic stirrer. Talc and Blue Lake were then added
and mixed for 6 h. Prior to coating, the dispersion was
screened through a 180-μm screen.
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The starting batch size of 400 g was selected for all
coating experiments. The minilab fluid bed was preheated to
30°C before charging the granules. The spray started after the
granules were equilibrated to the desired product tempera-
ture (33°C). Atomization air pressure (1.6 bar) and fluidiza-
tion air volume (based on design points) were fixed while the
inlet air temperature was adjusted during the spray rate
ramp-up to maintain the desired product temperature. The
spray pump speed ramped up from 2.5, 4, to 5.5 rpm
(approximately 3, 4, and 5 g/min spray rate) in 10 min and
then was kept constant at 5.5 rpm. Room temperature and
ambient relative humidity (RH) were monitored for all
individual batches. Samples were taken after spraying for
80, 110, and 140 min and stored in a desiccator at 35°C to
allow the granules to be completely dried prior to dissolution

test. The solid state of theophylline was examined by powder
X-ray diffraction to ensure that no detectable levels of the
hydrate form had been formed. The powder X-ray diffraction
patterns of coated granules with presence/absence of theoph-
ylline monohydrate are shown in Appendix 3.

Test Methods

Granule Size Characterization

The granule size distributions of uncoated and coated
granules were measured using a CANTY SolidSizer dynamic
image analyzer (JM Canty, Inc., Buffalo, NY). The CANTY
SolidSizer is a lab-scale image-based analyzer for dry particle
size measurement. Granules were fed into a vibrating chute

Fig. 1. The schematic of the control strategy. FFC: feedforward control, FBC: feedback control

Table I. Full Factorial Design-Design Levels

Variable name Lowest level (− 1) Lower level (− 0.5) Center point (0) Higher level (0.5) Highest level (+ 1)

Granule size (Dv50, μm) 392 419 460 480 504
Ambient relative humidity (% RH) 20–30 – 40–50 – 70–80
Fluidization air volume (m3/h) 25 – 30 – 35
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and precisely released in front of a bright field. A high-
resolution camera continuously collected images of free
falling particles through a magnifying lens. The vibrating
frequency of the chute was automatically adjusted by the
instrument to maintain 10 particles on each image. The
CANTY software analyzed the 2D images and output the
granule size/shape information. Upon analyzing the images, a
filter threshold was set to exclude the particles with aspect
ratios larger than 2 to potentially eliminate overlapping
particles. The circular equivalent diameter from the image
analysis was used to describe the granule size.

Theophylline Assay, Loss on Drying and Percentage Weight
Gain

The potencies of uncoated and coated granules were
determined using a UV/Vis spectrometer (Agilent, Santa Clara,
CA). To prepare the sample solution, 150 mg of uncoated
granules was precisely weighed and dissolved in 500 mL DI
water via 60-min sonication (Branson 8510 ultrasonic cleaner,
Branson Ultrasonic Corporation, Danbury, CT). Three repli-
cates of samples were prepared for every batch, and three
repetitions were collected for each replicate. Reference cells
that contained only DI water were collected each time the UV/
Vis test started. The sample absorbance value at a single
wavelength (272 nm) was recorded to predict API content by
interpolating a five-point linear regression calibration model of
theophylline content. The same method was applied to coated
granules for API content with one additional step: the coated
granules were ground prior to the dissolution and sonication.

Loss on drying measurement was performed using a
moisture analyzer Computrac Max-2000 (Arizona Instrument
LLC, Chandler, AZ). Approximately, 1 g of granules was
ground using mortar and pestle. The ground powder was
precisely weighed in the aluminum pan by the instrument
prior to the test. The testing temperature ramped up from 35
to 110°C then stabilized at 110°C until the weight change of
the powder was less than 0.01%. The percentage loss of the
powder was recorded as loss on drying value (LOD).
Percentage weight gain from coating is calculated based on
the result of assay and loss on drying (LOD) from both
coated and uncoated granules, as shown in Eq. 1.

%weight gain ¼
API contentuncoated
1−LODuncoatedð Þ −

API contentcoated
1−LODcoatedð Þ

API contentcoated
1−LODcoatedð Þ

� 100 ð1Þ

Near Infrared Spectral Measurement

A NIR spectrometer (model: NIR-256-2, Control Develop-
ment Inc., South Blend, IN) and halogen light source with a
bifurcated fiber optic probe (OceanOptics,Dunedin, FL)was used
in this study to monitor the coating process, particularly for inline
coating weight gain control. The probe was inserted into the fluid
bed bowl in direct contact with the coatedmaterial. Each spectrum
was acquired in real time by averaging 16 scans over the range of
1077–2226 nm with a resolution of 1 nm. The integration time for
one scan was approximately 0.015 ms, varying by 0.002 ms for
different batches.Anear-infrared spectrumwas recorded every 5 s,
averaged from 16 spectra. The raw spectral data were processed
using Matlab software (with Optimization Toolbox, version
R2017a, the Mathworks Inc., Natick, MA) and PLS Toolbox
(version 8.2.1) by Eigenvector Research (Manson, WA).

In Vitro Drug Release

The in vitro drug release studies were conducted on the
encapsulated coated theophylline granules (400 mg coated
granules per capsule) in 900 mL of DI water using a USP
apparatus II–paddle type at 75 rpm and 37 ± 3°C. The
capsules were dropped into the dissolution media using spiral
capsule sinkers. The samples were drawn every 10 min using
an auto sampler and measured using a UV/VIS spectrometer
(Agilent 8453 UV-Visible Spectrophotometer G1103A,
Agilent Technologies, Cranberry Twp, PA) at 272 nm wave-
length. The fraction of drug released was normalized to 100%
released; the time point at 1440 min used for that purpose.
Three replicates were tested for each design point. The
dissolution profiles were used as the responses for process
modeling. A two-parameter Weibull function including a
scale factor λ and a shape factor k was used to fit the
dissolution curve as the following equation.

Fraction of drug released ¼ 1−e
−
�

t
λ

�k

ð2Þ

RESULTS AND DISCUSSION

This study provides a demonstration of a process
modeling-based control system coupled with real-time mon-
itoring tools. The control system (Fig. 1) consists of
feedforward and feedback loops to ensure the consistency of
product dissolution profiles. The terms Bfeedforward^ and

Table II. Formulation of the Coating Dispersion

Component Function Concentration
(w/w %)

Polyvinyl acetate polymer dispersion (PVAc) Coating polymer 15
Triethyl Citrate (TEC) Plasticizer 0.75
Talc A n t i - t a c k i n g

agent
2.25

Blue Lake Color agent 0.15
Deionized water Solvent 81.85
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Bfeedback^ were used in a generalized manner. The
feedforward control employed a process model to predict
the desired fluidization air volume and target weight gain
based on incoming granule size distribution and relative
humidity prior to the coating operation. The feedback control
monitored weight gain using a NIRS predictive model and
terminated the coating process when the target was achieved.

Dissolution Results and Curve Fitting

The raw dissolution profiles from both calibration and
test sets are presented in Fig. 3a. The calibration design
covers a broad range of dissolution profiles and the test data

falls within the designed range. The dissolution profiles were
compressed from 60 data points (time points) to two
dissolution parameters from a best fit of a Weibull function
to the data. An unconstrained non-linear fitting method was
applied using Matlab 2017a and optimization Toolbox. Curve
fitting of the Weibull function gave high R2 values (0.975–
0.998) for all dissolution profiles, indicating that the variance
in the dissolution profiles was captured by the Weibull
function-based models. The residual profiles of the fit were
examined, revealing a pattern (Fig. 3b) that indicated the
fitting caused bias between the measured and fitted data. The
measured fractions of drug released were consistently lower
than the fitted data during the initial 30 min. The residual

Fig. 2. Illustration of the design of experiments including both calibration and test sets

Fig. 3. a Measured dissolution profiles of calibration and test designs; b average error and the standard deviation of the average error from
Weibull function curve fitting
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pattern from 30 to 600 min was a continuous smooth wave
shape. The error bars indicate that the pure error was
significantly larger than the bias at most of the time points
(the confidence intervals included zero). The bias and pure
error were utilized for the evaluation of model performance
and control analysis in the Monte Carlo simulation.

Feedforward Control: Process Model

Process models were established by regressing dissolution
parameters, scale factor λ and shape factor k, on four types of
predictors: (1) fluidization air volume, (2) weight gain, (3) particle
size distribution, and (4) relative humidity. Fluidization air volume
and weight gain were continuous variables. Particle size distribu-
tion was given in the form of a probability density function, which
included 9 variables as the probabilities of a particle being in 9 size
intervals: 50–150, 150–250, 250–350, 350–450, 450–550, 550–650,
650–750, 750–850, and 850–950 μm. However, there were only
three levels of particle size distributions in the calibration design.
The 9 variables of the three levels were decompressed into two
latent variables (PC1 and PC2) using principal component
analysis (mean centering of PCA reduced one dimension of the
dataset). The first latent variable explained 87.7% variance of the
particle size distribution and the second latent variable explained
the remaining 12.3% variance. The two latent variables (in place
of the nine density probability values) were used as predictors in
the regression. Relative humidity was treated as a nominal
variable. Two dummy variables were coded to represent the
three levels of relative humidity.

Partial least squares regression (PLS) was employed to
execute the regressions for the calibration set. The models were
optimized using a cross-validation method of random-subset
with five data splits and five iterations, randomly partitioning the
full calibration into five equal-sized subsets. Of the five subsets,
one was retained as validation data for model testing and the
remaining four were used as calibration data. For one iteration,
five results were generated from the five subsets and were
averaged to produce a single root means squared error of cross-
validation (RMSECV). Five iterations were applied and the
RMSECVs were averaged. The objective of latent variable
selection is to minimize simultaneously the number of latent
variables and cross-validation error, shown in Fig. 4c, d. For both
scale and shape factor models, three latent variables were
selected. The fact that both RMSECVs and RMSEPs reached
their plateaus after three latent variables suggested that the
model was not over-fitting the data. The number of chemical
and physical factors is far greater than the three latent variables
used to model the data, further suggesting that the number of
selected latent variables does not put the model at risk for over-
fitting. The test set data was projected onto the process models.
The coefficient of determination and root mean squared errors
of prediction (RMSEP) were calculated to evaluate the model
performance on the independent test data. The process model
was mathematically expressed as the following equations:

for scale factor λ,

λ ¼ 0:22�X1−4:88�X2−4:79�X3−7:61�X4−0:18

�X5 þ 21:21�X6−171:4 ð3Þ

and for shape factor k,

k ¼ −0:041�X1−0:012�X2−0:010�X3−0:0015

�X4−0:012�X5 þ 0:0028�X6 þ 0:9350 ð4Þ

where X1 = fluidization air volume; X2=dummy variable 1 of
relative humidity; X3= dummy variable 2 of relative humidity;
X4= scores on PC1 of granule size distribution; X5= scores on
PC2 of granule size distribution; X6= weight gain.

The predictors showed a strong correlation with the scale
factor λ, with R2 being 0.975 for calibration and 0.955 for
cross-validation (Fig. 4a). It revealed that the model ex-
plained most of the dissolution variance in the designed
space. The RMSEC and RMSECV were 16.1 and 21.6
(unitless). They are close to each other, indicating a lack of
overfitting. The R2 was 0.887 for the test set and RMSEP was
27.6. Both were lower than those of calibration and cross-
validation, but they were still within an acceptable range,
indicating that the model was robust against unknown
disturbances that existed in the test set. Figure 4b depicts
the correlation between the predictors and the shape factor k.
The R2 value was 0.816 for calibration, 0.736 for cross-
validation, and 0.497 for prediction. The RMSEC, RMSECV,
and RMSEP were 0.0221, 0.0265, and 0.0259. Although the
prediction was not as accurate as the scale factor model, the
model reduced the error significantly (F-test, P < 0.05) from
the standard deviations of k values in calibration (0.0515) and
test set (0.0349). The predicted scale and shape factors were
utilized to reconstruct the dissolution profiles in the form of
fraction of drug released (based on Eq. 2) at specific time
points for calibration, cross-validation, and test, respectively.
The RMSEC, RMSECV, and RMSEP profiles along the time
points were calculated by subtracting reconstructed dissolu-
tion profiles from the measured dissolution profiles. The plot
(Fig. 4c) showed that the error gradually increased from the
time point 0 to 100 min in all three profiles. From the time
point 100 to 250 min, the error remained above 0.025 for
RMSEC, 0.03 for RMSECV, and 0.035 for RMSEP. After the
time point 250 min, all three error profiles showed a
decreasing trend over time. It was consistent with the raw
dissolution profiles (Fig. 3a) where significant variability was
observed from second hour to the fourth hour between the
design points. Given that all error profiles were below the
threshold of 5%, the model performance was considered
acceptable for the purpose of feedforward control.

A constrained global searching algorithm (15,16) coded
in Matlab and the Optimization Toolbox was utilized in the
application of the process model as a control system. The
algorithm searched for the solution of process parameters,
fluidization air volume, and weight gain that minimized the
cost function based on given granule size distribution and
relative humidity. The cost function J was an expression of
the difference between predicted and target dissolution
parameters, shown as Eq. 5.

J ¼ λ̂−λtarget
� �2

þ k̂−ktarget
� �2

ð5Þ
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where λ̂ and λtarget were the model predicted and target scale
factors; k̂ and ktarget were the predicted and target shape factors.
The constraints were applied to limit the solved process
parameters being within the tested range of the model: 25–
35 m3/h for fluidization air volume and 12–26% for weight gain.

Feedback Control: NIRS Model

The feedforward control provided the set-point of air
volume and target weight gain for each batch while the
feedback control used an NIRS predictive model to monitor
the weight gain in real time and determined the process end.
The NIRS model was calibrated using the 30 samples from
the calibration design and validated on the 27 samples from
the test design. The weight gain values of all samples were
calculated from Eq. 1. Ten spectra of each design point were
collected around the time point when the granule samples
were drawn (from 25 s before to 25 s after the sampling). The

spectral regions of 1077–1150 nm and 2100–2226 nm were
noisy and thus excluded from the model.

The NIRS predictive model was developed using partial
least squares (PLS). Since the main interference in the raw
spectra (Fig. 5a) was the baseline shift, several preprocessing
methods were evaluated to determine the optimum method.
The number of latent variables was chosen along with the
selection of preprocessing method. The cross-validation
method used random subsets with 5 data splits and 5
iterations. It was found that a model with four latent variables
(Fig. 5b) yielded the best results. The model included
preprocessing of standard normal variate (SNV) followed by
mean centering for spectral data and auto-scaling for weight
gain data to provide the following calibration and prediction
statistics (all values are absolute error): RMSEC of 0.003,
RMSECV of 0.003, and RMSEP of 0.005 (Fig. 5c). The
reduced Q residuals vs Hoteling T2 plot (Fig. 5d) indicated
that the most points of the test set fell in the 95% confidence

Fig. 4. The model performance of the dissolution prediction. a Predicted vs measured
scale factor λ; b predicted vs measured shape factor k; c scree plot of the scale factor λ
model: error vs number of latent variables; d scree plot of the shape factor k model:
error vs number of latent variables; e absolute error vs time plot for the process model
in terms of calibration, cross validation and prediction
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interval of the calibration, suggesting that they were not
significantly different from the calibration data. The model
utilized 99.68% variance of the spectral data to explain over
99% variance in weight gain for calibration. The total
calibration range was from 0.10 to 0.29 fraction weight gain;
the R2 was 0.98 and an error of 0.005 (absolute) for the test
set was observed.

Control Performance Analysis

The variability of the models introduced uncertainty to
the control system. The variability arose from dissolution
curve fitting, the NIRS model, and the process model. A
mathematic expression of the dissolution profiles, with error
terms, is described in Eq. 6

Fraction of drug released ¼ 1−e
−
�

t
λþσ NIRSð Þþσ λð Þ

� kþσ NIRSð Þþσkð Þ

þ biasþ pure error ð6Þ

where σ(NIRS) is from the error of weight gain from the
NIRS model, (λ) and σ(k) are the errors of dissolution
parameters from the process models, bias and pure error are
from the curve fitting method.

The capability of the controlled process was evaluated
using a Monte Carlo simulation. Fifteen different initial
conditions (5 levels of granule size distributions × 3 levels of
relative humidity) were input to the simulation. An in-house
dissolution specification (shown in Fig. 6a) including four
intervals of percentage drug dissolved at specified time points
(60, 120, 240, and 480 min) was employed to set a target for
the control system. The center points of the intervals (20%,
37.5%, 67.5%, and 90%) were used as the dependent variable
and the time points as the independent variable for fitting
using the Weibull function. The scale and shape factors were
subjected to the searching algorithm of feedforward control
to generate target fluidization air volume and weight gain for
each initial conditions. The distributions of pure error from
curve fitting, the process models, and the NIRS model were
all assumed Gaussian shape. The simulation algorithm ran in
the following sequence: (1) one error value was randomly

Fig. 5. NIRS predictive model: a raw NIR spectra of the calibration set; b scree plot for the optimized preprocessing method: SNV +
mean centering; c predicted vs measured weight gain; d Q residual vs Hotelling T2 plot
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selected from the error distribution of the NIRS model
(σ(NIRS)) and applied to the target weight gain; (2) the
error incorporated weight gain value was employed for the
calculation of the scale and shape factors using the process
models; (3) error values were randomly chosen from the error
distribution of process models (σ(λ) and σ(k)) and applied to
the scale and shape factors, respectively; (4) the dissolution
curve was reconstructed using the error incorporated scale
and shape factors; (5) bias and a randomly selected pure error
profile were applied to the dissolution curve to complete one
loop of the simulation. The algorithm was repeated until the
out of specification rate converged (10,000 times in this study)
for each initial condition. In total, 150,000 dissolution profiles
were generated and the 95% tolerance intervals were
calculated for every time point from 10 to 600 min. In order
to understand the contribution of the feedforward component
of the control system, the same simulation algorithm was
applied with and without feedforward component. The same
initial conditions were used; however, the means of the 15
individual fluidization air volumes and weight gains were used
to generate the scale and shape factors for the system without
feedforward component. The 95% tolerance intervals across
time points were calculated from the same amount (150,000)
of dissolution profiles as the previous simulation.

The simulated dissolution profiles were compared to the
in-house specification. The results showed that a coating
batch had an 8.1% chance of failing to meet the dissolution
specification without feedforward control. The failure rate
decreased to 3.8% when the combined feedforward-feedback
control system was applied. Figure 6 depicts that the 95%
tolerance intervals of the combined feedforward-feedback
system (Fig. 6b) were narrower than the system with only
feedback control (Fig. 6a) for most of the time points.
Compared to the other time points, the samples simulated
without feedforward control tended to release fast and failed
to comply with the specification in the early stage of
dissolution (the specification interval at 60 min did not fully
cover the 95% tolerance interval of the simulated dissolution

profiles). The results suggest that intentional changes to the
in-process parameters have the potential to mitigate batch-to-
batch variation in the input if a well-designed feedforward
loop is used.

CONCLUSION

The coating of granules in a fluid bed process using
feedforward and feedback loops was studied. A combined
feedforward-feedback control system was established based
on process understanding and a comparison of the system
with and without the feedforward component was evaluated
using Monte Carlo simulation. The feedforward control
adjusted the fluidization air volume and coating weight gain
to mitigate the undesired impact of variable granule size
and ambient relative humidity. The feedback control model
utilized inline NIR spectroscopic monitoring to ensure that
the target coat weight gain was achieved. The control
strategy allowed for the fulfillment of process development
stated in ICH Q8 B… the control of the process such that
the variability (e.g., of raw materials) can be compensated
for in an adaptable manner to deliver consistent product
quality. (17)^
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APPENDIX 1 DOE TABLE FOR THE CALIBRATION
DESIGN

APPENDIX 2 DOE TABLE FOR THE TEST
DESIGN

Order of run Granule size (Dv50, μm) Fluidization air volume* Relative humidity*
1 392 (level − 1) 1 1
7 392 (level − 1) 1 − 1
2 392 (level − 1) − 1 1
8 392 (level − 1) − 1 − 1
3 504 (level 1) 1 1
9 504 (level 1) 1 − 1
4 504 (level 1) − 1 1
10 504 (level 1) − 1 − 1
5 460 (level 0) 0 0
6 460 (level 0) 0 0

Order of run Particle size (Dv50, μm) Fluidization air volume* Relative humidity*
1 460 (level 0) 0 − 1
8 392 (level − 1) 0 1
9 504 (level 1) 0 1
2 481 (level 0.5) 0 − 1
3 504 (level 1) − 1 0
4 392 (level − 1) 0 0
5 481 (level 0.5) 0 0
6 504 (level 1) 1 0
7 419 (level − 0.5) 0 0

157 Page 10 of 12 AAPS PharmSciTech (2019) 20: 157



APPENDIX 3 THE POWDER X-RAY DIFFRAC-
TION PATTERNS OF THEOPHYLLINE ANHYDROUS
(FORM II, CCDC REFERENCE CODE: BAPLOT06),
MONOHYDRATE (CCDC REFERENCE CODE:
THEOPH01), AND COATED GRANULES WITH
PRESENCE/ABSENCE OF THEOPHYLLINE
MONOHYDRATE FORM
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