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Abstract. Lipids have been extensively used in formulations to enhance dissolution and
bioavailability of poorly water-soluble as well as water-soluble drug molecules. The digestion
of lipid-based formulations, in the presence of bile salts, phospholipids, and cholesterol,
changes the lipid composition in vivo, resulting in the formation of different colloidal phases
in the intestine. Therefore, in vitro characterization and evaluation of such formulations are
critical in developing a successful formulation. This review covers comprehensive discussion
on in vitro characterization techniques such as solubility, drug entrapment, thermal
characterization, dissolution, and digestion of lipid-based formulations.
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INTRODUCTION

Since centuries, oral route is the preferred route of
administration for drugs because of efficacy, safety, patient
compliance, and cost benefits. Formulation scientists are
continuously developing new drug delivery technologies due
to realization of factors such as poor permeability, low
solubility and therapeutic window, rapid metabolism, and
intra-subject variabilities. Among the new technologies, lipid-
based drug delivery systems and its applications have taken
new avenues in oral drug delivery. These systems have played
a great role in improving the problems associated with poorly
water-soluble, lipophilic drugs. The lipids employed to
prepare the formulation are mostly biocompatible, biode-
gradable, and safe (1). With the understanding of physio-
chemical properties of lipids, formulators can modulate
delivery features of lipid-based formulations which include
enhanced absorption with sustained release to immediate
release properties. Hence, oral delivery via lipid-based
delivery systems can be made as solution, suspension,
emulsion, microemulsions, self-emulsifying drug delivery
systems (SEDDS), solid lipid nanoparticles (SLNs),

nanostructured lipid carrier (NLC), liquid crystalline nano-
particles (LCNPs), and proliposomes.

Scientists are working intensely in this area and
understating the factors governing the in vivo performance
of the systems. Several successful formulations have been
marketed using lipids as functional excipients (1,2). There is
considerable interest in developing lipid-based formulations
for oral route of administration. Poulton and his colleagues
described the classification of typical properties for different
types of lipid-based formulations (3). The classification was
further modified and discussed in Table I. Lipid-based drug
delivery system offers a large variety of options, and the
success of these formulations depends on the suitable
selection of the lipid composition. The current development
of lipid-based formulations is mostly empirical, demand many
animal studies, that turns to be expensive and time consum-
ing. Therefore, it is very critical to develop in vitro charac-
terization and evaluation of such formulations to optimize
and develop successful formulation for in vivo evaluation in
animal models that can be successful in human study. The aim
of this review is to provide a comprehensive discussion on
in vitro characterization techniques used for the lipid-based
drug delivery systems and their preclinical and clinical
relevance.

Particle Size

Particle size of the formulation is key for a successful
formulation. It plays a critical role in encapsulation efficiency,
drug release, both in vivo and shelf stability, bioavailability,
therapeutic index, and clearance of the drugs upon adminis-
tration. Various techniques such as extrusion, sonication, and
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homogenization are being employed to control the size and
size distribution of lipid-based carrier (4,5). The prepared
formulation must be characterized for particle size to assure
their suitability for in vitro and in vivo applications.
BPolydispersity index^ (PDI) is the term used to define the
particle size distribution and the degree of non-uniformity of
size distribution of particles (6,7).

Various techniques available to determine the particle
size are as follows:

& Microscopy (e.g., optical microscopy, confocal
microscopy, scanning electron microscopy, transmis-
sion electron microscopy (TEM), cryo-transmission
electron microscopy (cryo-TEM), and scanning
probe microscopy (SPM))

& Diffraction and scattering techniques (laser light
scattering and photon correlation spectroscopy)

& Hydrodynamic techniques (gel permeation chro-
matography, Coulter counter, ultracentrifugation, field
flow fractionation, and centrifugal sedimentation)

Microscopic methods are widely used tools to observe
the size and shape of sample as well as its distribution in the
sample, i.e., presence/absence of any aggregation and/or
fusion. This technique is used to establish the morphology,
lamellarity, surface characteristics, size, and stability of
nanocarriers. Other modern techniques based on different
interactions between the tip and surface of the particle, to get
three-dimensional images of the particle; are also being used
to characterize the surface property, rigidity, and size of the
carrier. Examples of such techniques are atomic force
microscopy (AFM), scanning tunneling microscopy (STM),
magnetic force microscopy (MFM), electrostatic force mi-
croscopy (EFM), and Kelvin probe force microscopy
(KPFM). AFM and other associated techniques provide: (1)
three-dimensional surface profile, (2) structural, (3) mechan-
ical, and (4) topographical information about the particles.
Cryo-TEM is also an ideal technique to visualize the carrier
in a frozen state and prevents disruption of thermal-sensitive
carriers like proliposomes and NLC by highly energized
electron beam (8,9). Microscopic methods are considered as a
more qualitative than quantitative technique because of the
time required to analyze the particles in a sample.

In contrast, measurement of the size distribution using
diffraction and scattering techniques is more rapid than
microscopic techniques and provides a statistically meaning-
ful result. This method is rapid, reproducible, and accurate
hence routinely used to measure the particle size and
distribution of lipid formulations. It measures a wide range
of particle size starting from 3 nm to 3 μm and provides
information about particle size distribution (PDI) within the
sample. The value of PDI (ranges from 0.0 to 1.0) where 0.0
depicts a perfectly uniform particle size while 1.0 depicts
polydisperse and multiple particle size distribution sample.
Value of PDI (0.3 and below) is considered to be acceptable
and indicates a homogenous population of lipidic formulation
(10–12). However, it does not provide information regarding
the morphology and shape of the lipid-based system and
program to assume any aggregation of several particles as
one single particle. Another technique, field flow fraction-
ation, is used to measure size distribution and relative
molecular mass of lipid-based carrier. This technique is
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considered as combination of chromatography techniques
(without stationary phase) and a field-driven method to
separate the particles based on their nature in different bands
such as small particle size band vs large particle band. The
field-driven methods are of different types: (1) electric, (2)
thermal, (3) magnetic, (4) gravitational, and (5) centrifugal
forces (13). This method could be selected depending on the
property of the particles and applied perpendicularly to the
flow of the sample. Liposomes with sizes from 1 nm to 100 μm
were measured and separated by using this technique (14).

Determination of size and PDI of individual nanoparticle
are also possible by Bscanning ion occlusion sensing^ (SIOS).
The mechanism of action of SIOS is based on the conven-
tional Coulter counter, where individual particles are passed
through a tunable pore, with each passage of particle a drop
in ionic current occurs due to an increase in the electrical
resistance (9,15). The extent of current reduction and the
frequency of the pulses are related to the particle size and
concentration of the nanocarrier sample, respectively. SIOS
analysis is rapid, easy, and can determine the concentration of
the particle and size in a range of 60 nm to a few micrometers.
Furthermore, SIOS was successfully used to measure changes
in the size and surface charge of phospholipid vesicles upon
incubation in biological fluids (16,17). The practical problem
with this technique is selection of suitable elastic pore for
polydisperse samples and detects only one particle at a time
(17). Others techniques like cryo-XRD (18), small-angle X-
ray scattering (SAXS), small-angle neutron scattering
(SANS), and their analogues can determine size distributions
and resolve the size and shape of the samples and are widely
used for liquid crystalline nanoparticles (19–22).

The effect of particle size on oral absorption has been
shown by researchers who found that the emulsion droplet
size affects the rate of absorption of cyclosporine A (23,24).
Finer emulsion has shown more rapid absorption than the
coarse emulsion. It is assumed that the droplet size of
emulsion should be as fine as possible to increase the
absorption of cyclosporine A. Marketed Neoral® formulation
first-in-time designed to self-emulsify to form very small (sub-
100 nm) droplets in situ as compared to Sandimmune®
formulation (effective diameter 3.7 μm) (25), showed im-
proved bioavailability. Neoral not only improved bioavail-
ability but also had various benefits such as (1) reduced food
effects, (2) reduced inter-subject variability, and (3) absorbed
in liver transplant patients with disrupted biliary flow (26–31).
It is also important here to know that a direct link between
particle size of Neoral and improved in vivo bioavailability
has never been established due to the presence of digestible
lipids and surfactant (32). These components are expected to
undergo digestion upon oral administration and would
change the particle size of the formulation. In addition,
Kolliphor RH40 has been reported to inhibit efflux trans-
porters and metabolic enzymes which further increase the
bioavailability (33). Notably, the fate of the drug after
digestion of the formulation is very critical than the initial
particle size. The drug could precipitate in the gastrointestinal
tract (GIT) if the total solubilizing capacity of the formulation
and its secondary structures are reduced after the in vivo
lipolysis process. For example, esters and digestible surfac-
tants are often rapidly hydrolyzed in the presence of
pancreatic lipase and reduce solvent capacity of formulations.

In several cases, lipid formulations upon digestion
coexist with other secondary structures such as micelles,
mixed micelles, liquid crystalline, and liposomes. Hence,
particle size characterization of these structures using tech-
niques such as photon correlation spectroscopy and laser
diffraction is challenging. These techniques have low resolu-
tion to detect multimodal distribution of structure as
discussed earlier and need advanced modern techniques
based on particle-to-particle size determination techniques
such as Coulter counter and/or SIOS.

Solubility

Lipid formulations are generally formulated as three
forms: (1) hydrophobic drug is dissolved in lipid-based
formulations, (2) anhydrous drug-lipid matrix adsorbed on a
solid carrier that can be a solid dosage form, and (3) drug is
suspended in a lipid formulation (34). Lipophilic drugs with
log P values greater than 5, for example halofantrine or
cinnarizine, are good candidates for lipid-based formulations
(35). Experienced researchers have suggested that the drugs
which have high melting point and log P values of about 2
(example Griseofulvin) are poor candidate for lipid systems
(35). These types of drugs are poorly soluble in glycerides and
GI fluids such as micelle solution of lecithin and bile salts.
There are many crystalline drugs which are difficult to
formulate as the lipid-based system needs a different ap-
proach such as homogenization, sonication, or nanomilling to
convert them into amorphous formulation. Researchers also
used precipitator inhibitors (mostly are water-soluble poly-
mers) in lipid matrix to reduce the rate of crystallization in
the matrix as well as during its dilution in vivo (36–38). The
examples of the inhibitors are poly (propylene glycol), poly
(lactic acid), polyvinylpyrrolidone (PVP), and hydroxypropyl
methyl cellulose (HPMC) and were reviewed and discussed in
detail recently (39). A supersaturable self-emulsifying drug
delivery system (S-SEDDS) of paclitaxel was prepared using
HPMC and was reported to have fivefold higher oral
bioavailability as compared with that of the orally dosed
Taxol formulation and the SEDDS formulation without
HPMC showed lower oral bioavailability (36). However, it
is believed that precipitation inhibition is not a Bone-size-fits-
all^ process. The molecular interactions between the polymer
and the drug such as hydrogen bonds, polar and non-polar
surface area, and dispersion forces need to be understood in-
depth to make an educated choice of successful precipitator
inhibitor-drug combinations.

For drugs with poor aqueous and lipid solubility, a
suspension in lipid formulation might be beneficial to deliver
greater amount of drug as compared to the drug in lipid
solution (34). However, particle size of suspension, uniformity
of dispersion, and permeability of drug suspension through
intestinal wall and drug solubilization in intestinal fluids need
to be understood in-depth during the development of these
formulations.

Finally, weak acidic or basic drug containing lipid-based
formulation also needs to be characterized for specific factors
in relation to their bioavailability. For example, a free base
presented in a lipid system can extract out into the acidic
aqueous phase of the stomach. Authors also have experi-
enced that the solubilization pattern for a salt of weak acid or
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base is more likely to mirror that of the free acid/base. If the
free drug has higher solubility in lipid formulation, then it is
possible to improve their bioavailability via partitioning
behavior of the drug. However, the solubilized drug could
become insoluble in intestinal fluids, so fate of the drug will
be dependent on re-solubilization of the drug in formulation
or secondary structure of the digested formulation. There-
fore, in vitro dissolution and gastric-emptying experiments
must be performed to understand the precipitation of drug
and bioavailability.

Drug Contained in Lipid-Based Formulation

The drug Bcontent^ covers both encapsulated and inter-
calated drug substance in the lipid carriers. BEncapsulated^
refers to drug within the carrier system for example drug in
aqueous compartment of liposomes or in lipid core of solid
lipid nanoparticles. The Bintercalated^ refers to drug within a
bilayer of lipid in a carrier-like liposome. In literature, the drug
content is also referred as entrapment efficiency, defined as the
percentage of drug bound to the carrier with respect to the
total amount of drug present in the formulation. This
parameter is determined generally by separation of free drug
from the carrier and analysis of the drug and total drug used to
calculate encapsulation efficiency (40). Various methods are
used to separate free drug from the carrier. Table II summa-
rizes the advantages and disadvantages of the various methods
reported.

Thermal Characterization: DSC, TGA, and X-Ray
Diffraction

Nature of lipid and drug, i.e., amorphous, crystalline, or
semi-crystalline, in the formulation affects in vivo perfor-
mance of the formulation. Lipid crystallinity in the matrix of
formulation has an effect on drug incorporation and its
release rate; example for such type of formulations are SLN
and NLC (41). SLN contains a matrix which is produced from
a solid lipid for example tristearin, triacylglycerol mixtures
(Dynasan bases), and mixtures of acylglycerols (such as
Compritol®888 ATO). In contrast, the matrix of NLC is
prepared from a lipid blend, consisting of a mixture of a solid
lipid with a liquid lipid (oil). The ratio of lipid and oil in the
mixture determines the melting point of matrix, drug-carrying
capacity, and its release properties. It is reported that mixing

of structurally different lipid molecules creates a Bstructured^
matrix exhibiting imperfections in the lipid crystal which
increases drug loading. For example, ketoconazole was
entrapped between the fatty acid chains in the
Compritol®888 ATO matrix of SLN and NLC. But NLC
had better stabilized the drug due to the presence of α-
tocopherol, which decreases the crystallinity of lipid matrix.
During shelf-life, it was also reported that the expulsion of the
oil from the matrix led to undesirable drug expulsion (42).

It is also reported that drug crystallinity changes the lipid
digestion and its bioavailability. Furthermore, the bioavail-
ability is also dependent on the state of the precipitated drug
and on the re-distribution of the lipid-based formulations and
its digested carriers. Drug with polymorphous nature can
have different bioavailability. Interestingly, the drug precipi-
tation in a metastable amorphous state is also possible, which
can enhance dissolution rate and possible bioavailability of
drug. For example, danazol and cinnarizine in lipid formula-
tion showed time dependent but continuous precipitation of
drug during lipolysis. The precipitated danazol release profile
was comparable to danazol crystalline form. In contrast,
precipitated cinnarizine had showed improved dissolution
profile than crystalline cinnarizine (43). With hands-on
experience in the field of lipid-based formulations, authors
have observed that fast digestion of lipid formulation could
induce fast precipitation of drug which resulted into amor-
phous state of drug. Hence, various factors in lipolysis test
need to be elucidated to predict in vivo performance of lipid-
based formulations. Solid state of the precipitated drug after
lipolysis experiment can be characterized using tools such as
X-ray powder diffraction (XRPD) and thermal analysis and
polarized light microscopy (PLM) (44).

Generally, the transition temperature depends on the
length of the fatty acid chain, unsaturation, charge, and
headgroup. For example, phase transition temperature of the
lipid lowered upon (1) decreasing hydrocarbon length, (2)
introducing a cis double bond into the acyl group, and (3)
introducing branched chain and bulky group. It is noteworthy
to know that phospholipids showed phase transition temper-
ature, i.e., from a rigid gel to the liquid crystalline phase
below 100°C upon thermal analysis in the presence of suitable
solvent-like water (45,46).

A saturated fatty acid-containing phospholipid possesses
a high (> 15°C) phase transition temperature as compared to
phospholipids containing unsaturated fatty acids which

Table II. Advantages and Disadvantages of Various Free Drug Separating Methods Used for Lipid-Based Drug Delivery Reproduced from
(40) with Permission

Method Advantages Disadvantages

Dialysis Sample recovery, scalable Slow process
Centrifree® Rapid; requires a small sample volume Expensive; applicable only to unilamellar

liposomes; lipid concentration cannot
exceed 5 mg/mL

Protamine aggregation Economical; applicable to multilamellar liposomes Slow with neutral and positively charged
liposomes; contamination of liposome sample

Density gradient Economical; rapid; sample recovery Sample volume (0.5 mL), setup cost
Minicolumn (example Sephadex gel

with different grades in column)
Economical; sample recovery Tedious, small sample volume (0.1 mL)
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generally have low (< 15°C) phase transition temperatures.
An understanding of phase transition and fluidity of lipid
membrane affects important properties of lipid-based carrier
such as fusion, aggregation, deformability, permeability, and
drug-carrying capacity and thus determines overall perfor-
mance in biological systems. Especially, for proliposome-
based technology, the temperature should be carefully
optimized preferably near to the physiological temperature
so that it can transform from matrix phase to liposomes as
well as retain the drug during the transition. Authors have
experienced that proliposomes composed of low transition
temperature lipids (< 37°C) can immediately convert to
liposomes but also more susceptible to leakage of encapsu-
lated drugs in GIT fluid at physiological temperatures, hence
require in-depth characterization.

In Vitro Release, Digestion, and Its Clinical Implication

In modern era, dissolution testing is not only a quality
control test but can also be designed to determine the clinical
performance of the formulation. It is a cost-effective and
time-saving tool to predict bioavailability of drug by means of
in vitro and in vivo correlation. This correlation can be
achieved with the understanding of physiochemical properties
of drug, formulation, and relevant in vivo conditions. In vitro
release testing is recommended for the anhydrous formula-
tions such as proliposomes and solid- and liquid-SNEDDS
Type III and Type IV formulations using a standard
dissolution apparatus with physiologically relevant conditions.
The purpose of the test is to understand dispersibility of
formulation upon hydration, the rate of drug dissolution, and
to detect precipitation of drug with time. For example,
SNEDDS Type III and Type IV formulations lose their
solvent capacity for drug due to migration of water-soluble
components from formulation into the bulk aqueous phase.
Standard compendial dissolution testing is recommended to
provide sink conditions during dissolution testing to demon-
strate amount of drug available for absorption in solution
form within the recommended time. Further, selection of
suitable equipment and dissolution parameters is of great
importance.

Water is an attractive medium but has low buffer
capacity; alternatively, a diluted HCl/NaCl solution or a
diluted acetate buffer with a final pH of around 5 can be
used for initial feasibility studies. The USP recommends
dissolution of drug or drug product in dissolution medium
with different pH (1.2, 4.5, and 6.8) to understand the
formulation properties. For poorly water-soluble drug, disso-
lution medium with suitable detergents like polysorbate 80
and sodium dodecyl sulphate (SDS) is used to increase the
drug solubility in a target volume and can be used as one of
the quality control tools. However, these simple dissolution or
dispersion tests generally do not represent in vivo perfor-
mance of the lipid-based formulation because lipids are
generally prone to digestion in the gastrointestinal tract.

The performance of a drug and its lipid-based formula-
tion after oral administration can be predicted only if the
limiting factor to absorption can be modeled in vitro by
accurately simulating the in vivo conditions such as compo-
sition, volume, and hydrodynamics of the contents in the
gastrointestinal lumen. It is also well known that the enzymes

present in the intestinal fluid are affected by the amount of
food and may influence the bioavailability of lipophilic drugs
and its formulations. Although pharmacopeias do not recom-
mend any biorelevant media for drug development, charac-
terization and quality control testing using simulated small
intestinal biorelevant media are becoming important tool to
understand stability, solubility, and dissolution of drug in the
in vivo conditions.

Most of the poorly soluble and weakly acidic drug
dissolution is favored in the small intestine and is absorbed
well. Hence, two types of biorelevant media, fasted state
simulated intestinal fluid (FaSSIF) and fed state simulated
intestinal fluid (FeSSIF), were proposed for BCS class I and
class II drug (47). In vitro release data in FaSSIF and FeSSIF
were well correlated with oral bioavailability data of some
poorly soluble drugs (47,48). Later, the next-generation
biorelevant media (49,50) were proposed in order to accu-
rately simulate digested composition of the meal which
enhances the solubility of lipophilic drugs. Hence, it is
advisable to use the next-generation biorelevant media for
dissolution and stability testing of lipid-based formulation.
Dressman and colleagues recommended to use 300 mL of the
fluid volume in the case of fasted state and 200 to 1000 mL in
the case of fed sate condition (50). In addition, type of
dissolution instrument and hydrodynamic conditions must
also be considered to establish in vitro and in vivo correlation
for lipid-based formulations (Table III). Recently, biphasic
dissolution study using a reservoir of aqueous phase (300 mL
of HCl 0.1 M) with an upper organic phase (200 mL of
octanol) in USP apparatus 2 and release in USP apparatus 4
was studied for the evaluation of fenofibrate self-emulsifying
formulations (see Fig. 1). The percentage of the drug
dissolved in the biphasic dissolution medium (sum of two
phases) was able to establish level A correlation based on
FDA-recommended guideline (57). However, the established
IVIVC was found to be dependent on the type of formula-
tions and only able to predict in vivo profiles of the
formulations produced by particles from gas-saturated solu-
tions process and not by a common melt mixing process. This
dissolution condition can be used for SEDDS because the
formulation generally showed supersaturation in both in vitro
and in vivo conditions. Moreover, some important practical
issues that still need to be considered in the test include (1)
octanol has a nauseating smell and the selection of another
organic solvent would be dependent on the API solubility,
volatility, and miscibility with the aqueous phase; (2) the
emulsification of formulations with heavily surfactant-
enriched aqueous media, such as FaSSIF or FeSSIF; and (3)
formulation distribution inside the flow cells.

Reymond and Sucker have proposed in vitro digestion
testing in 1980s which was further modified to understand the
in vivo performance of lipid-based formulations (59–61). In
this method, researchers have used (1) porcine pancreatin as
a lipase source, (2) porcine bile extract containing various bile
acids (34,62,63) or taurodeoxycholic acid (63) or taurocholic
acid (64) as a bile species in the digestion medium with
concentration ranges between 5 and 30 mM where the low
levels simulate the fasted state and the higher level corre-
sponds to the fed state, (3) phosphatidylcholine (34,62) or L-
α-phosphatidylcholine (64) or lecithin (60% PC) (35,63) as
phospholipid species with concentration four times less than
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the bile salt concentration, (4) 5 mM calcium salt, and (5) 10
to 40 mL of 50 mM tris maleate buffer pH range (6.8 to 7.4)
(63,64) or 300 mL of 2 mM tris maleate buffer pH range (6.8
to 7.4) (34,62). Details of various lipolysis models and
conditions were previously reviewed and discussed (65).

In general, lipid-based formulation was exposed to
micellar solution of bile salt containing lecithin and lipase
enzymes at physiological temperature. The digested lipids
release fatty acid and reduce the pH of medium. During lipid
digestion test, the change in the pH is continuously monitored
and maintained by auto titration with standard solution of
NaOH using a PH stat system. Therefore, rate and extent of
lipid digestion are indirectly determined by the stoichiometric
titration for example 2 mol NaOH is needed for the
hydrolysis of 1 mol triglyceride.

During in vitro lipolysis test, samples are withdrawn from
the reaction vessel at different time points. Lipase activity in
the sample is stopped by addition of a lipase inhibitor
(commonly 4-bromobenzeneboronic acid) and different
phases (oil/lipid/fatty acid salt layers) are analyzed following
centrifugation of the samples. With the progress of the
lipolysis, digestible lipid/oil layer diminishes and amount of
pellet after the centrifugation increases due to precipitation of
fatty acid-calcium soap (Fig. 2).

In vitro lipolysis test is a useful tool to quantify the rate
and extent of lipolysis in lipid-based formulations and to
determine the fate of the drug (solubilized vs precipitated)
during or after the test. Precipitation of a drug compound
(BCS classes II and IV) from a lipid-based formulation in the
gastrointestinal tract can be caused by numerous different
factors including hydrolysis of excipients present in the
formulation. Many excipients used in lipid-based formulations
contain ester bonds that are prone to hydrolysis by lipases or
esterases present in the gastrointestinal tract and could
precipitate the drug if the digested components have no
solubilizing capacity for the drug (32,34,66). Hence, the test

offers an opportunity to predict drug delivery potential of
formulation in the intestinal lumen prior to absorption. This
test is essential for evaluation of proliposomes, lipid-based
nanoparticle, SNEDDS Type I, Type II, and Type III
formulations, and for Type IV formulations (if surfactants
are subject to digestion) (32).

The test has been used to predict fate of a series of drugs
using different formulations (35). Researchers have found
that the bioavailability of some drugs was effected by
formulations containing medium and long chain triglycerides
(63). In vitro lipolysis of the formulations, containing danazol
with different volume of Labrafil M2125CS, was able to
predict the rank order of the bioavailability from the
formulations (34). Porter and his group also suggested that
the amount of lipid in in vitro lipolysis test plays a great role
in correlation of IVIVC of lipophilic drug halofantrine in
beagle dog (67). They have observed that the correlation was
good with lipid load at 5 mg/mL and not with 25 mg/mL lipid
load in lipolysis media.

Similarly, in vitro lipolysis experiments suggested a rank
order of Captex 355 (C8–10, medium chain triglycerides
(MCT)) > peanut oil (C18, long chain triglycerides (LCT)) >
triacetin (C2, short chain triglycerides (SCT)) for lipophilic
molecules progesterone and vitamin D3. The bioavailability
of progesterone in the rat model was found to be correlated
with the in vitro data, despite its significant pre-systemic
metabolism. However, an in vivo performance rank order of
LCT > MCT > SCT was obtained for vitamin D3 due to its
lymphatic absorption. Overall, the study suggested that if
formulations showed a significant absorption through lym-
phatic transport then the in vitro lipolysis data may not be
predictive for actual in vivo absorption (64).

Liposomes composed of unsaturated phospholipids and
cholesterol showed instability in GIT upon oral administration.
These liposomes are highly susceptible to gastric acid, bile salts,
and lipases. Bile salt containing natural surfactants has a

Fig. 1. Schematic representation of biphasic dissolution system: biphasic media in USP apparatus Type II combined
with flow through cell in a USP apparatus Type IV
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considerable variability ranging from 0.3 to 9.6 mM (68). It affects
liposomal structure by solubilizing lipidic molecules while the
lipase degrades phospholipids by hydrolysis (69). For example,
lecithin is a substrate for the phospholipases and lipases secreted
by the pancreas (70). It is hydrolyzed at the sn-2 position into the
monoacylphospholipid of lecithin and one free fatty acid
predominantly by the enzyme phospholipase-A2 (71). In vitro
study showed that liposomes lose integrity within 2 h in simulated
intestinal fluid which can potentially affect entrapment efficiency
of water-soluble molecules (72). Formulators should be aware
that phospholipids are chemically unstable and prone for
hydrolysis. Generally, phospholipids possess four ester linkages
(two ester linkages between hydroxyl groups of the glycerol and
fatty acids and one ester linkage between the glycerol and the
phosphate group and one ester linkage between the phosphate
group and polar head group). These ester bonds can be
hydrolyzed due to water, pH changes, and by enzymes in vivo.
In practice, ester linkage between the hydroxyl group glycerol
and carboxyl group of a fatty acid is susceptible to chemical
hydrolysis by base or acid to form lysophospholipids. Depending
on the type of phospholipid, the formed fatty acid may be
saturated or mono- or poly-unsaturated. The unsaturated bonds
of the fatty acids which sometime are dependent on the source of
lipid are prone to oxidation. As an example, phosphatidylcholine
obtained from egg yolk has a lower content of polyunsaturated
fatty acids (less oxidation) compared to phosphatidylcholine from
soy bean. Other examples of digestible lipids are triglycerides,
diglycerides, phospholipids, fatty acids, cholesterol, and synthetic
derivatives. Formulators should be aware of the source of lipid
and its purity which could be tested by high performance liquid
chromatography (HPLC) with mass spectrometry (HPLC-MS)
or charged aerosol detection (HPLC-CAD) or evaporation light
scattering detector (HPLC-ELSD), and thin layer chromatogra-
phy (TLC) may be considered.

It is also reported that secondary structures such as mixed
micelles and liquid crystalline structures are formed in the presence
of digestive lipid, phospholipids, and their hydrolysis products,
glycerol, free fatty acids, and cholesterol. These structures have a
higher solubilization capacity which helps in the solubilization of
poorly water-soluble compounds and have been reported to
improve bioavailability of the compounds (73–75). Liposomes
composed of saturated lipids such as distearoyl phosphatidylcho-
line with cholesterol was reported as stable at low pH and resistant
to pancreatic lipase, while dipalmitoyl phosphatidylethanolamine,

cholesterol, and dicetylphosphate composition was found to be
unstable at low pH (69). These saturated lipids (non-digestible)
generally cannot follow into all lipid digestion pathways but do
form the secondary structure to facilitate diffusion across the
mucosa and drug absorption. Other examples of non-digestible
lipids are mineral oil and sucrose polyesters. Formulations
containing no-digestible lipids may well be highly effective and
can avoid the food effect variability in human.

Mooter et al. (76) have tested four different lipid-based
formulations (Tween 80–Captex 200P, Tween 80–Capmul
MCM, Tween 80–Caprol 3GO, and Tween 80–soybean oil)
and one commercial micronized formulation (Lipanthyl
Micronized®) of the lipophilic compound fenofibrate. The
formulations were subjected to in vitro studies containing two
biorelevant media and in vivo pharmacokinetic profile in rat
model. In simulated gastric fluid without pepsin (SGFsp) and
FaSSIF, Tween 80–Captex 200P system resulted in a stable
fenofibrate concentration without forming supersaturated
solution while rest of the lipid-based systems created
fenofibrate supersaturation followed by precipitation. In
contrast, no significant difference in bioavailability was
observed among the four lipid-based formulations both under
fasted and fed state. Authors have observed the conflicting
situation due to the in vitro release studies in human
biorelevant media and in vivo studies in rats. The poor
in vitro and in vivo correlation was explained by continuous
secretion of bile in the gastrointestinal tract of rats which led
to enhanced bioavailability of the lipophilic drug. Similarly,
precipitation of drug was observed in lipolysis model con-
taining digestion media, but it was comparatively much lower
in the rat intestine (44). Recently, researchers suggested that
the propensity of drug precipitation during in vitro dispersion
and digestion of lipid-based formulations can be used as a
tool for the in vivo performance (77,78). For this, a maximum
supersaturation ratio (SRM) has been suggested as a
representation of the ratio of the theoretical drug concentra-
tion (in the absence of precipitation) and drug solubility in
the aqueous phase (77,79). A threshold above (a value of
SRM > 2.5) has been identified at which drug precipitation is
likely to occur from formulation. However, the SRM precip-
itation parameter in vitro poorly reflected the in vivo minipig
model for fenofibrate containing lipid formulation (79).
Therefore, one must be careful in selecting a relevant animal
model and lipolysis model for lipid-based formulations.

Fig. 2. A general fate of lipid-based formulation after in vitro digestion and its possible outcome
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CONCLUSION AND FUTURE PERSPECTIVES

Current trends suggest that lipid-based formulations have
tremendous potential in the field of oral drug delivery. However,
the development of new lipid-based formulation is challenging
due to the complex nature of the drug and fate of the formulation
upon oral administration. We have discussed various character-
istic features and in vitro characterization tools that are notewor-
thy in the development. The characterization tools can further be
combined with cell culture and ex vivo permeation-based data in
high-throughput screening of the lead formulation candidate. The
prediction of in vivo performance of the formulations may be
possible with the combination of particle size, biorelevant
dissolution and lipolysis testing.
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