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Abstract. A quantitative, model-based risk assessment process was evaluated using
Bayesian parameter estimation to determine the posterior distribution of the probability of a
model tablet formulation’s (gabapentin) ability to meet end-of-expiry stability criteria-based
manufacturing controls. Experimental data was obtained from an FDA-supported, multi-year
project that involved researchers at nine universities working collaboratively with industrial
and governmental scientists under the leadership of the National Institute for Pharmaceutical
Technology and Education (NITPE). The risk assessment process involved the development
of a design space manufacturing model and shelf life stability model that shared stability-
related critical quality attributes (CQAs). Monte Carlo simulations of the design space and
shelf life models that uses model parameter uncertainty to estimate the probability of shelf
life failure as a function of manufacturing control. The resultant linked design space and shelf
life stability models were tested by comparing model predicted and observed long-term
stability data generated under a variety of pilot scale production conditions.
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INTRODUCTION

The US FDA Quality-by-Design (QbD) initiative and
associated design space definition have stimulated the use of
quantitative methods, mathematical and statistical models,
and designed experimentation in drug product and
manufacturing development and licensure. Design space
may be interpreted as the constrained region of the drug
product composition and manufacturing operating variable
space within which assurance can be provided that drug
product quality specifications will be met. Defining design
space in a meaningful and practical manner should include
quantitative assessment of quality assurance risk. By its very
nature, risk is probabilistic. Thus maintaining manufacturing
operations within an acceptable region of a design space is
necessarily associated with some risk of quality failure.
Central issues arising from the probabilistic nature of risk
are estimating realistic failure rates and then obtaining a

consensus on what is Bacceptable^ risk. Some traditional risk
assessment methods rely on qualitative metrics and historical
knowledge (1). The use of mathematical models and, in
particular, Monte Carlo simulation for linking product quality
to product safety and efficacy has been proposed (2,3). The
objective of this case study report is to describe a process for
assembling the needed modeling and simulation methods to
relate manufacturing design space to the risk associated with
shelf life stability failure.

Gabapentin was used as model drug substance for studying
the connection between manufacturing-related stress and drug
product stability in an FDA-supported, multi-year project entitled
Development of Quality by Design (QbD) Guidance Elements on
Design Specifications Across Scales with Stability Considerations
that involved researchers at nine universities working collabora-
tively with industrial and governmental scientists under the
leadership of the National Institute for Pharmaceutical Technol-
ogy and Education (NITPE). The overarching objective of this
research was to incorporate stability and unit operation scaling
issues into a QbD paradigm for manufacturing quality control.
Gabapentin is an ideal model compound for this project because
of its proclivity to exist in various physical forms, its propensity to
undergo structural disorder when subjected to mechanical stress
and the susceptibility of the disordered material to chemical
degradation by intramolecular cyclization (4–7).

In this manuscript, we present an unpublished case study
resulting from this NIPTE project wherein a quantitative,
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model-based risk assessment was evaluated using the Bayes-
ian parameter estimation to determine the posterior distribu-
tion of the probability of the product meeting quality
specifications associated with shelf life. This case study
demonstrates a process for linking QbD design space models
to stability quality assurance risk by identifying key process
stress-related stability factors to incorporate into an environ-
mental storage-stress degradation model. The resultant linked
design space and degradation models were tested by com-
paring model predicted and observed long-term stability data
generated under a variety of pilot scale production condi-
tions. The overall process involved the following key steps:

1. Defining shelf life stability failure: The USP limit for
gabapentin-lactam is 0.4%, thus critical stability fail-
ure occurs when the level of gabapentin-lactam
exceeds 0.4%. (4,5)

2. Identifying metrics (critical quality attributes (CQAs))
arising frommanufacturing process that relate to product
stability:We have previously reported on the relationship
between the initial levels of gabapentin-lactam (gaba-L0)
and crystal-disordered gabapentin (gaba*0) obtained
immediately after the completion of manufacturing and
the long-term stability of gabapentin (4–7), thus the
stability-related CQAs are gaba-L0 and gaba*0.

3. Developing a design space manufacturing model that
predicts stability CQAs as a function of manufacturing
controls

4. Developing a shelf life stability model based on long-
term and accelerated stability data that incorporates
stability CQAs and environmental storage conditions.

5. Monte Carlo simulations of the design space and shelf
life models that uses model parameter uncertainty to
estimate the probability of shelf life failure as a
function of manufacturing control.

The materials, analytical methods, and stability methods
used in generating the experimental data for this case study
have been previously reported (4,5) and are briefly described
here. Modeling and simulation methods are described in the
BRESULTS AND DISCUSSION^ section of this report.

METHODS AND MATERIALS

Development of the Manufacturing (Design Space) Model

Gabapentin tablet formulations included 600-mg active
pharmaceutical ingredient (API), 80-mg hydroxypropyl cel-
lulose, 22-mg crospovidone NF, 60-mg pregelatinized corn-
starch NF, 7-mg magnesium stearate NF, 100-mg
microcrystalline cellulose NF (Avicel PH102), and 9-mg talc
USP extra-fine. The manufacturing process included blending
API and 40-mg hydroxypropyl cellulose (HPC) with 2.5–
5.5% moisture content with median particle size from 160 to
270 μm. Then these blends were subjected to high shear wet
granulation at various spray rates (12–18 g/min) and impeller
speeds. The resultant granules were put into fluidized bed for
drying to different target moisture end point (0.5–1.0%) with
various environmental equivalency factors. The granules then
were milled, sieved, and blended at low and high blending
speed and different fill ratios (60 and 80%). The initial blends

and final blends were compressed into tablets (12 mm, round,
flat-faced) under different forces from 5 to 15 kN (5).

Upon completion of the manufacturing process, the
initial levels of gaba-L and gaba* (i.e., gaba-L0 and gaba*0)
due to different levels of manufacturing processing stress
were estimated either by direct HPLC analysis (gaba-L0) or
from the initial rate of gaba-L formation (gaba*0) under
controlled accelerated conditions (24 h at 50°C and 5% RH).
These data were used to correlate the stability-related CQAs
to manufacturing control parameters as described in the
BRESULTS AND DISCUSSION^ section.

Development of the Shelf Life Stability Model

The manufacturing methods described above were used to
prepare API/HPC granules and gabapentin tablets (using the
complete list of excipients). Aliquots of the granules were
sampled after milling and sieving and then stored under
controlled environment conditions (25, 40, 50 and 60°C at both
5 and 30%RH) for 6 months. Samples of 50 mg of dried granules
were removed from storage periodically, subjected to water
extraction of the highly soluble API, followed by HPLC testing
of gabapentin and its lactam content as described above. In
addition, gabapentin tablets were stored under the same condi-
tions, sampled periodically, subjected to water extraction, and
analyzed for gabapentin and lactam content. The HPLC analysis
used Waters μBondapak CN-RP, 3.9 × 300-mm column with flow
rate at 1.0 mL/min and detection at 210 nm. The percentage
lactam was calculated on a molar basis. In addition, prior to long-
term stability storage, both HPC/API granule and tablet batches
were analyzed for gaba-L0 and gaba*0 as described above.

The stability data obtained from the samples (both tablet
and granule) stored at 40, 50 and 60°C was used to train the
shelf life stability model (i.e., parameterize the model),
whereas the 25°C data was used to demonstrate the model
predictability (i.e., validate the model) as described in the
BRESULTS AND DISCUSSION^ section.

RESULTS AND DISCUSSION

Developing a Design Space Manufacturing Model

Preliminary screening analysis of manufacturing vari-
ables demonstrated that tableting mean compression force
and granulation water content had a significant effect on the
stability-related CQAs (gaba-L0 and gaba*0). Twenty-two
samples from 14 batches were used to establish a design space
model that correlated the stability-related CQAs to compres-
sion force and water content (Fig. 1a, b). Gaba*0 was more
sensitive to manufacturing condition than gaba-L0; the
squared correlation coefficients were 0.80 and 0.40, respec-
tively. For the gaba-L0 model, the water content by compres-
sion force interaction term was not significant (p = 0.66) and
compression force term was marginally significant (p = 0.08),
whereas the water content term had a p value less than 0.03.
For the gaba*0 model, the water content by compression
force interaction term was again not significant (p = 0.92), but
both primary effects were significant (p < 0.001). The sum-
mary of fit, analysis of variance, and parameter estimates for
both models are presented in Table I.
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Developing a Shelf Life Stability Model

We have previously presented detailed models for the
formation of gaba-L from gabapentin that incorporate autocata-
lytic branching, spontaneous dehydration, and moisture-induced
recovery as temperature and humidity sensitive degradation
processes (5,6). Thesemodels described the complete degradation
of gabapentin including physical state transformations that
contribute to the chemical conversion of the gabapentin to its
degradation product, gaba-L. These models were developed using
extreme manufacturing stress (extended milling) and rigorous
thermal stress (≤ 60°C). However, the long-term stability of
gabapentin tablets manufactured under much more mild mechan-
ical stress (limited milling) and stored with limited thermal stress
(≤ 40°C) facilitated the development of a simplified shelf life
stability model based on initial rate assumptions. The concentra-
tion time profiles for the appearance of gaba-L (upon which these
models were based) showed two phases. The first phase was
characterized by the relatively rapid, first-order appearance of
gaba-L directly from gaba*0. The subsequent phase in the gaba-L
concentration time profiles was attributed to the Prout-Thompkins
autocatalytic degradation of non-manufacturing damaged
gabapentin. For long-term stability of tablets manufactured with

minimal stress and stored under mild environmental conditions,
the initial phase of gaba-L formation predominates chemical
instability over the entire duration of storage. In other words, the
formation of gaba* duringmanufacturing is largely responsible for
the subsequent formation of gaba-L during long-term storage. At
the first-order expiry, the amount of gaba-L present is due to the
gaba-L formed during manufacturing (gaba-L0) and that portion
of gaba*0 that converts to gaba-L during long-term storage.

In the original detailed degradation model (5), reversible
formation of gaba* by autocatalytic branching and moisture-
induced crystal recovery is followed by spontaneous dehy-
dration to yield gaba-L. Thus the two rate processes as
described as follows: where G, G*, and L represent
gabapentin, gaba*, and gaba-L, respectively:

Rate1 ¼ k1G G� þ Lð Þ−k3G�G
Rate2 ¼ k2G� ð1Þ

In the early stages when total conversion is low,

G tð Þ≈G0≈100
L tð Þ≈0

Fig. 1. Manufacturing model parity plots comparing the model predicted and experimen-
tally determined values for the stability-related CQAs: a gaba* and b gaba-L

Table I. Summary of Manufacturing Model Statistics

gaba�0 ¼ β0 þ βWCwater contentþ βCFCompression forceþ βWC�CFwater content� Compression force
R2 = 0.80
Parameter estimates
Term Estimate Std error t ratio Prob >|t|
Intercept − 0.307305 0.240486 − 1.28 0.2175
Water content (%) 0.282563 0.050688 5.57 < .0001
Mean compression force 0.0275207 0.006882 4.00 0.0008
(Water content) × (compression force) 0.0008168 0.008078 0.10 0.9206

gaba _ L0 = γ0 + γWCwater _ content + γCFCompression _ force + γWC×CFwater _ content × Compression _ force
R2 = 0.41
Parameter estimates
Term Estimate Std error t ratio Prob >|t|
Intercept 0.0024493 0.010073 0.24 0.8106
Water content (%) 0.0050123 0.002123 2.36 0.0297
Mean compression force 0.0005423 0.000288 1.88 0.0762
(Water content) × (compression force) 0.0001524 0.000338 0.45 0.6579
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Thus the net rate of change of G* is given by,

dG�

dt
¼ Rate1−Rate2≈k1G0G�−k3G�G0−k2G� ¼ G� k1G0−k3G0−k2ð Þ;

and a new complex first-order rate constant can be defined
which accounts for loss of G*

k1G0−k3G0−k2 ¼ −kobs

The ordinary differential equation that describes the rate
of gaba* change can be analytically solved by separation of
variables, letting G� 0ð Þ ¼ G�

0

dG�

G� ¼ −kobsdt
G� tð Þ ¼ G�

0exp −kobst½ �

Since the rate of lactam formation is known, the
conversion of G∗→L in the simplified model is given by

dL
dt

¼ Rate2≈k2G� ¼ k2G�
0exp −kobst½ �

which can also be solved by separation of variables

L ¼ k2G�
0

−kobs
exp −kobst½ � þ C

The constant of integration is determined by incorporat-
ing the initial condition, (0) =L0.

The relationship between G�
0 and STS (V0) has been

previously reported, where STS is the initial rate of lactam
formation at standard conditions (5% RH and 50°C for 24 h)
(5,8).

STS ¼ dL
dt

�
�
�
�
t¼0

¼ k2 T0;RH0½ �G�
0

The rate constant k2 can be parameterized with respect
to temperature and humidity by considering the offset of the
temperature and humidity.

k2 ¼ STS
G�

0
exp −

STS
G�

0

STS
G�

0
−1

� �

þ BForm:k2
RH−RH0ð Þ

� �

kobs is an effective rate constant wherein a modified
Arrhenius equation can account for the variation in kobs with
respect to temperature and humidity due to the relatively
small range of these storage conditions. The rate constant kobs
was offset to standard conditions—namely RH0= 5% and
T0 = 50°C. The subscript BForm^ was used because the HPC

comilled granules and tablet formulations have different
humidity dependencies.

kobs ¼ k0obsexp −
Ea;kobs

RT0

Ea;kobs

RT0
−1

� �

þ BForm:kobs
RH−RH0ð Þ

� �

The final model is given by

L ¼ L0 þ k2G�
0

kobs
exp −kobst½ �−1ð Þ

k2 ¼ STS
G�

0
exp −

Ea;k2

RT0

T0

T
−1

� �

þ BForm:k2
RH‐RH0ð Þ

� �

kobs ¼ k0obsexp −
Ea;kobs

RT0

T0

T
−1

� �

þ BForm:kobs
RH‐RH0ð Þ

� �

and requires seven parameters to be estimated.

Ea;k2 ;Bgranule:k2
;BTablet:k2

; k0obs;Ea;kobs ;Bgranule:kobs
; and BTablet:kobs

These parameters were estimated from stability data
collected over 6 months from 1-kg scale batches of tablets and
granules stored at temperatures 30–60°C and relative humid-
ity 5 and 30%.

The Bayesian parameter estimation was used to estimate
the joint posterior of the simplified shelf life model parame-
ters (8–10). Briefly, non-informative priors were employed
with a delayed rejection Markov Chain Monte Carlo sampler
as implemented in the FME package of R (11,12). Assuming
normally distributed error in the gaba-L measurements,
110,000 samples of the posterior were drawn in a single chain
with 10,000 samples discarded as burn-in. The posteriors are
summarized in Table II and the marginal densities are shown
in Fig. 2.

As shown in Table II, the column labeled BBest^ is the
sample with the highest likelihood. The central 95% interval
captures 95% of the probability density, with equal 2.5% of
the total area above and below. Importantly, these ranges
include the mean and the best points. That the BBest^ point is
never more than 1.5 standard deviations from the mean is
also a sign of good convergence of this single long chain.

The marginal distributions, plotted as kernel densities in
Fig. 2, also indicate a mostly smooth posterior. We note the
heavy tails in log10 k0obs

� �

, Ea;kobs , and BTablet:kobs
. These

parameters all effect the apparent rate of lactamization and
are highly correlated with each other. A joint marginal
distribution of these parameter pairs (not shown) indicates a
high degree of correlation consistent with a compensation
effect. Despite this concern with model identifiability, the
predictions from this model are acceptably tight for illustra-
tion purposes.

In Fig. 3, we show an example fit (a) and an example
prediction (b) of the model. We stress that the 25°C data were
not used to train the model and represent a validation of the
model predictive ability. The 95% intervals are shown to
indicate how the model parameter uncertainty propagates to
a predicted distribution of the amount of lactam as a function
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of shelf life storage time. This distribution was used to define
the shelf life stability risk as described below.

Coupling the Manufacturing Model and Shelf Life Model

The manufacturing model relates two key process
conditions, namely, granulation water content and tablet
compression force to the initial amount of gaba* and the
initial amount of gaba-L. Assuming perfect control of the
process parameters, the uncertainty in the manufacturing
model parameters propagates to the outputs. This uncertainty
is independent of the uncertainty in the shelf life model

parameters, the posteriors of the shelf life model and the
manufacturing model were independently sampled. As a
further conservative assumption, any covariance in the
manufacturing model parameters was neglected, and a
normal distribution with mean and standard deviation equal
to the manufacturing model estimates and standard errors as
listed in Table I was used to obtain the 100,000 samples of the
posterior of the shelf life model. The manufacturing levels
evaluated included granulation water contents of 3, 4, and 5%
and tablet compression forces of 5, 12.5 and 20 kN. The
storage condition used for risk predictions was 25°C and 30%
RH. The coupled model was thus solved for each set of the

Fig. 2. Posterior marginal distributions for shelf life model parameters obtained by Bayesian estimation and generated by 110,000 samples of
the posterior using the MCMC sampler

Fig. 3. Shelf life model predictions for the accumulation of gaba-L during long-term
storage. a Illustrates an example fit to a gabapentin tablet batch stored at 40°C and 30%
RH for 6 months. These data were part of the data used for parameter estimation. Mean
model predicted gaba-L accumulation (solid curve) is compared to experimental data and
the dotted curves represent the 95% intervals based on repeated simulations. b Illustrates
the model-predicted (solid curve) and observed data for a tablet batch stored at 25°C and
30% RH. The data obtained at this condition were not used to train the model but only for
model validation. The dotted curves represent the 95% intervals based on repeated
simulations
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parameters and the resulting gaba-L probability distribution
at 2 years is plotted. We define shelf life risk as the probability
of failing the requirement of not more than 0.4% gaba-L:

Risk = Pr (L(WC, CF; t = 2yr) > 0.4%)which is computed
from the model predictions from all the samples drawn.

Figure 4 shows the distribution of gaba-L at nine different
processing conditions. Low instability risk was effectively
achieved when both the granulation water content and tableting
compression force were low. Although low compression
force would be expected to result in a lesser degree of
mechanical stress and therefore decreased instability, the
role of granulation water content on gabapentin stability is

somewhat counter intuitive given that gabapentin is known
to degrade faster at low residual water content than when
the residual water content is high (4). But the destabilizing
effect of water added during granulation may be account for
by noting that the granules were dried to the same target
residual water content regardless of the amount of water
added during granulation. Thus the extended thermal stress
associated with removal of excess granulation water may
explain this counter intuitive result. In short, higher levels of
manufacturing stress (i.e., higher water content [leading to
more thermal stress during drying] and higher compression
force) substantially increased the shelf life risk.

Table II. Summary of Posterior Distributions for the Gabapentin Shelf Life Model

Parameter Unit Best Mean Standard deviation Central 95% LB Central 95% UB

Ea;k2 kcal/mol 27.54 28.68 0.74 27.20 30.13
Bgranule:k2

1/%RH − 0.0811 − 0.0810 0.0094 − 0.101 − 0.0633
BTablet:k2

1/%RH − 0.0116 − 0.0029 0.0082 − 0.0179 0.0130
log10 k0obs

� �

log10(1/h) − 2.707 − 3.005 0.40 − 4.234 − 2.549
Ea;kobs kcal/mol 86.39 102.2 20.16 78.51 163.5
Bgranule:kobs

1/%RH − 0.0696 − 0.0768 0.0159 − 0.112 − 0.0506
BTablet:kobs

1/%RH 0.0832 0.1398 0.0799 0.0395 0.382

LB lower bound
UB upper bound

Fig. 4. Probability distributions for the predicted level of gaba-L after 2 years of storage at 25°C and 30% RH obtained for batches of
gabapentin tablets manufactured at ranges of water content (WC, 3–5%) and tablet compression force (CF, 5–20 kN). The risk percentage is
indicated by the shaded regions of the probability distributions wherein the accumulated level of gaba-L exceeds 0.4% (the critical value
according the USP specification). Probability distributions were obtain from 100,000 simulations using Monte Carlo sampling of the uncertainty
associated with manufacturing and shelf life model parameters
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While the present model suggests that the lower water
content and compression force, the lower the stability risk;
these concerns must be balanced with the competing require-
ments such as maintaining appearance with sufficient tablet
hardness. All of the requirements could be modeled with
posterior distributions, and the product of those posterior
probabilities could be used to define the probability of failure
as a risk metric. It would then be left as a management risk
tolerance exercise to determine which operating point
exposes the product to the least acceptable amount of risk.

CONCLUSIONS

As illustrated by this case study, quantitative risk
assessment can provide very useful insight for obtaining a
rational consensus decision on what is Bacceptable^ risk. The
utility of this approach to risk assessment is dependent on the
quality and quantity of the manufacturing and stability data,
the reliability of the models and the rigor of the model
development and validation methods employed. There is
nothing in the present methodology that necessitates a linear
manufacturing model. In the present example, a simple
correlation was able to illustrate the manufacturing model; a
Bayesian fitting was not pursued as it would not have
afforded different predictions. In principal, one could employ
the Bayesian parameter estimation on a mechanistic model
and then sample from the resulting posterior in the same way
as was done here. Indeed, mechanistic models, models, where
available should always be preferred for risk analysis.
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