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Abstract. The use of particle size distribution (PSD) similarity metrics and the
development and incorporation of drug release predictions based on PSD properties into
PBPK models for various drug administration routes may provide a holistic approach for
evaluating the effect of PSD differences on in vitro drug release and bioavailability of
disperse systems. The objectives of this study were to provide a rational approach for
evaluating the utility of in vitro PSD comparators for predicting bioequivalence for
subcutaneously administered test and reference drug emulsions. Two types of in vitro
comparators for test and reference emulsion products were evaluated: PSD characterization
comparators (overlap metrics, median, and span ratios) and release profile comparators (f2
and various fractional time ratios). A subcutaneous-input PBPK disposition model was
developed to simulate blood concentration-time profiles of reference and test emulsion
products and pharmacokinetic responses (e.g., AUC, Cmax, and Tmax) were used to determine
bioequivalence. A pool of 10,440 pairs of test and reference products was simulated using
Monte Carlo experiments. The PSD and release profile comparators were correlated to pass/
fail bioequivalence metrics using logistical regression. Based on the use of single in vitro
comparators, the f2 method was the best predictor of bioequivalence prediction. The use of
combinations of f2 and PSD overlap comparators (e.g., OVL or PROB) improved
bioequivalence prediction to about 90%. Simulation procedures used in this study
demonstrated a process for developing reliable in vitro BE predictors.

KEY WORDS: bioequivalence; particle size distribution; modeling and simulation; emulsion;
subcutaneous administration; PBPK.

INTRODUCTION

Particle size (PS) and particle size distribution (PSD) are
critical quality attributes for numerous pharmaceutical dosage
forms including solid oral products; dispersed systems (inject-
able, oral, and topical) as well as particulate-based inhaled
products (1). The key efficacy and safety performance
attributes associated with PS and PSD include the deposition
of inhaled particulates; the release rate of immediate-,
extended-, and controlled-release products; drug targeting of
stealth parenterals; and the safety of intravenous emulsion
products wherein a sub-population of large particles may
create some risk of pulmonary embolism. In addition, PSD

properties can play an important role in the manufacturing of
pharmaceutical products (e.g., powder flow and blending) and
in drug stability both physical, such as coalescence and/or
caking of dispersed systems, and chemical instability of
particulate-based solids.

In the licensure of a generic drug product via the
abbreviated new drug application (ANDA) process, both
pharmaceutical equivalence and bioequivalence (BE) of the
generic drug product must be established for the US-FDA
licensure approval. A single-dose pharmacokinetic study
using a non-replicate crossover study design is used to
evaluate BE. Pharmacokinetic (PK) parameters (e.g., Cmax,
Tmax, AUC0-t, and AUC0-∞) are determined for test and
reference drug products and BE is demonstrated if the 90%
confidence intervals of test and reference PK parameters are
within 80 and 125% (2). The FDA has also suggested an
approach for comparing drug products based on their particle
size distribution similarity for bioequivalence waiver using a

comparison of median (D50) and span
�

D90−D10
D50

�
values

between products or batches (3).
Our research objectives were to evaluate the utility of

various PSD-based metrics for predicting pharmacokinetic-
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based BE by developing simulation models for subcutaneous
drug release from emulsions coupled with PBPK pharmaco-
kinetic disposition models to specifically account for the
effects of PSD on BE. The central questions are whether
bioequivalence can be predicted based on PSD comparisons
and what in vitro metric or combination of metrics can
provide the most reliable BE predictions?

The general approach (Fig. 1) was to create reference and
test emulsion product pairs wherein the drug substance
properties were randomly selected from representative compi-
lations of published drug substance properties. The drug
substance properties including diffusion coefficient, partition
coefficient, and subcutaneous-input parameters were the same
for both reference and test drug products within the same pair.
However, the particle size distribution properties of reference
and test drug products within each pair randomly differed.

Over 10,000 pairs of reference and test drug products
were constructed. For each pair, PSD metrics (e.g., median
size, span, and overlap metrics) and in vitro release rate
metrics (e.g., similarity factor [f2], fractional time ratios) were
estimated. In addition, bioequivalence metrics were com-
puted from simulated blood concentration-time profiles for
each product pair. The utility of the PSD-based metrics (both
PSD and in vitro release rate comparators) for predicting
pharmacokinetic-based BE was evaluated by determining
the correlation between them using logistical regression.

METHODS

Modeling Methodology

Threemodelswereused:PSDmodel,drugreleasemodel, and
subcutaneous-input PBPK model. Particle size distributions for
reference (RLS) and test (generic) drug products were generated
using the PSD model which were then used in the drug release
model to generate release profileswhich in turnwere used for drug
input in the PBPKmodels to provide drug exposure profiles.

PSD Model

A skew-normal distribution was employed to generate
PSDs (4); the density function for a random variable Z with a
shape parameter α at any given z and α can be expressed as:

f zð Þ ¼ 2
1ffiffiffiffiffi
2π

p e −z2=2ð Þ∫αz−∞
1ffiffiffiffiffi
2π

p e −t2=2ð Þdt: ð1Þ

In general, the skew-normal distribution is a probability
distribution extended from a normal distribution by adding an
additional shape parameter in order to reflect the Bskewness^
of the distribution. A normal distribution is a special case of
the skew-normal distribution wherein the shape parameter is
0. Therefore, the skew-normal distribution has a number of
properties which are similar to the standard normal distribu-
tion; for example, both distributions are unimodal, they
support continuous random variable, and a square of a
skew-normal variable is a chi-square variable with one degree
of freedom (4). For any skew-normal random variable Z with
skew parameter α, the cumulative distribution of Z is given by

P Z≤yð Þ ¼ ∫y−∞
1
π

e −z2=2ð Þ∫αz−∞e −t2=2ð Þdt dz: ð2Þ

Although the random variable Z and f(z) are the basic
components to construct a skew-normal distribution, location
(ξ) and scale (σ) parameters are used to define distribution
characteristics. The variable Z can be transformed using those
two parameters and a linear transformation to obtain a
random variable X which has a skew-normal distribution
with three parameters: location, scale, and shape and can be
written as X ~ SN(ξ, σ2, α)

X ¼ ξþ σZ: ð3Þ

After a substitution of random variable Z with random
variable X in the Eq. 1, the probability density function of
random variable X with location, scale, and shape parameters
becomes

f xð Þ ¼ 2
σ
ϕ

x−ξ
σ

� �
Ф α

x−ξ
σ

� �� �

¼ 1

σ
ffiffiffiffiffi
2π

p e−
1
2

x−ξ
σð Þ2erfc −

αffiffiffi
2

p x−ξ
σ

� �� �
: ð4Þ

The skew-normal distributions for test and reference
products were constructed by selecting different values for
these three parameters for each product.
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Fig. 1. Overview of methods for evaluating the relationship between in vitro comparators
and pharmacokinetic bioequivalence metrics
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Drug Release Model

The model of Bikhazi and Higuchi (5) was used to
describe the rate of drug concentration decrease within a
single droplet of radius ri based on the following equation:

dCi

dt
¼

3⋅D⋅P Cbulk−
Ci

K

� �
ri Dþ ri⋅Pð Þ ð5Þ

where Ci is the concentration of drug within a single droplet of
radius ri; t is time; Cbulk is the concentration in the bulk
dissolution medium; D is the diffusion coefficient; P is the
permeability coefficient; K is the oil:water partition coefficient.

Emulsion formulations are polydisperse systems where
particles of various sizes are dispersed in a medium. Equation 5
only describes the release rate from amonodisperse system, and
therefore it was modified to account for the overall release rate
from polydisperse systems. The key assumptions were sink
conditions, diffusion-controlled release, and a common initial
drug concentration in all droplets. Application of these assump-
tions resulted in the following equation which describes the
time-dependent drug concentration in each droplet.

dCi

dt
¼ −

3⋅D⋅Ci

K⋅r2i
: ð6Þ

The time-dependent concentration can be described by
exponential decay where C0 is the initial droplet drug
concentration.

Ci tð Þ ¼ C0e
− 3⋅D
K⋅r2

i
t
: ð7Þ

The overall release was computed by summing across the
PSD and the total mass of drug that remains in the droplets at
time t is given by

M tð Þ ¼ ∑n
i¼1NiViCi tð Þ ð8Þ

where M(t) is the total mass of drug that remains in the
droplets at time t; Ni is the number of droplet in size range i;
Vi is the volume of droplet in size range i. As a result, the
total amount of drug at time 0 is given by

Mtot ¼ ∑n
i¼1NiViC0: ð9Þ

The cumulative percentage released as a function of time
is given by

R tð Þ ¼ 100 1−
∑
n

i¼1
NiViCi tð Þ
Mtot

0
BB@

1
CCA: ð10Þ

By substituting Eqs. 7 and 9 into Eq. 10, the volume of
particles at particular size by 4

3πri
3 assuming all particles are

spherical the following equation can be obtained:

R tð Þ ¼ 100 1−
∑n

i¼1Nir3i e
− 3∙D
K∙r2

i
t

∑n
j¼1N jr3j

0
@

1
A ð11Þ

which can be simplified by noting,

Nir3i
∑n

j¼1N jr3j
¼ volume fraction of ri f Við Þ ð12Þ

so that,

R tð Þ ¼ 100 1−∑n
i¼1 f Vie

− 3⋅D
K⋅r2

i
t

� �
: ð13Þ

R codes were written based on the equations above for
simulating release profiles of reference and test drug products
with different PSDs (R Core Team [2017] URL https://
www.R-project.org/).

PBPK Model

Three sub-models were combined to provide blood
concentration-time profiles for pairs of reference and test
drug products: emulsion drug release profiles, subcutaneous-
input model, and PKPB disposition model.

The simulation of drug release for a polydisperse
emulsion using the Bikhazi and Higuchi model (Eq. 6) was
conducted by dividing the PSD into 32 particle size bins.
Particles in each bin were assumed to have the same size and
each particle size bin was independent. As a result, the
amount of drug released from particles in each bin was
calculated using the following equations:

Vi ¼ 4
3
π r3i ð14Þ

Ni ¼ TotalDose
Density

⋅V frac ið Þ

� �
=Vi ð15Þ

dXi

dt
¼ Vi⋅Ni⋅

 
3⋅D⋅Ci

K⋅r2

!
ð16Þ

where Vi is the volume of droplets with radius i in liter (L); Ni

is the number of droplets with radius i; TotalDose is a total
mass of internal phase injected in milligram; Density is an
internal phase density in milligram/liter; Vfrac(i) is a volume
fraction of droplet with radius i; Xi is an amount of drug
released from droplet with radius i. To find the total drug
release at each time point, amount of drug released from
droplets size i at each time point was summed.

In the subcutaneous model (Fig. 2), an input compart-
ment was defined as a volume of the SQ tissue ten times
larger than an injection volume of drug in accordance with
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the literature (6). Since a maximum subcutaneous injection
volume is about 2 mL (7), the dose was fixed at 1 mL of
140 mg drug. Drug released from emulsion droplets was
assumed to be absorbed into a vein by a first order rate
process (subcutaneous permeability constant; kSQ). In addi-
tion, released drug was assumed to undergo first pass loss at
the injection site at a rate which was a fraction of subcuta-
neous permeability constant (kSQ_Eli = EF × kSQ when EF is
an elimination fraction).

The rate of change of drug concentrations in the
subcutaneous compartment is given by the following:

dCSQ

dt
¼ TotalReleaseRate

VSQ
−kSQ⋅CSQ−EF⋅kSQ⋅CSQ ð17Þ

A PBPK disposition model (8) was used to predict drug
concentration-time profiles after SQ administration. The
model consists of 14 compartments which represent major
organs/tissues such as lungs, adipose tissues, muscle, heart,
brain, spleen, pancreas, liver, gut, stomach, bone, skin,
thymus, and kidney. Each compartment was connected to
arterial and venous blood compartments.

The rate and extent of drug concentration change in each
compartment was described by a series of 17 differential
equations (8). Reported organ tissue volumes and blood flows
of each organ were based on 70 kg adult healthy males with
the age in a range of 20–50 years (8,9). Drug compound-
specific parameters required to populate the PBPK model
were based on the IV-emulsion drug, propofol. These
parameters include molecular weight (178 Da), solubility
(124 mg/L), pKa (11), diffusion coefficient (7.07 × 10−6 cm2/s),
log Po/w (3.83), density (0.9533 g/mL), blood:plasma ratio
(0.88), and plasma protein binding (0.985) (10–13). Intrinsic
renal and hepatic clearance values were estimated from
published hepatocyte and human kidney microsome
depletion studies (14).

Tissue to plasma partition coefficients (Kpu) is the ratio
of unbound drug concentration in tissues (CT) to unbound
drug concentration in plasma (CUp) at steady state. Accord-
ing to Rodgers and Rowland (15,16), Kpu in each organ can
be calculated using the following equation:

Kpu ¼ CT

CUp

¼ CU;IW⋅ f IW þ CU;EW þ CPR;EW
� �

⋅fEW þ CNL⋅ fNL þ CNP⋅ fNP

� �
CUp

ð18Þ

where f is fractional tissue volume; and IW, EW, NL, NP, and
PR are intracellular water, extracellular water, neutral lipid,
neutral phospholipid and protein, respectively.

The concentrations of unbound drug in the intracellular
water (CU, IW), the neutral lipid (CNL) and neutral phospho-
lipid (CNP) can be calculated using the following three
equations where P is the partition coefficient of the unionized
drug; X and Y are different based on drug property as follows:
for very weak monoprotic bases X ¼ 1þ 10pKa−pHIW and
Y ¼ 1þ 10pKa−pHp ; for monoprotic acids X ¼ 1þ 10pHIW−pKa

and Y ¼ 1þ 10pHp−pKa ; for neutral compounds X and Y = 1;
and for zwitteric ions X ¼ 1þ 10pKaBase−pHIW þ 10pHIW−pKaAcid

and Y ¼ 1þ 10pKaBase−pHp þ 10pHp−pKaAcid where pHp and
pHIW are plasma and intracellular water pH, respectively.

CU;IW ¼ CUp⋅
X
Y

ð19Þ

CNL ¼ P⋅CUp

Y
ð20Þ

CNP ¼ CUp

Y
⋅ 0:3Pþ 0:7ð Þ ð21Þ

The drug concentration in the extracellular water was
calculated using the following equation:

CU;EW þ CPR;EW ¼ Cup þ Cup⋅KaPR⋅PRT

fEW

� �
ð22Þ

assuming CUp is equal to CU,EW, albumin is a dominant
binding protein, and KaPR, the association constant of acid
and very weak bases for albumin and neutral drugs for
lipoproteins, is identical in all tissues and equal to
1
f u
−1− P⋅ fNL;Pþ 0:3Pþ0:7ð Þ⋅ fNP;P

Y

� �h i
⋅ 1
PRP

where subscript T and P

refer to tissue and plasma; fu is the fraction unbound drug in
plasma and PR is albumin or lipoprotein concentration.

By substituting Eq. 19–22 into Eq. 18, predicted Kpu in
each organ was obtained:

kSQ_Eli

kSQ PBPK Disposi�on 
Model             

(Venous Blood)

Drug Release 
Model

Subcutaneous 
Compartment

Fig. 2. Subcutaneous-input model
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Kpu ¼ CT

Cup
¼ X

Y
⋅ f IW þ fEW

þ 1
f u

−1−
P⋅ fNL;P þ 0:3Pþ 0:7ð Þ⋅ fNP;P

Y

� �	 

⋅
PRT

PRP

þ P⋅ fNL þ 0:3Pþ 0:7ð Þ⋅ fNP

Y
:

ð23Þ

Predicted tissue-to-plasma partition coefficient (Kpu) in
each organ was calculated based on the Eq. 23 using tissue
composition data from the literature (15,16).

Moreover, the octanol/water partition coefficient (Po/w)
was considered to use in non-adipose tissues but the
vegetable oil/water partition coefficient (Pvo/w) was used for
adipose tissue since vegetable oil represents natural lipid such
as adipose tissue better than octanol (17). The linear
relationship between experimental data of log Pvo/w and log
Po/w in organic chemicals including weak acids, bases, and
neutral molecules was used to determine Pvo/w based on Po/w

as the following equation (18):

logPvo=w ¼ 1:115⋅logPo=w

� �
−1:35 n ¼ 104; r ¼ 0:99ð Þ: ð24Þ

The clearance and distribution parameters were
optimized according to a procedure from Peters (19) wherein
the Kpu was scaled to get the best fit with the observed curve.
A model optimization based on Kpu was conducted using the
R-language based Advanced Modeling and Simulation Tool
Kit (AMASTK, UI Copyright 2012). The optimization results
showed an estimate of 4.52 for a scaling factor, which when
incorporated into a PBPK model simulation demonstrated
reasonable agreement between model-predicted curve and
published pharmacokinetic profile (20) as shown in Fig. 3.

This PBPK disposition model was used for all reference
and test emulsion product comparisons.

Methods for Comparator Computations

Three levels of comparisons were made for each pair of
reference and test emulsion product (Fig. 1). PSD comparisons
included overlapmetrics (OVL and PROB) andmedian and span
ratios. The simulated in vitro release profiles were compared using
both similarity factor (f2) and fractional release time ratios.
Traditionbioavailabilitymetrics (AUC,CmaxandTmax ratios)were
used to compare blood concentration-time profiles in accordance
withUS-FDAguidance (21) to assignBEor lack of BE.

PSD Overlap Comparators

Two metrics (OVL and PROB) were used to compare
similarity of the PSD based on their extent of overlap.

OVL is a measure of a common area between two
distributions. OVL is defined as (22).

OVL ¼ ∫min f 1 xð Þ; f 2 xð Þð Þdx ð25Þ
where f1(x) and f2(x) are probability (density) functions of
reference and test drug products, respectively.

The value of OVL is bounded between 0 and 100% (0–1
in fractional terms). When there is no overlap between both
distributions, the OVL value is 0% (or 0). In contrast, the
OVL value will be 100% (or 1) when both distributions are
identical as shown in Fig. 4.

PROB is a positional overlap metric that describes the
probability that a particle randomly chosen from a test
product distribution will be greater in size than a particle in
the reference product distribution. It is computed using the
following equation (23):

PROB ¼ ∫ 1−F1 xð Þð Þ f 2 xð Þdx ð26Þ

where F1(x) is cumulative probability (density) function of
test product distribution and f2(x) is probability (density)
functions of reference product distribution, respectively.

As seen in Fig. 5, the value of PROB is also bounded in a
range of 0–100% (0–1 in fractional terms). The PROB value
is 0% (or 0) when the PSDs do not overlap and the test
product distribution is completely to the left of the reference
product PSD. The value of PROB will be 100% (or 1) if the
PSDs do not overlap as well but the test product distribution
is completely to the right of the reference product distribu-
tion. However, if both PSDs are identical, the PROB value
will be 50% (or 0.5).

Median and Span Comparators

The median of PSD is a particle size at 50% of a
cumulative size distribution. The median is also known as
D50. The ratio of the test to reference product median was
used as a PSD metric.

The width of PSD is described by the span.

span ¼ D90−D10

D50
ð27Þ

where D90, D10, and D50 represent particle size at 90, 10, and
50% (median) in a cumulative size distribution, respectively.
The ratio of the test to reference product span was used as a
PSD metric.
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Fig. 3. Optimized PBPK model for propofol disposition using data
from Doenicke et al. (20)
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Release Rate Comparators

The f2 metric (similarity factor) has been included in a
number of FDA guidance documents (24–28). The f2 metric
was described by Moore and Flanner (29) and is a logarithmic
transformation of the average sums of the squared vertical
distances between the reference and test product mean values
at selected time points as expressed in the following equation:

f 2 ¼ 50⋅log10 1þ 1
n
∑n

t¼1 Rt−Ttð Þ2
	 
−0:5

� 100 ð28Þ

where n is a number of sampling time point; Rt and Tt are the
release values of reference and test drug products at the same
time point. In this study, five time points were used at 10, 25,
50, 75, and 85% release of the reference drug product since
the f2 values are sensitive to the number of data points (30).

The value of f2 can be in a range of 0–100. When both
reference and test productmean profiles are identical, the f2 is 100.
If there is an average difference of 10% at all measured time
points, the f2 value will be 50. Therefore, FDA and Human
Medicines Evaluation Unit of The European Agency for the
Evaluation of Medicinal Products (EMEA) have suggested the
criteria based on f2 values that a similarity of two profiles will occur
when the f2 value is between 50 and 100 (31–33). Although the use
of f2 has been included in regulatory guidance, its utility has been
questioned by pharmaceutical scientists and regulators (34,35).

Fractional time is the time required for a drug product to
release a specific percent of drug and therefore represents a
kinetic description of the release profile whereas the f2 method
collapses the time dependence by averaging a sum of differences
over time. Fractional time comparisons have found limited use
in regulatory guidance (e.g., 85% of drug release in 30 min for
BCS class I immediate release products (36)). In this work, five
fractional times corresponding to drug releases of 10, 25, 50, 75,
and 85%were estimated. They are denoted as t10, t25, t50, t75, and
t85, respectively. To compare fractional times between two drug
products, fractional time ratios were calculated. These compar-
ators provide an insight into kinetic differences of release
mechanisms between reference and test drug products.

Fractional time ratio ¼ ttest
tref

ð29Þ

where ttest/ref are fractional times of test and reference drug
products at a certain percent release.

BE Comparators

According to regulatory guidance (37), an in vivo
bioequivalence study is conducted in at least 12 healthy
volunteers as a single-dose, crossover study. Pharmacokinetic
parameters of both reference and test drug products, such as
AUC0-t, AUC0-∞, Cmax, and Tmax, are computed and used to
construct 90% confidence intervals (CIs) of the ratios
between reference and test product parameters. The CIs of
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Fig. 4. Illustrations of OVL values as a function of the degree of overlap between two distributions
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these ratios are then evaluated to determine whether they fall
within a range of 0.80–1.25. If the intervals are within the
limit, the test product is bioequivalent to the reference
product. In this study, pharmacokinetic parameters from each
product pair were compared as ratios between test and
reference drug products to determine whether or not the
product pair passed or failed the bioequivalence criteria of
0.80–1.25. The variability associated with clinical trial was not
considered.

Monte Carlo Experiments

The utility of PSD and in vitro release comparator
metrics for predicting bioequivalence was studied by gener-
ating 10,440 test/reference emulsion product pairs. Each pair
was composed of an emulsion containing the same drug but
with different PSD properties. These properties and the
important subcutaneous-input parameters of the drug for
each product pair were randomly selected as described below.

PSD Parameter Selection

The location, scale, and shape were selected to construct
the reference and test product PSD. The location parameter
(mean droplet size) for the reference product was either 10,
100, or 250 μm in radius thus covering a reasonable range of
mean droplet sizes for subcutaneous administration. The
location parameter for the test product was randomly selected
within the range of 50 and 150% of the reference product
location parameter. For scale parameters, reference and test
values were each randomly selected from the range of 0.05 to

1. The shape parameters for both the reference and test
values were also randomly selected from the range of − 3 to 3.

Release Rate Parameters

Three parameters govern drug release rates according to
the Bikhazi/Higuchi model: particle size radii (r), diffusion
coefficient (D), and partition coefficient (K). Particle size
radii depend on PSDs which were selected as described
above. The values of D and K were the same for both
reference and test drug products since they are functions of
the API. Distributions of typical D and K values were
compiled from the literature (13) and used to estimate mean
and variance values for normal distributions for typical D and
log K values. These distributions were then randomly
sampled to obtain values used to populate the release rate
simulation for each pair of reference/test products (Fig. 6).

Subcutaneous-Input Parameters

To simulate pharmacokinetic responses for drug prod-
ucts with different PSDs and drug properties, the SQ input
model was connected to a PBPK disposition model.

The subcutaneous permeability constant (kSQ), and
elimination fraction (EF) which regulate the transfer of drug
from the subcutaneous to the venous blood compartment and
first pass loss at the subcutaneous injection site were
randomly selected using the following procedure.

The kSQ parameter values were derived from the
apparent permeability coefficient (Papp) based on Caco-2
studies for various drugs compiled from literature (38–54).
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The distribution of these data (Papp
1/2) were normally

distributed. Randomly selected Papp
1/2 was sampled from

this normal distribution (Fig. 6). The selected Papp value was
related to an effective permeability coefficient (Peff) in
accordance with the following equation (55):

logPe f f μm=secð Þ ¼ 0:4926⋅logPapp nm=secð Þ−0:1454: ð30Þ

The estimated Peff was divided by the thickness of
subcutaneous layer (6 mm (56)) to obtain kSQ value. The
EF parameter was randomly selected for the range of 0.11
and 0.67 which corresponded to total bioavailability of 60–
90%.

Methods for Correlating Product Comparators to
Bioequivalence

Bioequivalence was determined by whether or not the
ratio of test:reference product pharmacokinetic metric
(AUC, Cmax, and Tmax) was within 0.8 to 1.25. If the
ratio value was within that range then BE was assigned a
value of 1 for Bpass^. Ratios outside the critical range

were assigned a value of 0 for Bfail^. Logistic regression
was utilized to correlate the numerical value of the PSD
and release rate comparator to the probability for
bioequivalence based on analysis of the 10,440 test/
reference product pairs.

Logistic regression is a technique used when depen-
dent variables are binary outcomes that may be related to
a continuous independent variable. This analysis results in
a probalistic estimate of the relationship between the
dependent outcome and the regressor. In the current
work, the probability of BE was estimated as a function
of each PSD and release rate comparator value. Thus the
probability of bioequivalence was described by estimating
an intercept (β0) and comparator coefficient (β) using the
following model where x is the PSD or release compar-
ator (57):

Probability of bioequivalence ¼ 1
1þ e− β0þβxð Þ : ð31Þ

Some of the comparator values were transformed for the
logistic regression analysis. PROB values were transformed
into a unique value given by | PROB-0.5 | since PROB values

OVL PROB
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Fig. 7. Estimated values of PSD and release profile comparators from 10,440 simulated test/reference emulsion
product pairs
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describe both overlap and the position of overlap (i.e., a
location of test drug product is less or greater than reference
drug product). For example, PROB values of 0.4 and 0.6
represent PSDs with the same amount of overlap but the
median value of test drug product is less or greater than the
reference drug product, respectively. The transformed values,
| PROB-0.5 |, remove the positional aspect of the PROB
statistic.

Similarly, the values of median, span, and five fractional
time ratios were symmetrically distributed about the value of
0 (Fig. 7). To reflect the distance from the zero value, the
absolute log comparator values were used.

JMP Pro 13.1 (SAS Institute Inc.) was used to estimate
the intercept and comparator coefficient in the logistic
regression model from each comparison metric with respect
to each bioequivalence metric.

RESULTS

Example of a Test/Reference Pair Comparison

An example of the process used to create and evaluate
reference and test product pair is described as follows:

Generating product pair: The values of D, K, Papp for
reference drug product were 5.73 × 10−6 cm2/s, 61,094, and
246.80 nm/s which were randomly selected from the
distributions depicted in Fig. 6. The PSD parameters:
location (ξ), scale (σ), and shape (α) for reference drug
product were 10 μm, 0.11, and 0.09, respectively; the
reference PSD is shown in Fig. 8 (left).

Creating test drug product: API properties of the test
product were identical to reference drug product (D = 5.73 ×
10−6 cm2/s, K = 61,094, and Papp = 246.80 nm/s) but the PSD
properties were randomly selected with different values of ξ,
σ, and α at 14.99 μm, 0.69, and 1.04, respectively; the test PSD
was shown in Fig. 8 (right).

Median and span values were measured from reference
and test PSDs. After simulating release rate profiles of
reference and test drug products using the modified Bikhazi/
Higuchi model (Fig. 9), five fractional times were estimated
(only the reference fractional time as displayed in Fig. 9). The
blood concentration-time profiles of reference and test drug
product were simulated using the subcutaneous-input PBPK

model as illustrated in Fig. 10 and used to determine the
AUC, Cmax, and Tmax values for each product.

Computing comparator values: The four PSD compara-
tors were computed for the product pair: OVL, PROB,
median ratio, and span ratio. Figure 11 shows PSD compar-
ison of reference and test drug products based on OVL (left)
and PROB (right). For the comparison of release rate profiles
from reference and test drug products, f2 and fractional time
ratios were calculated. The calculation of f2 is illustrated in
Fig. 9. The five time points used in this calculation were
selected from the reference product release profile at t10, t25,
t50, t75, and t85. Pharmacokinetic properties such as AUC,
Cmax, and Tmax from test drug product were compared to
reference drug product and categorized into two groups of
BPass^ and BFail^ according to bioequivalence criteria of
0.80–1.25.
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A summary table of the reference and test product
values for this specific exemplary pair is shown in Table I.
This entire process of creating a product pair and its
performances, measuring and comparing the property values
were repeatedly performed to construct the final data file for
logistical regression.

Summary of Comparator Values

A total of 10,440 test/reference product pairs were
evaluated using the procedure outlined in the preceding
section. The distributions of PSD and release profile compar-
ators resulting from the simulation of 10,440 test/reference
emulsion product pairs are shown in Fig. 7.

Logistical Regression Results

The probability of BE was correlated to each PSD and
release rate comparator values using logistical regression. The
estimated parameters for the the regression model (Eq. 31)
are shown in Table II for each PSD and release rate
comparator. These values can be used to estimate the
probability of BE at any given comparator value.

Exemplary logistic regression curves for OVL (PSD
comparator) and f2 (release profile comparator) with respect

to AUC-based BE are presented in Fig. 12. In these logistic
plots, each data point represents comparator value and
categorized AUC bioequivalence from a product pair. On
the right y-axis, a number of 1 or 0 indicates AUC
bioequivalence BPass^ or BFail^. A tick mark on the axis also
provides information about the total frequency of the BPass/
Fail^ result for the entire data set of 10,440 test/reference
product comparisons. As seen in the plots, the tick mark
divided a length of the right y-axis into two sections: 78% for
1 and 22% for 0. This demonstrated that 78% of total product
pairs passed AUC bioequivalence and 22% of total product
pairs failed the AUC bioequivalence criterion.

The probability of AUC bioequivalence on the left y-axis
is plotted as a function of comparator metric value on the x-
axis. The table under each logistic plot is a test report
showing whether or not the logistic regression model fits
better than constant response probabilities which is similar to
the analysis of variance for a continuous response model.
However, a specific likelihood ratio chi-square test was used
in the logistic analysis to evaluate how well the categorical
model fits the data. The negative log-likelihood, sometimes
called uncertainty in the sample, represents the negative sum
of natural logs of the observed probabilities which is similar
to sums of squares in continuous data. Reduced, full, and
difference in model column indicate a model containing only
an intercept, both intercept and comparator effect, and the
difference of the negative log-likelihood from the reduced
and full model, respectively. Twice the difference in the
negative log-likelihood from fitting the model is a chi-square
statistic which was used to investigate the hypothesis that a
comparator has no effect on the AUC bioequivalence. Based
on every table, PSD and release rate comparators have
significant effects on AUC bioequivalence since the proba-
bility of getting a chi-square value greater than the one
computed in ChiSquare column is less than 0.05 (shown in
Prob>ChiSq column).

In Fig. 12 (top), the OVL metric showed a regression
curve which increased as OVL values increased toward 1.
This means product pairs had better chance to have a similar
AUC if their OVL values were close to 1. In contrast, the
regression curves of transformed PROB, median ratio, and
span ratio demonstrated inverse relationships compared to
OVL. These results indicated that the probability of AUC
bioequivalence in product pairs was higher when their

PROB
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Fig. 11. PSD comparators (OVL and PROB) for exemplary emulsion products

Fig. 10. Simulated blood concentration-time profiles for exemplary
test and reference emulsion products
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transformed metric values tended toward 0. The differ-
ence in ascending and descending regression relationships
is reflected in the sign of the comparator coefficient as
shown in Table II.

Logistic regression curves of release profile comparator
(f2) were illustrated in Fig. 12 (bottom). The f2 metric showed
an ascending relationship with the probability of AUC
bioequivalence similar to OVL metric.

DISCUSSION

Ability of Single Comparators (PSD and Release Profile) to
Predict Bioequivalence

For each logistic regression analysis, two inverse predic-
tions were performed to identify the critical values for each
comparator with respect to each of the three bioequivalence
metrics. The critical region was identified as the region of
comparator values associated with a probability of bioequiv-
alence equal or greater than a specific target value. Two

target values of 0.85 and 0.9, corresponding to a probability of
bioequivalence equal to 85 or 90%, were estimated.

Table III presents a critical value before and after
transformation of each comparison metric when the proba-
bility of AUC bioequivalence was set at 0.85 and 0.9,
respectively. Span ratio, t10 ratio, and t25 ratio could not
predict AUC bioequivalence with the probability equal or
greater than 0.85. In contrast, OVL, PROB, median ratio, f2,
t50 ratio, t75 ratio and t85 ratio could predict AUC
bioequivalence prediction with the probability of at least
0.85. Values for OVL, f2, t75 ratio, and t85 ratio which
provided an AUC bioequivalence with the probability of
equal or greater than 0.9 were also identified.

The critical regions for OVL, PROB, and median
ratio using the 0.85 BE criterion were ≥ 0.72, 0.41–0.59,
and 0.73–1.37, respectively. For release profile compara-
tors, critical regions of f2, t50 ratio, t75 ratio, and t85 ratio
were ≥ 50.5, 0.56–1.80, 0.38–2.61, and 0.34–2.96, respec-
tively. For AUC bioequivalence probability of 0.90, only
four comparator metrics could be used to predict BE and

Table II. Estimated Logistic Regression Model Parameters for Each In Vitro Comparator with Respect to Each BE Metric

Comparator AUC Cmax Tmax

Intercept (β0) Comp coeff. (β) Intercept (β0) Comp coeff. (β) Intercept (β0) Comp coeff. (β)

PSD comparison
OVL 0.183 2.14 − 2.25 3.40 − 2.58 3.81
| PROB-0.5 | 2.04 − 3.43 0.949 − 6.74 0.747 − 6.04
| Log median ratio | 2.00 − 2.00 0.845 − 4.08 0.646 − 3.60
| Log span ratio | 1.73 − 1.05 0.194 − 1.34 0.222 − 1.60
Release profile comparison
f2 − 0.137 0.037 − 2.90 0.061 − 2.79 0.056
| Log t10 ratio | 1.50 − 0.285 0.447 − 1.00 0.681 − 1.47
| Log t25 ratio | 1.66 − 0.517 0.620 − 1.42 0.720 − 1.75
| Log t50 ratio | 1.97 − 0.936 0.833 − 1.97 0.659 − 1.79
| Log t75 ratio | 2.20 − 1.12 0.840 − 1.90 0.469 − 1.36
| Log t85 ratio | 2.22 − 1.04 0.741 − 1.58 0.362 − 1.08

PSD, particle size distribution; OVL, overlap coefficient; PROB, positional overlap metric

Table I. Summary of Estimated Values and Comparator Values for Exemplary Test/Reference Product Pair

Metric Reference product Test product Comparator values Transformed value

OVL 0.24 0.24
PROB 0.84 0.84
Median 10 36 3.6 0.55
Span 0.66 5.4 8.1 0.91
f2 23 23
t10 (h) 9.6 19 2.0 0.30
t25 (h) 27 111 4.1 0.62
t50 (h) 69 770 11 1.0
t75 (h) 150 5300 36 1.6
t85 (h) 220 15,000 71 1.8
AUC (mg/L*h) 0.88 0.70 0.80 Fail
Cmax (mg/L) 0.26 0.12 0.46 Fail
Tmax (h) 0.29 0.16 0.55 Fail

OVL, overlap coefficient; PROB, positional overlap metric; AUC, area under the concentration-time curve; Cmax, maximum concentration;
Tmax, time of maximum concentration
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their critical regions were significantly narrower. For
example, the critical regions of OVL, f2, t75 ratio, and t85
ratio were ≥ 0.94, ≥ 63–100, 0.99–1.01, and 0.94–1.07,
respectively.

The same process was also used to identify the critical
region of each comparator metric with respect to Cmax and
Tmax criteria. However, none of comparator metrics could
predict bioequivalence based on Cmax and Tmax with the
probability of equal or greater than 0.85, except f2. For
predicting Cmax and Tmax bioequivalence of at least 0.85, the
critical regions of f2 were ≥ 76.50 and ≥ 81, respectively.
However, if the criterion was increased to at least 0.9, the
critical regions of f2 were changed to ≥ 84 and ≥ 89,
respectively.

Ability of Comparators (PSD and Release Profile)
Combinations to Predict Bioequivalence

The utility of using two comparators to predict BE was
investigated since two comparators could be determined at

different steps in drug product development process by
measuring particle size distributions of the reference and test
drug products and then by comparing release profiles of the
product pairs.

To study the effect of combining metrics in predicting
bioequivalence, the critical regions for PSD and release
profile comparators were systematically combined and
evaluated with respect to each of the three bioequivalence
metrics. Then the probability of bioequivalence with the
combinations of two comparator values within the critical
ranges was determined. This analysis was performed by
first sub-setting those product pairs which had PSD and
release rate comparator values in the critical regions
based on AUC bioequivalence. The resulting subset of
product pairs was analyzed to determine the frequency of
bioequivalence based on AUC, Cmax, and Tmax ratios.

OVL and PROB were chosen for PSD comparisons
using their critical regions which predicted using AUC-BE
probability ≥ 0.85. For release profile comparisons, f2, t75
ratio, and t85 ratio were selected and their critical regions
which predicted AUC bioequivalence with the probability
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Fig. 12. Logistical regression model optimization for AUC-BE as
functions of OVL and f2 comparators using 10,440 test/reference
emulsion product pairs

Table III. Critical Values of In Vitro Comparators with Respect to
the Probability of AUC Bioequivalence at 0.85 and 0.90

Comparator Critical value at 0.85 Critical value at 0.90

Transformed Original Transformed Original

PSD comparison
OVL – 0.722 – 0.938
PROB 0.090 0.410, 0.590 – –
Median ratio 0.137 0.729, 1.37 – –
Span ratio – – – –
Release profile comparison
f2 – 50.5 – 63.0
t10 ratio – – – –
t25 ratio – – – –
t50 ratio 0.256 0.555, 1.80 – –
t75 ratio 0.417 0.383, 2.61 0.0045 0.990, 1.01
t85 ratio 0.471 0.338, 2.96 0.0276 0.938, 1.07

PSD, particle size distribution; OVL, overlap coefficient; PROB,
positional overlap metric

Table IV. Summary of the Probability of BE with Combinations of
In Vitro Comparators Values in the Critical Range

Combined metric No. of pairs Probability of bioequivalence

AUC Cmax Tmax

OVL + f2 2662 0.94 0.77 0.75
OVL + f2* 1770 0.95 0.86 0.83
OVL + t75 ratio 2853 0.93 0.73 0.72
OVL + t85 ratio 2835 0.93 0.73 0.72
PROB + f2 2754 0.93 0.78 0.73
PROB + f2* 1851 0.95 0.86 0.82
PROB + t75 ratio 2856 0.93 0.76 0.70
PROB + t85 ratio 2661 0.93 0.77 0.72

OVL, overlap coefficient; PROB, positional overlap metric

2798 Ngeacharernkul et al.



of equal or greater than 0.85 were used in conjunction
with critical regions from PSD comparison metrics. In
addition, a critical region of f2 which predicted AUC
bioequivalence with the probability of equal or greater
than 0.90 (f2*) was also used along with critical regions
from the PSD comparison metrics.

The results of this analysis are shown in Table IV. Of
the original data pools containing 10,440 pairs, between
2600 and 2900 pairs had both a PSD and release profile
comparator value in the critical 0.85 BE probability range.
Within this subset, the probability of BE-based AUC,
Cmax, and Tmax ratios was ≥ 0.93, ≥ 0.73, and ≥ 0.70,
respectively. When f2* was used in combination with OVL
or PROB, 1800 product pairs were identified with the
probability of BE based on AUC, Cmax, and Tmax ratios
was 0.95, 0.86, and 0.82, respectively. Thus, the use of two
product comparators appeared to offer greater utility in
predicting bioequivalence then the use of single
comparators.

CONCLUSION

The potential utility of using either or both PSD-
based and release profile-based comparators for predicting
bioequivalence may have role in generic product develop-
ment. The process described herein of combining release
rate, pharmacokinetic input, and disposition models to
conduct Monte Carlo simulation experiments would ap-
pear to a reasonable first step. The application of these
results presented herein is limited to emulsion formula-
tions administered by subcutaneous route. Since the
emulsion droplet PSDs were assumed to be constant after
administration and release rates depended only on the
initial droplet sizes, these assumptions are insufficient to
describe drug behavior in other formulations such as
suspensions wherein drug particle PSDs change over time
as the particles erode during drug release. The complica-
tions involved with time-dependent PSD changes may be
especially important for oral drug bioavailability wherein
transit time, pH, transporter, and metabolic gradient in
the GI tract are all relevant to drug absorption. In order
to be considered reliable and more broadly applicable for
other dosage forms and routes of administration, the
models used for drug release, input, and disposition
require considerable elaboration and refinement to incor-
porate the current understanding of bioavailability. More-
over, the influence of drug disposition kinetics on the
results presented here requires additional consideration.
Nonetheless, any attempt to leverage in vitro drug product
testing in lieu of clinical trials with its inherent variability
and the difficulty of conducting human studies is worth
careful consideration and further study.
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