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Abstract. Orally inhaled products have well-known benefits. They allow for effective local
administration of many drugs for the treatment of pulmonary disease, and they allow for
rapid absorption and avoidance of first-pass metabolism of several systemically acting drugs.
Several challenges remain, however, such as dosing limitations, low and variable deposition
of the drug in the lungs, and high drug deposition in the oropharynx region. These challenges
have stimulated the development of new delivery technologies. Both formulation improve-
ments and new device technologies have been developed through an improved understand-
ing of the mechanisms of aerosolization and lung deposition. These new advancements in
formulations have enabled improved aerosolization by controlling particle properties such as
density, size, shape, and surface energy. New device technologies emerging in the
marketplace focus on minimizing patient errors, expanding the range of inhaled drugs,
improving delivery efficiency, increasing dose consistency and dosage levels, and simplifying
device operation. Many of these new technologies have the potential to improve patient
compliance. This article reviews how new delivery technologies in the form of new
formulations and new devices enhance orally inhaled products.

KEY WORDS: orally inhaled product; inhalation; delivery technology; smart inhaler; dry powder
inhaler.

INTRODUCTION

The benefits of orally inhaled products (OIPs) have been
widely reported. These benefits include effective local admin-
istration of drugs that treat pulmonary diseases and rapid
absorption and avoidance of first-pass metabolism for sys-
temically acting drugs (1). However, several problems remain
unsolved. These problems include dosing limitations (2–4),
inefficient and variable lung deposition of the drug (5–7), and
high drug deposition in the oropharynx region (5,7). More-
over, difficulties in oral aerosol delivery can be amplified by
intrapatient variability and interpatient heterogeneity. If the
device or formulation is susceptible to variations in inhalation
effort, improper or inconsistent dosing techniques can signif-
icantly affect the pulmonary dose delivered for a single
patient. Similarly, differences in age (8), respiratory health
(9), and training (10) between patient groups can greatly
impact therapeutic performance.

Historically speaking, early development of inhaled
products was focused on the treatment of asthma with
monotherapy (11), i.e., with only a single drug substance

included in the formulation. Since 2010, about one half of the
newly approved OIPs for asthma or chronic obstructive
pulmonary disease (COPD) are fixed-dose combinations that
deliver two or three drug substances simultaneously to
enhance therapeutic efficacy (see Table I). Also, the thera-
peutic indications for drugs administered to the lungs
continue to expand from localized pulmonary diseases to
systemic indications, including diabetes (13), measles (14),
Parkinson’s disease (15,16), schizophrenia (17), and influenza
(18,19) among others. As the indications for inhalation
therapy expand, improved control of dosing uniformity and
product quality attributes will be warranted. Delivery tech-
nologies are now able to address, at least partially, many of
the historical problems encountered with inhaled drug
products, and promising improvements in patient compliance
and drug efficacy have been reported recently (20–22).

In this review, we discuss examples of recent technology
advancements in orally inhaled products, and we analyze
their advantages and limitations based on the current
available literature. Technology advancements related to
formulation and device technologies are reviewed, focusing
on formulation factors related to the engineering of particle
density, size, and shape, as well as modifications in surface
energy. In terms of device technologies, we focus on the type
of device and its delivery technology, including smart inhalers,
dry powder inhalers (DPIs), nebulizers, soft mist inhalers, and
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Table I. Examples of FDA-Approved OIPs Between 1996 and 2017 (12)

Year approved
by FDA

Type Name Use Active pharmaceutical
ingredient(s)

Inactive ingredient(s)

2017 DPI Trelegy Ellipta COPD Fluticasone furoate/umeclidinium
bromide/vilanterol trifenatate

Lactose monohydrate,
magnesium stearate

Airduo Respiclick Asthma Fluticasone propionate/salmeterol
xinafoate

Lactose monohydrate

Armonair Respiclick Asthma Fluticasone propionate Lactose monohydrate
pMDI QVAR Redihaler Asthma Beclomethasone dipropionate HFA-134a, ethanol

2016 pMDI Bevespi Aerosphere COPD Formoterol fumarate/glycopyrrolate HFA-134a, porous particles
(comprised of
1,2-distearoyl-sn-glycero-
3-phosphocholine and
calcium chloride)

2015 DPI Proair Respiclick Bronchospasm Albuterol sulfate Lactose monohydrate
Utibron Neohaler COPD Glycopyrrolate/indacaterol maleate Lactose monohydrate,

magnesium stearate
Soft mist Stiolto Respimat COPD Olodaterol

hydrochloride/tiotropium bromide
Water, benzalkonium

chloride, edetate disodium,
hydrochloric acid

2014 DPI Arnuity Ellipta Asthma Fluticasone furoate Lactose monohydrate
Incruse Ellipta COPD Umeclidinium bromide Lactose monohydrate,

magnesium stearate
pMDI Asmanex HFA Asthma Mometasone furoate HFA-227, ethanol, oleic acid
Soft mist Spiriva Respimat COPD/asthma Tiotropium bromide Water, benzalkonium

chloride, edetate
disodium, hydrochloric acid

Striverdi Respimat COPD Olodaterol hydrochloride Water, benzalkonium
chloride, edetate
disodium, anhydrous citric
acid

2013 DPI Anoro Ellipta COPD Umeclidinium
bromide/vilanterol trifenatate

Lactose monohydrate,
magnesium stearate

Breo Ellipta COPD Fluticasone
furoate/vilanterol trifenatate

Lactose monohydrate,
magnesium stearate

TOBI Podhaler Cystic fibrosis Tobramycin 1,2-Distearoyl-sn-glycero-
3-phosphocholine, calcium
chloride, sulfuric acid

2012 DPI Tudorza Pressair COPD Aclidinium bromide Lactose monohydrate
2011 DPI Arcapta Neohaler COPD Indacaterol maleate Lactose monohydrate

Soft mist Combivent Respimat COPD Albuterol sulfate/ipratropium bromide Water, benzalkonium chloride,
edetate disodium,
hydrochloric acid

2010 pMDI Dulera Asthma Formoterol fumarate/mometasone
furoate

HFA-227, anhydrous alcohol,
oleic acid

Nebulizer Cayston Cystic fibrosis Aztreonam Sodium chloride, water
2009 Nebulizer Tyvaso Pulmonary arterial

hypertension
Treprostinil Sodium chloride, sodium

citrate, sodium hydroxide,
hydrochloric acid, water

2008 pMDI Alvesco Asthma Ciclesonide HFA-134a, Ethanol
2007 Nebulizer Perforomist COPD Formoterol fumarate Water, sodium chloride, citric acid,

sodium citrate
2006 DPI Foradil Certihaler Asthma/bronchospasm Formoterol fumarate Lactose monohydrate,

magnesium stearate
Pulmicort Flexhaler Asthma Budesonide Lactose

pMDI Advair HFA Asthma Fluticasone propionate/salmeterol
xinafoate

HFA-134a

Aerospan HFA Asthma Flunisolide HFA-134a, ethanol
Symbicort Asthma/COPD Budesonide/formoterol fumarate

dihydrate
HFA-227, Povidone K25,

Polyethylene glycol 1000 NF
Nebulizer Brovana COPD Arformoterol tartrate Isotonic saline solution, citric acid,

sodium citrate
2005 DPI Asmanex Twisthaler Asthma Mometasone furoate Anhydrous lactose

pMDI Xopenex HFA Bronchospasm Levalbuterol tartrate HFA-134a, dehydrated alcohol,
oleic acid

2004 DPI Spiriva Handihaler COPD Tiotropium bromide Lactose monohydrate
pMDI Atrovent HFA COPD Ipratropium bromide HFA-134a, water, dehydrated

alcohol, anhydrous citric acid
Flovent HFA Asthma Fluticasone propionate HFA-134a
Proair HFA Bronchospasm Albuterol sulfate HFA-134a, ethanol

2001 DPI Foradil Aerolizer COPD/asthma/
bronchospasm

Formoterol fumarate Lactose

pMDI Ventolin HFA Bronchospasm Albuterol sulfate HFA-134a
Nebulizer Duoneb COPD Albuterol sulfate/ipratropium

bromide
Isotonic water, sodium chloride,

hydrochloric acid, edetate sodium
2000 DPI Advair Diskus Asthma/COPD Fluticasone propionate/salmeterol

xinafoate
Lactose monohydrate

Flovent Diskus Asthma Fluticasone propionate Lactose monohydrate
pMDI QVAR Asthma Beclomethasone dipropionate HFA-134a, ethanol
Nebulizer Pulmicort Respules Asthma Budesonide
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pressurized metered dose inhalers (pMDIs). Many of these
new technologies have made progress toward improving dose
consistency, dose amounts, device portability, convenience of
use, and efficiency of delivery, which results in improved
patient outcomes.

FORMULATION TECHNOLOGY

For inhaled drug products, the aerodynamic particle size
of the drug is the key parameter that affects regional lung
deposition (23). The aerodynamic diameter (da) is given by
Eq. (1) (24):

da ¼ de

ffiffiffiffiffiffiffiffi

ρ
ρ0χ

r

ð1Þ

where de is the equivalent volume diameter, ρ is the spherical
particle density, ρ0 is the unit density, and χ is the dynamic
shape factor (23,24).

In order to effectively achieve lung deposition, it is
generally accepted that the aerodynamic diameter of inhaled
particles must be 1–5 μm (25), while the aerosol dose less
than 3 μm showed a strong correlation with whole lung
deposition (26). Therefore, at least from a particle engineer-
ing standpoint, the three main factors that can determine
aerodynamic diameter are particle density, particle size (i.e.,
diameter), and dynamic shape factor. Lower particle density
and smaller geometric size lead to a smaller aerodynamic
diameter and change the interparticulate forces that increase
the probability that a particle is deposited in the deep lung.
Also, the dynamic shape factor plays an important role in
delivering particles to the lung (27). A needle-shaped particle
has a higher shape factor than a spherical particle, leading to
a smaller aerodynamic diameter (27). However, this needle-
shaped particle may also significantly affect the particle–
particle contact area. As a result, interparticulate forces are
increased, which leads to a poorly dispersing powder (27). In
addition to these three factors, the aerosol performance of a
dry powder formulation is affected by surface energy of either
the carrier, the drug(s), or both, which can be modified by the
alteration of surface roughness or by the addition of
dispersion-enhancing excipients (28–30). Therefore, the im-
provement of the aerosol performance of inhaled drug
products using powder and particle engineering approaches

has been achieved primarily by controlling particle density,
size, shape, and surface energy, which are discussed in more
detail below.

Particle Density

Based on Eq. (1), the low density of particles reduces their
aerodynamic particle size, resulting in a particle aerodynamic
diameter that is smaller than its geometric diameter.
PulmoSphere® is a technology capable of producing low-
density particles by manufacturing a high-surface area, sponge-
like particle morphology. A perfluorooctyl bromide-in-water
emulsion containing distearoyl phosphatidylcholine (DSPC)
and calcium chloride (2:1 mol/mol) (31) as the primary
excipients is processed by spray-drying to produce
phospholipid-based small, porous PulmoSphere® particles with
a tapped density of 0.01–0.50 g/cm3 (32) (Fig. 1a). Three
different formats are applicable to PulmoSphere® formulations,
based on different types of feedstock for spray-drying: solution-
based, suspension-based, and carrier-based formulations (32).

The preparation process for solution-based PulmoSphere®
involves the following steps: The continuous phase of oil-in-
water feedstock with fully dissolved drug substance is spray-
dried rapidly on the milliseconds scale (36–39). While the fast-
diffusing drug substance becomes amorphous and is distributed
throughout the droplet during fast drying, the slow-diffusing
excipients are concentrated at the surface interface (32). For the
product TOBI® Podhaler®, which is based on PulmoSphere®
technology, a total of 14% w/w of DSPC is used in the
formulation, but the particle surface is composed of over 90%
w/w DSPC (40). By controlling the volume fraction of the oil
phase in the feedstock, particle properties (e.g., geometric
diameter, surface area, tapped density, porosity) can be
controlled (41). The TOBI® Podhaler®, the first FDA-
approved product manufactured using the solution-based
PulmoSphere® technology, is the second tobramycin inhalation
formulation marketed by the Novartis Pharmaceuticals Corpo-
ration. A recent stability study by Miller et al. shows that the
glassy particles of TOBI Podhaler are physicochemically stable,
and aerosol performance is maintained after exposure of
packaged product to either 25°C/60% RH or 30°C/75% RH
for at least 3 years (42).

Alternatively, unlike the dissolved drug substance in the
solution-based PulmoSphere®, in the suspension-based
PulmoSphere® technology, the drug substance is

Table I. (continued)

Year approved
by FDA

Type Name Use Active pharmaceutical
ingredient(s)

Inactive ingredient(s)

Disodium edetate, sodium
chloride, sodium citrate,
citric acid, Polysorbate 80, water

1999 Nebulizer Xopenex Bronchospasm Levalbuterol hydrochloride Sodium chloride, sulfuric acid, water
1997 DPI Flovent Rotadisk Asthma Fluticasone propionate Lactose

Pulmicort Turbuhaler Asthma Budesonide none
Serevent Diskus Asthma/bronchospasm/

COPD
Salmeterol xinafoate Lactose monohydrate

Nebulizer TOBI Cystic fibrosis Tobramycin Water, sodium chloride
1996 pMDI Flovent Asthma Fluticasone propionate Trichlorofluoromethane,

dichlorodifluoromethane
Proventil HFA Bronchospasm Albuterol sulfate HFA-134a, ethanol, oleic acid

DPI dry powder inhaler, COPD chronic obstructive pulmonary disease, PMDI pressurized metered dose inhaler
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incorporated as fine particles in a feedstock suspension
(33,39,43,44). Either crystalline or amorphous drug particles
are coated with PulmoSphere® excipients, producing single
particles (32). The mass median diameter of the drug particles
in the suspension feedstock should be less than 2 μm, and
90% of these particles are required to be less than 5 μm in
order to effectively coat the drug substance with the
PulmoSphere® shell (45). Ciprofloxacin dry powder for
inhalation was developed by Bayer Healthcare Pharmaceuti-
cals, Inc. using this suspension-based format (46–48).

A carrier-based format can produce micronized drug
particles that strongly adhere to the small porous
PulmoSphere® particles as respirable agglomerates
(32,49,50). Since the agglomerates are delivered into the
lungs in this PulmoSphere® format, the adhesive forces
between the drug and carrier and the cohesive forces between
drug particles are less correlated with the aerosol perfor-
mance of the bulk powder (32). The carrier-based
PulmoSphere® format is produced in two steps: first, the
manufacture of the PulmoSphere® carrier and co-suspension
of micronized drug substance with the carrier in a nonsolvent
(32). This nonsolvent can be removed by spray-drying (51).
Due to the usage of a nonsolvent other than water, this
format of PulmoSphere® may be well suited for physically or
chemically unstable formulations in water (32,51). This
format also increases the physical stability of potent crystal-
line drug substances by maintaining their crystallinity during
the manufacturing process (32).

In 2016, the FDA approved Bevespi Aerosphere®, by
AstraZeneca Pharmaceuticals LP. It is manufactured using the
carrier-based PulmoSphere® format (52). Bevespi Aerosphere
is a fixed-dose combination of glycopyrrolate, a long-acting
muscarinic antagonist (LAMA), and formoterol fumarate, a
long-acting beta2-adrenergic agonist (LABA) (53). The recent
study by Taylor et al. showed that a fixed-dose combination of
glycopyrrolate and formoterol fumarate (18/9.6 μg), which was
manufactured by the same technique of Bevespi Aerosphere®
with double the amount of drugs, was efficiently deposited in all
regions of the lungs with low exhaled fraction (54).

One difficulty of delivering fixed-dose suspension com-
binations of drugs using a pMDI is maintaining a uniform
aerosol performance of the actives (55,56). For instance,
Advair® HFA has a fine particle fraction (FPF) of 48–52%
for fluticasone propionate in the three different doses of

fluticasone (44 to 220 μg/actuation) while 63–75% for a fixed
dose of salmeterol xinafoate (57). The co-suspension of
porous particles using the carrier-based PulmoSphere®
format promotes uniform dosing of pMDIs, presenting
consistent drug distributions (58). Furthermore, Martinez
et al. performed two phase III trials and confirmed that the
glycopyrrolate/formoterol formulation using the carrier-based
PulmoSphere® format exhibited better efficiency than the
individual monodose bronchodilator formulations in patients
with moderate-to-very severe COPD, with a significantly
lower use of rescue medications during the study periods (59).

While PulmoSphere® particles are produced by spray-
drying, freeze-drying technology is also applicable in produc-
ing particles with low density. Technosphere® is another
technology used to produce a large surface area and high
internal porosity, resulting in low-density powder (60) (Fig.
1b). Afrezza®, the second inhaled insulin marketed product,
is manufactured using Technosphere® technology (61).
Fumaryl diketopiperazine (FDKP) is used as a primary
ingredient for Technosphere® formulations of inhaled insu-
lin. FDKP crystalline nanoparticles prepared by a controlled,
pH-induced crystallization process self-assemble into 3D
spheres that can capture insulin inside the spheres (62). The
dry particles of Afrezza® present a mass median aerody-
namic diameter (MMAD) of about 2.5 μm with an internal
porosity of 70% (63).

Thin film freezing (TFF) cryogenic technology is also used
to manufacture low-density particles. With freezing rates up to
104 K/s (64), TFF can produce nanostructured particles with
high surface area and low bulk density (65) (Fig. 1c). Beinborn
et al. reported producing amorphous voriconazole for DPI
delivery containing voriconazole and polyvinylpyrrolidone K25
(1:3w/w) with 43m2/g of specific surface area and 0.013 g/cm3 of
bulk density (35). Watts et al. also reported respirable low-
density tacrolimus formulations produced by TFF, and they
reported densities less than 0.01 g/cm3, while the FPFs were as
high as 69% when tested with 3 mg of powder in the
Handihaler® at a flow rate of 51 L/min (4 kPa) (66).

Particle Size

Typically, when a drug is delivered to the pulmonary
pathways, a significant amount is lost because of drug
deposition in the oropharynx or mouth regions (67) due to

Fig. 1. SEM images of engineered low-density particles. a PulmoSphere® solid foam particles (33). Copyright © Springer Science+Business
Media, LLC 2007. b Four Technospheres® loaded with insulin (18% w/w) intended for pulmonary administration (34). Reproduced with
permission from Respiratory Drug Delivery, Virginia Commonwealth University and RDD Online. c TFF particle of voriconazole (35).
Reproduced with permission from Elsevier
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inertial impaction of large particles or particles that were
insufficiently deaggregated (23). The AERx® pulmonary
drug delivery system, which was first introduced in the
1990s, can generate small aerosols, less than 3 μm, to avoid
the drug deposition in the oropharynx and more central
airways, and efficiently deposit drugs with an insignificant
exhaled fraction by hygroscopic particle growth (68,69). More
recently, Longest et al. suggested a novel approach to control
the growth of nanoparticles to the micron size range to
overcome the loss of the drug deposited in the oropharynx or
mouth regions (70–73). Spray-dried nanoparticles can bypass
deposition in the oropharynx and mouth regions, but when
delivered with saturated or supersaturated warm air, their
size increases in the airways due to the condensation of warm
water vapor on the particles (74). This method is called
enhanced condensational growth (ECG) (74). The increased
particle size is within the range of 2–3 μm (74).

Similarly, prior research has described the use of a
hygroscopic excipient (e.g., mannitol, citric acid, sodium
chloride) to increase the particle size by stronger interaction
with relative humidity of the airways, causing growth by
condensation without an external source of water vapor (73).
Because the initial size of the particles is submicron (75), only
slight deposition is expected in the mouth–throat region (76).
The particle size increases significantly after the aerosol
reaches into the deep lung. This method, which uses an
excipient, is called enhanced excipient growth (EEG) (75).
Using EEG, the particle diameter growth ratio was measured
up to 4.6 times the original size, and this growth occurred with
both hygroscopic and nonhygroscopic drugs when the excip-
ient mass loadings were 50% and below (73). Son et al.
reported that, using EEG, the performance of spray-dried
albuterol sulfate, with mannitol as a hygroscopic excipient
along with L-leucine and poloxamer 188, not used as
excipients in approved formulations yet, exhibited a 4.1%
mouth–throat deposition using a realistic mouth–throat
model (77). EEG formulations were recently tested on low-
air volume in-line DPIs to deliver high-dose pharmaceutical
aerosols during mechanical ventilation (78,79).

Particle Shape

Particle shape is another factor that influences aerody-
namic particle size. Needle-shaped particles can reduce
aerodynamic size, based on Eq. (1), due to larger value of
χ. Thus, they can achieve improved aerosol performance and
delivery of the drug into the deep lung area. Additionally,
elongated particles have a greater chance of avoiding
macrophage clearance by phagocytosis when deposited with
their long axis (23). Using elongated particles is beneficial,
but it is difficult to achieve the fabrication of nonspherical
particles with reproducibly controlled dimensions.

Liquidia Technologies has developed a novel particle
manufacturing technology to fabricate particles using a proprie-
tary roll-to-roll manufacture (80) (see Fig. 2). Particle replication
in nonwetting templates (PRINT®) is a unique technology that
can make particles with a specific size, shape, and composition
(82). PRINT® technology can support drug development for
diverse drug substances, including small molecules, biologics,
single agents, fixed-dose combinations, and vaccines (84).

Mack et al. tested the aerosol properties of treprostinil
dry powder for inhalation, made using PRINT® technology
(83). The aerodynamic diameter of triangular treprostinil
particles was measured as 1.6–1.7 μm, and the FPF was
around 90% when tested with 10 mg of PRINT particles
loaded in a low-resistance monodose DPI (Plastiape; Lecco,
Italy) at a flow rate of 90 L/min (4 kPa). In a stability study of
a PRINT–treprostinil formulation under accelerated condi-
tions (40°C at 75% relative humidity), FPF was maintained at
90% for 12 weeks (83).

This precise particle design using PRINT® technology
allows for the scalable manufacturing of inhalable pharma-
ceutical particles that are available in a nearly unlimited
number of particle shapes and sizes, with a size range from
nanoscale to micron-scale (81,82). PRINT technology can be
a useful solution for inhaled drug product development,
which has difficulty fabricating particle shapes to achieve
suitable aerodynamic properties by changing the dynamic
shape factor χ in Eq. (1).

Surface Energy

The earlier generation of DPI products was limited to
milling large bulk powders into smaller particles, then mixing
a micronized drug with a carrier, usually lactose (85). By this
process, the contact area of particles affects the aerosol
performance of a dry powder, and the shear stress (aerosol-
ization forces) should be higher than the adhesion forces
between the particles (86). As the highest surface energy is
found on the flat, smooth, and clean surfaces of materials,
greater surface roughness can reduce surface energy, reducing
particle contact area, thus increasing distance between
particles (86) to enhance particle dispersion.

Granulated lactose, recently evaluated by Du et al.,
demonstrates the relationship between surface roughness
and aerosol performance (85,87,88). A large size fraction of
granulated lactose exhibited a rougher surface. Therefore, the
large size fraction had lower surface energy and presented
better aerosol performance than the smaller size fraction that
had smoother surfaces. Du et al. find no significant effect on
solid-state properties, specific surface area, true density, and
flowability with different sizes of granulated lactose; however,
roughness of surface, bulk, and tapped densities were
different based on the size of the granules (88). Whereas
carrier-based DPI formulations commonly have low drug
loading, granulated lactose presents promising results for high
drug loading. In the case of salbutamol sulfate, higher drug
loading (30%) exhibited better aerosol performance with a
larger fraction of granulated lactose at a higher flow rate,
while aerosol performance and flow rate were independent
from drug loading in the case of rifampicin (87). Therefore,
with high drug loading capability, granulated lactose can be
useful for designing and optimizing DPI formulations with
high drug loading for improved aerosol performance and flow
rate independence (87).

Using a dispersion-enhancing excipient without lactose
or another carrier has been reported to reduce surface
energy. Sou et al. suggest that the hydrophobicity of leucine
causes its migration to the surface of droplets during spray-
drying, thus modifying the surface energy of the particles
(89). The use of leucine as an aerosolization enhancer
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successfully demonstrates that surface-modified salbutamol
sulfate was suitable for delivery by inhalation without a
carrier when reasonable surface roughness was achieved (86).

More recently, AeroVanc™ (90–92), a vancomycin DPI
formulation, and meloxicam DPI formulation (93) have been
developed to include leucine as an excipient. In addition,
Pulmatrix, Inc. has developed a levofloxacin DPI formulation
containing leucine and sodium chloride without lactose using
iSPERSE™ (inhaled small particles easily respirable and
emitted) technology (94), which is applicable not only to
small molecule drugs, but also to large molecules such as
immunoglobulin G (95,96).

Magnesium stearate has also been claimed to reduce
surface energy and powder cohesion, thus improving aerosol
performance due to its high hydrophobicity (97). In the
studies by Zhou et al., adding just 1% w/w magnesium
stearate to formulations produced by jet-milling (which
include salbutamol sulfate, salmeterol xinafoate, and triam-
cinolone acetonide) exhibited increased FPF by at least 14–
22%, with a significant decrease in surface cohesion (98,99).

DEVICE TECHNOLOGIES

Devices are integral to achieving successful aerosol
delivery to patients. Some recent advances include the use
of “smart inhalers.” These smart inhalers were developed to
improve patients’ adherence by helping them administer their

medications appropriately and on time. In recent years, the
focus has been on achieving drug delivery consistency across
a range of flow rates while providing simple operation steps
and the capability to deliver greater payloads of drugs to the
airways. Nebulizers have been engineered to be more
portable and uniform, and they are becoming more efficient
by generating smaller aerosols and cooperating with patients’
breathing. Also, new propellant systems attempt to improve
the aerosol performance delivered by pMDIs.

Smart Inhalers

SmartMist® and AERx®, developed by Aradigm Cor-
poration in the 1990s, were early generation smart inhalers
that could monitor compliance and assist patients to inhale
drugs properly supported by a microprocessor (69,100,101).
The inspiratory data were saved in solid-state memory for
later retrieval via a personal computer (100).

Smart inhalers recently use electronic monitoring systems
that connect to the Internet or to other devices. They have been
developed to improve patient’s adherence to inhaled medica-
tions, and they reduce errors induced by devices or patients.
They have been introduced to the market for only a short time,
but several analysts have predicted steep growth of this
technology (102–104) due to the potential benefits of enhanced
adherence to their medications and the ability to track patient
compliance and use. Smart inhalers not only remind patients to

Fig. 2. a Sequential steps of the PRINT particle manufacturing process (81). b Three-micrometer fenestrated “torus
particles” (82). c Rod-like particles (82). d Micrograph of PRINT–treprostinil particles (83). e One-micrometer cylinders
(82). Reproduced with permission from Respiratory Drug Delivery, Virginia Commonwealth University and RDD Online
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take a dose; they also record and transfer usage data, which may
improve adherence (20–22,105,106). Advanced features avail-
able from newly developed smart inhalers may help minimize
patient errors. These features include step-by-step guidance
provided from the inhaler’s screen (107) and inhalation profile
monitoring (107,108).

Smart inhalers generally fall into two categories: add-on
and originally integrated devices. Examples of add-on devices
include those available from Propeller Health, Adherium Ltd.,
and Teva Pharmaceutical Industries Ltd. Originally integrated
devices include examples developed by 3M™ Drug Delivery
Systems, Novartis Pharmaceuticals, and Teva Pharmaceuticals.

Since 2010, Propeller Health has developed inhaler
device sensors, mobile applications, analytics, and regular
feedback to record the usage of respiratory medications
(109). The Propeller platform maintains a database of when
and where patients use their inhalers (109,110). Since the first
FDA clearance in 2012 (111), this system has been adapted to
several inhaler device types, including devices such as
Novartis’ Breezhaler®, Boehringer Ingelheim’s Respimat®,
GlaxoSmithKline’s Diskus® and Ellipta®, and other MDIs
(109,112). It has been reported that the use of the platform
from Propeller Health improved asthma control: There was a
78% decrease in rescue inhaler use and a 48% increase in
symptom-free days for residents in Jefferson county in
Kentucky (113). However, these results excluded participants
who did not sync their usage data more than 60 days, and the
average time that participants remained synced was 273 days,
while the results extended over 365 days.

Adherium Ltd., which was renamed from Nexus6 Ltd. in
June 2015, also markets the Hailie™, previously known as the
Smartinhaler™ platform before May 2018 (114). The Hailie™
tracks the date and time of medication usage, reminds users to
dose, and sends usage data to amobile application viaBluetooth
technology (115). This inhaler monitoring device received
510(k) marketing clearance from the FDA in June 2014 (116).
Chan et al. conducted a clinical study of 220 children, ages 6–15,
in New Zealand. Their study indicated that using SmartTrack, a
previous version of the Hailie™, improved adherence to
medication by 180% and reduced the use of reliever medication
by 45% (20). A clinical study with SmartTrack also showed a
59% improvement of adherence to medication with adults (22).

Teva Pharmaceutical Industries Ltd. joined the group of
firms developing smart inhalers after it acquired Gecko
Health Innovations (117), which was founded in 2012 in
Massachusetts. Like other add-on smart inhalers, CareTRx™
is a Cloud-based solution that contains a universally designed
hardware that can be attached to standard MDI canisters.
This attachment transforms a typical inhaler into a smart
inhaler for enhancing a patient’s adherence to medications
(118). With CareTRx™, patients can set reminders for
medications; track all types of medications; record symptoms,
triggers, and peak flow; view charts and statistics on activity;
and review trends for adherence. It also connects patients to
care providers to enhance communication (119,120).

Intelligent Control Inhaler, an originally integrated device
developed by 3M™ Drug Delivery System, was introduced in
April 2016 (121). The Intelligent Control Inhaler is designed as a
breath-actuated pMDIwith simple open–inhale–close operation
steps (122). This pMDI reduces errors caused by a patient’s
breath profile through the use of step-by-step on-screen guides

and through the control of inspiratory flow rate during
inspiration (122,123). In addition, to increase dose accuracy,
the dose as well as inspiration profiles is recorded only when
correctly inhaled by the patient (124).

Novartis is also developing its own new smart device for dry
powder inhalation, USSC-03 (108). TheUSSC-03 device contains
two functional parts: a cartridge and an inhaler body (108). Two
different versions of the body are available: a mechanical body
and an electronic body. The cartridge can fit in either one (108).
Unlike the mechanical version that operates without electronics,
the electronic version has a series of illuminated indicators and
can monitor the usage time, date, and inhalation profile, all of
which can be transferred wirelessly to a hub via Bluetooth (108).
In the electronic device, the breath-actuated blister access
mechanism embedded in the device does not pierce the blister
until a pressure drop reaches around 1.5 kPa due to the patient’s
inhalation. This feature, along with the simple open–inhale–close
operation steps, can reduce errors associated with low inspiratory
flow rate or misuse by the patient (108,125).

The drug formulation used for USSC-03 is comprised of
small porous particles made by PulmoSphere® (125). Due to
its advantages in particle engineering and device technolo-
gies, the total lung deposition by USSC-03 is independent of
the patient’s inspiratory flow rate when it is above 1.0 kPa
(125). The drug powder is emitted from the device within the
first 0.2 L of inhaled volume; thus, it is well suited for patients
with decreased inspiratory volume (125).

Another new smart device for dry powder inhalation was
recently introduced by Novartis. The Electronic Breezhaler®
was developed from the marketed Breezhaler®, integrating
electronics that can sense, record, and communicate usage
data (126). While the appearance of the electronic
Breezhaler® is very similar to existing Breezhaler®, it is
slightly larger. The study by Colthorpe et al. demonstrated
that the electronic Breezhaler® has usability and perfor-
mance that is equivalent to the existing Breezhaler® (126).

In addition to CareTRx™, Teva Pharmaceuticals Indus-
tries has tested an electronic, module-integrated multidose
dry powder inhaler (MDPI) (127). The integrated electronic
module records usage time, peak inspiratory flow rate, and
acceleration rate, as well as inhaled volume.

These devices, however, represent a new technology that
faces possible limitations of high cost, patient avoidance of
sharing personal information and data, and low market share in
developing countries. First, smart inhalers could initially be
more expensive than conventional devices (128), and their extra
cost may not be fully covered by the patient’s insurance until
more economic benefit is demonstrated (129). Other obstacles
to this technology that will need to be overcome include data
security, developing world access, and product robustness as
well as patient reluctance due to privacy concerns.

Even with these possible limitations, smart inhalers still
provide features that are of value to the patient and the
healthcare system as a whole. Smart inhalers received positive
feedback from patients in reported studies (130), and they
improved patient’s adherence as well as their clinical out-
comes (20,105,131). The improved adherence could reduce
the excessive waste of prescription drugs (132) that reduces
total cost of the treatment and contamination of drinking
water by drug waste (133). In addition, smart inhalers also
provide benefits during clinical trials by providing adherence
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data. The drugs delivered by smart inhalers can be deter-
mined more precisely if it is effective with patients who
actually adhere to the medication (134).

DPIs

DPIs can be divided into two groups according to their
mechanisms of powder aerosolization: active DPIs and passive
DPIs (10). The active DPI consists of an integrated energy
source to aerosolize the powder inside the device. Therefore,
aerosolization is not dependent on the patient’s inspiratory
flow rate (10). The aerosolization of the powder of passive
DPI, however, is dependent on the patient’s inspiratory flow
rate (10). Active DPIs have been developed, such as the
Taper by 3M™ and Spiros® by Dura Pharmaceuticals;
however, all DPIs currently on the market are passive DPIs.

DPIs are typically breath-actuated devices triggered by
the patient’s inhalation with appropriate timing. Thus, DPIs
do not require hand–breath coordination to minimize patient
errors, while hand–breath coordination is required by con-
ventional pMDIs during drug administration (135). There-
fore, DPIs can successfully minimize patient coordination of
actuation due to breath-actuated functions, but the efficiency
and consistency of drug delivery and aerosol dispersion by
DPIs may still be dependent on the patient’s inspiratory flow
rate, which has been an important challenge for pulmonary
drug delivery using DPIs (127,136,137).

As an illustration in Fig. 3, an inhaler tested at different
inspiratory flow rates demonstrated that the output of total lung
deposition could be decreased up to 50% when the inspiratory
flow rate dropped from 60 to 30 L/min (137,138). Olsson et al.
reported that in vivo total lung deposition of the Albuterol®
Turbuhaler®, whenmeasured using the charcoal-blockmethod,
dropped to a 13.9% nominal dose at a weak peak inspiratory
flow rate (i.e., mean attained peak flows of 34 L/min), while the
nominal dose was 23.2% at a moderate peak inspiratory flow
rate (mean attained peak flows of 62 L/min) (139). Ung et al.
also demonstrated that the in vitro lung dose fraction of the

Asmanex® Twisthaler® decreased from a 32% nominal dose at
a peak inspiratory flow rate of 57 L/min to a 15% nominal dose
at a peak inspiratory flow rate of 33 L/min (140). Newly
described devices, however, seem to successfully overcome this
inconsistency of drug delivery caused by low flow rates, and they
also have achieved better aerosol performance.

Grant et al. reported on the dose consistency of Ellipta®,
a next-generation DPI developed by GlaxoSmithKline, and
the in vitro results demonstrated consistent and reliable dose
delivery at tested flow rates of 30–90 L/min (141). The
delivered dose range of fluticasone furoate was 87.6–96.9%
of the nominal blister contents, and the fine particle dose
range was 20.7–25.4% for delivered fluticasone furoate from
Breo® Ellipta® 100/25 over the flow rate range of 30–90 L/
min (141). Ellipta® is designed as a breath-actuated DPI with
simple open–inhale–close operation steps to minimize errors.
Recent studies demonstrate that patients preferred Ellipta®
to previously marketed DPIs such as Handihaler® (142,143),
Diskus® (143,144), Turbuhaler® (143), and Breezhaler®
(143) due to these simple steps to take medications. However,
patient preference studies frequently report positive out-
comes for the tested device over others, and these results
should be interpreted with caution (145).

RespiClick® is another newly developed breath-actuated
DPI with simple operation steps. The study of the inhalation
parameters of RespiClick®, evaluated in children, adoles-
cents, and adults, shows that RespiClick® also requires a
peak inspiratory flow rate of only 30 L/min (146). This rate is
applicable regardless of age and disease severity after
appropriate training (147). In the case of the Proair®
RespiClick®, the device delivering albuterol sulfate can treat
or prevent bronchospasm in patients over 4 years old who
have reversible obstructive airway disease (146,148).

A disposable, capsule-free device that consists of only
two components also generates high respirable aerosols at a
relatively low flow rate. The TwinCaps®, developed by
Hovione, keeps powder for two dosages in its shuttle, which
is leak proof (149) and can achieve over 70% FPF at 35 L/min

Fig. 3. Impact of flow rate on the deposition of pharmaceutical aerosols. Diamond,
Asmanex Twisthaler; square, Budesonide Flexhaler; triangle, Pulmicort Turbuhaler; times
symbol, Albuterol Turbuhaler; asterisk, Bricanyl Turbuhaler; circle, Neodocromil
Spinhaler; plus sign, Ventolin Rotahaler (137). Data reproduced with permission from
Springer Nature

117 Page 8 of 17 AAPS PharmSciTech (2019) 20: 117



(at 4 kPa) when tested with amorphous spherical composite
particles of 80% trehalose and 20% leucine (149,150).

The Twister®, developed by Aptar Pharma, also pro-
vides consistent dose and FPF at a flow rate of 40–80 L/min
when tested in vitro (151), with a unique feature of opening
the capsule during inhalation rather than piercing before
inspiration (152). With a low number of components and a
transparent, simple design, the Twister is cost effective and
can minimize the drawbacks associated with pierced-capsule
platforms, which include piercing inconsistency, powder
remaining in the capsule, and inhaling capsule debris made
by piercing.

Like other newly developed DPIs, NEXThaler® also
requires an inspiratory flow rate of only 30 L/min to trigger
the products (153). Buttini et al. demonstrated the in vitro
aerodynamic performance of NEXThaler® (154). Their
results showed that the Foster® NEXThaler®, a fixed dose
of beclomethasone dipropionate and formoterol fumarate,
exhibited a consistent delivered dose of 81.1–88.2% at a
range of flow rates of 30–90 L/min (see Fig. 4). Also, the
decrease in fine particle mass was 17% for beclomethasone
dipropionate and 24% for formoterol fumarate when the flow
rate dropped from 90 to 30 L/min (154).

In addition to dose consistency at a range of inspiratory
flow rates from newly developed DPIs, some new DPIs are
capable of high-dose delivery (see Table II). The TOBI®
Podhaler® exhibits flow rate independence when delivering
doses to the lung as shown in Fig. 5 (160), and it is designed to
deliver 112 mg with only four inhalations (155). The
Twincer™ (158) is also capable of delivering a large dose,
and the maximum dose loading of the Orbital® (157) is
400 mg with multiple applications. Young et al. compared the
aerosol performance of the Orbital® and the Plastiape RS01.
The FPF of the Orbital® was up to 67% higher than that of
RS01 (157). In addition, the TwinMax®, structured almost
the same as the TwinCaps®, has an enlarged powder cavity
for delivering larger drug doses. It was developed from the
TwinCaps® platform using 3D printing technology (159).
When tested with 100 mg of synthetic protein, TwinMax®
had an FPF of 39% with an emitted dose of 80% (159),

showing the opportunity to deliver biologics and other drugs
requiring high dosage.

While new DPI designs have led to improved perfor-
mance, existing DPIs have shown marked improvement in
performance through the addition of add-on aerosol-enhanc-
ing devices. Respira Therapeutics, Inc. has developed a small
dispersion engine, named, the axially oscillating sphere
(AOS), which can be simply attached to the mouthpiece or
capsule chamber of a device (139,161). With the tested
formulations, Hannon et al. demonstrated that the AOS
dispersion engine successfully achieved the enhancement of
fine particle doses less than 3 μm (1.5–2.6×) at 4 kPa pressure
drop when attached to the Diskus®, Handihaler®, or
Plastiape RS01 at a dose range of 12–4000 μg (139). The
data support that the dispersion engine can improve the
aerosol performance of off-the-shelf devices while simply
being attached to them (139).

Nebulizers

Breath-enhanced, breath-actuated, and vibrating mesh
nebulizers have been developed to improve delivery effi-
ciency and to produce smaller aerosols (10). Breath-enhanced
jet nebulizers, such as the Pari LC® Plus, and the Side Stream
Plus®, have been developed to increase the output rate and
decrease the administration time (162) by a turbocharged
effect when patients are inhaling, and using two 2-way valves
to minimize the loss of aerosol when patients are exhaled
(163). Breath-actuated nebulizers, such as the AeroEclipse®,
are designed to deliver aerosol only during inspiration.
Therefore, the loss of drug is reduced, since no aerosol is
generated during exhalation (164).

Vibrating mesh nebulizers, such as the Pari eFlow®
rapid, the Micro Air® NE-U22, and the Aeroneb® Go
include a fine mesh plate to generate aerosol. The size of the
aerosol produced by vibrating mesh nebulizers is affected by
the diameter of the mesh or by the aperture size (165). They
can generate very fine aerosols (166) that can be deposited in
the alveoli with high efficiency (1). Skaria and Smaldone
(167) tested radiolabeled albuterol (2.5 mg per 3 mL) and

Fig. 4. Flow rate independence in a fine particle mass (FPM) of (diamond)
beclomethasone dipropionate (BDP) and (square) formoterol fumarate (FF) by the
Foster® NEXThaler® (154)
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found that the inhaled mass of the NE-U22 was twice as much
as the Sidestream® jet nebulizer (20 vs. 10% of nebulizer
charge, respectively), while the MMAD for both was similar.
Also, the residual drug remaining in the NE-U22 was
significantly less than in the Sidestream® (Fig. 6).

The aperture diameter directly correlates with the
aerosol size and output rate (165,169). Therefore, a slower
output rate can be achieved using a smaller aerosol size. The
photo-defined aperture plate (PDAP) is a new technology for
nebulization (169). PDAP, with a novel 2-layer architecture,
allows for the decoupling of output flow rate from aerosol
size, and it is expected to employ a faster aerosol output rate
(169). In PDAP, up to 20 small apertures are positioned in a
thicker inlet with a larger diameter aperture (170).

Fink et al. compared the particle size distribution and
output rate of a viscous formulation generated by a conven-
tional vibration mesh nebulizer and PDAP (170). Their
results show that PDAP has a smaller volume and mean
diameter than conventional vibrating mesh (1.05 vs. 3.5 μm,
respectively), and it also has a faster output rate (0.33 vs.
0.05 mL/min, respectively). These results support the possi-
bility of more efficient delivery and the development of
inhaled medications especially for critically ill patients, from
neonates to adults, who require ventilator support (170).

Vibrating mesh nebulizers have many advantages over
other types of nebulizers, such as small size, high portability,
silent operation, and increased output efficiency (163,166).

However, the pores on the mesh have been reported to clog
easily, and it can be difficult to observe the blockage and
remove it (171). To reduce clogging due to multiple use, the
MicroBase μSMI was developed by Hsiao et al. (168). The
disposable medication container and mesh are separated from
the vibrating module of the MicroBase μSMI and nebuliza-
tion occurs only when they are in contact as shown in Fig. 7
(168). When a budesonide suspension was tested (1 mg per
2 mL), the MicroBase μSMI performed with a significantly
higher respirable dose (23%), than the Aerogen Solo, Philips
InnoSpire Go, or Pari eRapid (15, 11, and 5%, respectively)
(168).

Conventional jet nebulizers have also been improved in
recent years. Improvement in efficiency has been enabled by
adding a horizontal venturi inside the nebulizer (173).While the
basic principle of a horizontal venturi nebulizer (HVN) is similar
to typical nebulizers, the horizontal venturi installed inside is
intended to reduce the required air flow rate to deliver aerosol,
which can be nebulized as ultra-fine particles (174). Primary
droplet formation is fine-tuned by the flow rate of the
compressed gas and by the horizontal and vertical orifice
diameters that control the feed rate of formulations (174). A
baffle downstream from the nozzle can control the final particle
size distribution (174). The particle size distribution depends on
the size of the horizontal nozzle and the distance between the
baffle and the horizontal nozzle (174). The baffle allows only
small particles to pass through the airstream; large particles are
recycled back to the reservoir (174).

When tested to deliver an albuterol sulfate solution,
HVN delivered a much larger amount (190.9 μg) of the
formulation compared to the Pari® LC Plus nebulizer
(21.1 μg) using only half flow rate (3 and 6 L/min,
respectively) (174). Particle size distribution by the Anderson
cascade impactor showed that 54.9% of the delivered dose of
the albuterol sulfate solution was measured as ultra-fine
particles smaller than 0.4 μm (174). With a higher delivered
dose at a lower gas flow rate, HVN provides less ambient
drug loss during expiration, as well as more efficient delivery
to the lower respiratory tract (174).

A new mechanism of nebulization has also been suggested.
Surface acoustic waves (SAWs) travel only along the surface of a
material due to their relatively short wavelengths, which cannot
penetrate a material deeply. Many applications related to SAWs
are involved in electronics such as semiconductors (175) and
laser detectors (176); however, one application of SAWs using
high frequencies (10 to 100 MHz) has been evaluated for the
purpose of nebulization (177).

When SAWs travel, they accelerate as much as 10 million
times the acceleration of gravity on the surface of the fluid,
conducting nebulization from the surface above a critical

Table II. DPIs Delivering Large Doses

Device Dose loading (mg) Aerosol performance Reference

Podhaler® 28 PulmoSphere® tobramycin: FPF 69% (155,156)
Orbital® Up to 400 Spray-dried ciprofloxacin: FPF 67%

PulmoSphere® tobramycin: FPF 61%
(157)

Twincer® 10–50 Colistimethate sodium: FPF 63.5% (158)
TwinMax™ 100 Synthetic protein: FPF 39% (159)

FPF fine particle fraction

Fig. 5. Peak inspiratory flow rate (PIFR) independence in total lung
dose (TLD) observed for the TOBI® Podhaler® (160). The lines
represent linear regressions. The various symbols represent the mean
values for various Alberta-idealized throats (circle, child; square,
small adult; inverted triangle, large adult). Modified figure
reproduced with permission from John Wiley and Sons
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velocity displacement amplitude (178), which is caused by the
destabilization and breakup of its interface (179). The
droplets produced by SAW-induced nebulization can be
tuned to a size range of 1–5 μm with a nebulization rate of
0.1–0.6 mL/min (177), which is ideal for pulmonary delivery
(180). These high frequencies require very low input power
(1 W) for nebulization; hence, they provide macromolecules
less chance to be damaged during aerosolization, compared
with the ultrasonic nebulization, which typically requires
20 kHz to 3 MHz (179,181).

While a study of nebulizing proteins by SAWs is not
reported yet, Wang et al. reported on the stability and
efficacy of a synthetic model of antimicrobial peptides
nebulized by SAWs (181). In their in vitro study, about
70% of nebulized peptides were within the optimal size
range for pulmonary delivery, as characterized by the next-
generation impactor (NGI). Mass spectrometry confirmed
that they were retained. The peptide recovery concentration
after nebulization was found to be significantly higher than

90%, indicating that the peptide loss from nebulization was
insignificant. These results show that SAW-induced nebuliza-
tion is a potential technique for the delivery of both small
molecules and macromolecules through pulmonary pathways
with minimal energy input to the drug.

Soft Mist Inhalers

The first soft mist inhaler developed by Boehringer
Ingelheim was introduced to the market in 2011. The
Respimat® Soft Mist™ inhaler remains the only soft mist
inhaler approved by the FDA (182). Recently, Dance Biopharm
Inc. introduced another soft mist inhaler to the market: the
Dance-501. The Dance-501 is a combination product that
consists of a small, handheld electronic inhaler and an aqueous
liquid insulin formulation stored in a sterile dispenser (183). The
Respimat® is operated with mechanical energy from a spring to
generate aerosols from a drug solution in the cartridge (184) that
is then passed through a uniblock to generate an aerosol.

Fig. 6. a Illustration of traditional vibrating mesh. b Contact-triggered vibrating mesh medication cup (168). Reproduced
with permission from Respiratory Drug Delivery 2018, Virginia Commonwealth University and RDD Online

Fig. 7. Schematic diagram showing how the effervescence caused by CO2 in an HFA-134a/EtOH system
might prevent primary drug particles from forming a large aggregate as a single droplet evaporates (172).
Reproduced with permission from Respiratory Drug Delivery, Virginia Commonwealth University and
RDD Online
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However, the Dance-501 is operated using small battery and
aerosolizes a drug solution by a vibrating mesh technology that
was incorporated into the device (185). The tasteless insulin
formulation is stable at room temperature for multiple weeks
after opening (186).Only a few breaths are required to complete
a dosage without the coughing that is generally observed in
patients using DPIs (183). The Dance-501 has currently
completed phase II clinical trials (186).

pMDIs

Among orally inhaled products, pMDIs have been the
most common device used to deliver medicines to the lung to
treat local pulmonary diseases since their development in
1955 (10,163). This prevalence is due to their compact,
portable, easy to use, and convenient multidose design
combined in a single device (163).

Even with many advantages on pMDIs, requiring proper
patients’ hand-inspiration, coordination is a significant challenge
for using pMDIs. To improve this, Clement Clarke International
introduced the Flo-Tone® training device that can be attached to
themouthpiece of a pMDI and provide an audible signal with the
patients’ corresponding inspiratory flow rate of 30–60 L/min
(187). Significantly fewer inhaler technique errors were observed
when patients were trained using verbal counseling and Flo-
Tone® compared with patients with only verbal counseling (187).

Due to the Montreal Protocol, however, pMDIs using
chlorofluorocarbons (CFCs) as a propellant were recalled from
the market. Hydrofluoroalkane (HFA) quickly became the
next-generation propellant for pMDIs. The FDA approved
eight pMDIs using HFA in a relatively short time between 2004
and 2006. However, pMDIs using high-pressure HFA are not
suitable for the delivery of many drugs (188), including
biologics, due to their typically small dose range per actuation
(189) and their physicochemical instability. In addition, common
propellants, HFA-134a and HFA-227, are not ideal for drugs
that have poor solubility, due to nozzle blockage, agglomeration,
sedimentation, and nonhomogeneity of suspension (190). Eth-
anol is often used to improve solubility. Gupta et al. evaluated
the relationship between ethanol concentration and a maximum

respirable mass to optimize delivering beclomethasone dipropi-
onate by pMDI (191). However, many problems still exist: A
large amount of ethanol induces large droplet sizes and is not
acceptable for younger patients (190). To address these
problems, a new propellant system is required.

Recently, 1,1-difluoroethane (HFA-152a) has been consid-
ered as a new propellant for MDI (192,193). Corr and Noakes
have compared the solubility of salbutamol sulfate in HFA-134a
and HFA-152a, and they found that the solubility in HFA-152a
was much higher (2.5% w/w compared to 0.05% w/w) (192).
The solubility of lecithin, PEG 400, oleic acid, and SPAN®80 in
HFA-152a was also higher than their solubility in HFA-134a
(192,194). Moreover, using salbutamol sulfate in an HFA-152a
MDI formulation without ethanol exhibits significantly higher
FPF (192) and a longer time to sediment (194). Therefore, HFA-
152a could be a solution to address the problems caused by
ethanol and other current propellant systems.

Keller et al. also introduce a new propellant system for
pMDIs (195). The addition of carbon dioxide (CO2) was
suggested to improve not only the wetting properties of drug
substances but also particle size distribution (195). By using this
new propellant system, Kelkar and Dalby have shown that CO2

added to HFA-134a and ethanol as a propellant system can
improve the aerodynamic particle size distribution (172,196).
When compared to a formulation containing HFA-insoluble
helium, a beclomethasone dipropionate (BDP) formulation
containing CO2 exhibited a smaller particle size distribution in
all of the tested concentrations (BDP 0.025–0.080% w/w) (196).
Two proposed mechanisms for the CO2 contribution to smaller
particle size are propellant evaporation from the particle surface
and the rapid expansion of CO2 (196) (see Fig. 8). In addition to
the advantage of smaller particle size, this new propellant system
also exhibits a decreased plume angle and width (23.7° and
29.5 mm) compared to HFA-134a (30.8° and 38.7 mm), which
could lead to lower throat deposition (197).

CONCLUSION

Orally inhaled products have greatly improved through the
application of new technological advances in both formulation

Fig. 8. Number of FDA-approved OIPs between 1996 and 2017 by year. Blue: DPI. Red:
pMDI. Green: nebulizer. Purple: Soft Mist inhaler (12)
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and devices. Formulation advances have been focused on
enhancing aerosol performance by controlling particle density,
size, shape, and surface energy. Newly developed smart inhalers
help patients use these devices appropriately, stick to regimens,
and track their adherence. Design improvements in other types
of devices provide easier and more straightforward operation
processes while enhancing delivery efficiency and dose consis-
tency. Through improvement in formulation, device, and
monitoring technologies, orally inhaled products can continue
to improve patient outcomes and reduce the burden of lung
disease on the healthcare system.
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