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Abstract 

Autoimmune disorders (ADs) are chronic conditions resulting from failure or breakdown of immunological toler-
ance, resulting in the host immune system attacking its cells or tissues. Recent studies report shared effects, mecha-
nisms, and evolutionary origins among ADs; however, the possible factors connecting them are unknown. This study 
attempts to identify gene signatures commonly shared between different autoimmune disorders and elucidate 
their molecular pathways linking the pathogenesis of these ADs using an integrated gene expression approach. 
We employed differential gene expression analysis across 19 datasets of whole blood/peripheral blood cell samples 
with five different autoimmune disorders (rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, 
Crohn’s disease, and type 1 diabetes) to get nine key genes—EGR1, RUNX3, SMAD7, NAMPT, S100A9, S100A8, CYBB, 
GATA2, and MCEMP1 that were primarily involved in cell and leukocyte activation, leukocyte mediated immunity, 
IL-17, AGE-RAGE signaling in diabetic complications, prion disease, and NOD-like receptor signaling confirming its role 
in immune-related pathways. Combined with biological interpretations such as gene ontology (GO), pathway enrich-
ment, and protein–protein interaction (PPI) network, our current study sheds light on the in-depth research on early 
detection, diagnosis, and prognosis of different ADs.
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1  Introduction
The function of the immune system is to protect the 
host from the attack of any foreign particle invading the 
cell. The entry of foreign particles activates a two-step 
immune response that triggers innate immunity and then 
converts to the adaptive or specific immune response. 
During this process, our immune system should be 

capable of recognizing self and non-self-antigens, fail-
ure of which results in the breakdown of self-tolerance, 
leading to the development of autoimmune disease [1]. 
The incidence and prevalence of autoimmune diseases 
are increasing rapidly, affecting more than 5% of the 
population worldwide with increased morbidity and 
mortality rates [2]. Literature sources report that these 
disorders are common and steadily growing in western-
ized societies [3]. The pathogenesis of autoimmune dis-
eases has been challenging and unknown due to various 
etiological factors. Several factors such as genetics, envi-
ronmental factors, sex, and race are thought to contrib-
ute to the development of an immune response [4, 5]. 

*Correspondence:
Anjali Ganjiwale
anjalig@bub.ernet.in
1 Department of Life Science, Bangalore University, Bangalore, Karnataka 
560056, India

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44342-024-00004-5&domain=pdf
http://orcid.org/0000-0003-0210-7744
http://orcid.org/0000-0003-1327-5487


Page 2 of 17Rajalingam and Ganjiwale ﻿Genomics & Informatics           (2024) 22:10 

Human leukocyte antigen (HLA) genes at the short arm 
of chromosome number 6 have been reported to have a 
strong linkage with rheumatoid arthritis (RA) along with 
PTPN22 (protein tyrosine phosphatase non-receptor 
type 22), PADI4 (peptidyl arginine deiminase 4), STAT4 
(signal transducer and activator of transcription 4), and 
RUN X1 (runt-related transcription factor 1) [6]. Sys-
temic lupus erythematosus (SLE) genes are associated 
with the components of the complement activation path-
way, IgG Fc receptors (immunoglobulin Fc receptor), and 
HLA region. HLA gene clusters also contribute 20–60% 
of the risk of causing multiple sclerosis (MS) [7]. INS 
(insulin), PTPN22, PTPN2 (protein tyrosine phosphatase 
non-receptor 2), IL2RA (interleukin 2 (IL2) receptor 
alpha), CTLA4 (cytotoxic T lymphocyte antigen-4), and 
IFIH1 (interferon induced with helicase C domain 1) are 
some non-major histocompatibility (MHC) genes asso-
ciated with type 1 diabetes mellitus (T1D) [8]. Environ-
mental factors such as infectious agents, ultraviolet light, 
chemicals, environmental pollutants, smoking, and diet 
also help trigger autoimmune responses [9–13]. In addi-
tion, DNA and RNA viral infections with mechanisms 
such as molecular mimicry, protein changes, or the 
exposition of cryptic antigens [14–17] are also known 
to induce autoimmune disorders [18]. Present treatment 
for autoimmune disease aims to reduce chronic symp-
toms by lowering the level of immune system activity that 
makes patients often face a lifetime of debilitating symp-
toms, loss of organ and tissue function, and high medical 
costs. However, treatments vary widely depending on the 
disease and the symptoms [19].

Several studies have reported that there is an associa-
tion among autoimmune disorders. However, the pos-
sible factors connecting them have yet to be addressed 
completely. Kimura and his colleagues have reported that 
the observed prevalence of MS at the onset of inflamma-
tory bowel disease (IBD) was 3.7 times greater than the 
expected prevalence. This study confirms an association 
between 2 diseases (MS and IBD). However, they failed 
to speculate on possible mechanisms in this association 
[20]. In 2010, Solomon and his colleagues reported an 
increased risk of developing diabetes mellitus (DM) in 
RA, psoriatic arthritis, or psoriasis (PsA/PsO) patients. 
Later, in 2017, a survey on RA patients revealed that out 
of 2535 RA patients, 20% had developed DM [21]. Pso-
riasis (Ps) is another autoimmune disorder linked with 
increased C-reactive protein (CRP) in Ps patients. These 
increased CRP levels correlate with increased serum con-
centrations of IL-6 (interleukin-6), S100A8, and S100A9 
proteins. The CRP level concentration is also high in 
psoriatic arthritis (PsA) patients, forming atheroscle-
rotic plaques [22]. Obesity, a feature of metabolic syn-
drome, was reported in Ps and PsA patients. So, there 

is an association between obesity, Ps, and PsA [22–25]. 
Functional polymorphism on CD40 (cluster of differen-
tiation 40) is associated with CD and MS sharing a com-
mon signaling pathway between these two autoimmune 
disorders [26]. Also, IL23R (interleukin-23 receptor) gene 
polymorphism is associated with inflammatory bowel 
disease, psoriasis, and ankylosing spondylitis [27]. Dif-
ferential expression of the CDKAL1 (Cdk5 regulatory 
associated protein 1-like 1) gene is reported in psoriasis. 
It is also implicated in the pathogenesis of Crohn’s dis-
ease (CD) and type II diabetes (TIID) [28]. Thus, litera-
ture studies answer the “common genetic origin” theory 
of autoimmune disorders. Association and linkage stud-
ies in different populations have also revealed that sev-
eral susceptibility loci overlap in ADs, and clinical studies 
have shown the frequent clustering of several ADs [29]. A 
recent study in 2023 also confirms that there are shared 
effects, mechanisms, and evolutionary origins among 
ADs [30]. So, identifying shared genetic factors helps us 
better understand their pathogenesis mechanism which 
controls the onset, severity, and chronicity of the disor-
ders [31].

This study attempts to identify genetic factors shared 
between five autoimmune disorders and elucidate their 
molecular pathways linking their pathogenesis mecha-
nism. We conducted a combined transcriptome analy-
sis of five autoimmune disorders (Rheumatoid arthritis, 
multiple sclerosis, systemic lupus erythematosus, Crohn’s 
disease, and type 1 diabetes) of whole blood/peripheral 
blood tissue samples with an integrated gene expression 
approach to identify essential gene markers contribut-
ing to the pathophysiology of autoimmune disorders 
from the existing gene expression data retrieved from the 
Gene Expression Omnibus (GEO) database. After elimi-
nating low sample size (less than 10) datasets of autoim-
mune disorders, our approach involves the identification 
of differentially expressed genes (DEGs) to filter out the 
most significant shared gene signature between healthy 
and autoimmune disorder samples to derive insightful 
inferences on biological functions and pathways involved.

2 � Materials and methods
2.1 � Data collection
All microarray datasets were obtained from the Gene 
Expression Omnibus database (GEO, https://​www.​ncbi.​
nlm.​nih.​gov/​geo/) [32]. The GEO database for microar-
ray datasets was filtered using the keywords “Rheumatoid 
arthritis (RA),” “Multiple sclerosis (MS),” “Systemic lupus 
erythematosus (SLE),” “Crohn’s disease (CD),” and “Type 
1 diabetes mellitus (T1D).” Datasets were downloaded 
with Whole blood/Peripheral blood cells and Homo sapi-
ens as inclusion criteria. Nineteen microarray datasets 
were qualified to be selected. Samples less than ten were 
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excluded for analysis, resulting in 16 gene expression 
microarray datasets.

GEO expression datasets for RA included GSE93272, 
GSE15573, and GSE17755 (175 disease and 103 control 
samples); MS included GSE17048, GSE21942, GSE26484, 
and GSE141804 (134 disease and 74 control samples); 
SLE included GSE17755, GSE30153, GSE81622, and 
GSE72326 (226 disease and 107 control samples); T1D 
included GSE11907 and GSE142153 (43 disease and 
26 control samples); and CD included GSE119600, 
GSE26124, and GSE3365 (193 disease and 121 control 
samples), respectively. A total of 1202 samples were taken 
for the study.

2.2 � Differentially expressed genes (DEGs) analysis 
by GEO2R tool

GEO2R analysis tool with the limma package from 
Bioconductor to display the t-test score, p-value, and 
adjusted p-score was used to analyze differentially 
expressed genes of all the individual 16 datasets (https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/). The feature reduc-
tion technique UMAP (Uniform Manifold Approxima-
tion and Projection), a part of the GEO2R script, was 
used for dimensionality reduction for all 16 datasets. The 
top 250 DEGs from each dataset were obtained by set-
ting the significance level cut-off (p < 0.05), and their val-
ues were adjusted using Benjamini–Hochberg correction 
(false discovery rate, FDR) (Supplementary Information 
A1) [33].

The Venn diagram is the most common and apparent 
data visualization for illustrating the overlap and differ-
ence between data sets [34]. We used the Python Venn 
package (Version 0.11.7) to find the common DEGs 
between RA, MS, SLE, CD, and T1D datasets (https://​
github.​com/​tctia​nchi/​pyvenn).

2.3 � Function enrichment analysis
To explore the enriched biological pathways and anno-
tations in terms of gene ontology (GO), a graphical tool 
for gene set enrichment analysis—ShinyGO (Version 
0.76) (http://​bioin​forma​tics.​sdsta​te.​edu/​go/)​—was used. 
It produces hierarchical clustering trees, networks sum-
marizing overlapping pathways, and gene characteris-
tics plots [35]. The Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analysis was per-
formed using Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v6.8 (https://​david.​abcc.​
ncifc​rf.​gov) [36]. The enriched pathways were defined 
based on the p-value < 0.05.

2.4 � Network topology‑based analysis (NTA)
The WebGestalt (WEB-based Gene Set Analysis Toolkit) 
was used to compute and visualize the topological 

network properties of DEGs in a molecular interaction 
network [37]. Different topological characteristics, such 
as the centrality of nodes in the network, were compared 
with known GO pathways. All the results for the top 10 
GO categories are reported with a statistical significance 
of p-value < 0.05. The protein–protein interactions (PPI) 
network of DEGs was established by using STRING 
(Version 11.5) (https://​string-​db.​org) [38]. A gene–gene 
interaction network was performed for the significant 
DEGs and candidate hub genes were selected through the 
GeneMANIA Cytoscape plugin command line tool [39] 
by calculating the network weight that reflects the data 
source relevance for predicting the function of genes.

2.5 � Validation of candidate hub genes and their 
significance

The significance of the selected hub genes in contributing 
to various other disorders was analyzed using ToppGene 
Suite (http://​toppg​ene.​cchmc.​org), a one-stop portal for 
gene list enrichment analysis and candidate gene prioriti-
zation based on functional annotation and protein inter-
actions network [40].

2.6 � Chemical—gene interaction network analysis
The chemical gene/protein interactions, chemical dis-
eases, and gene-disease relationships were analyzed using 
a comparative toxicological genomics database (CTD, 
http://​ctdba​se.​org/) was used to analyze [41]. Diagnostic 
markers and the molecular compound interaction net-
work were visualized using Cytoscape software.

3 � Results
3.1 � Identification of DEGs in RA, MS, SLE, CD, and T1D 

datasets
GEO expression datasets with a total of 1202 AD sam-
ples versus healthy controls are reported in Supple-
mentary Table S1. The top 250 DEGs from each dataset 
were obtained by setting the significance level cut-off 
(p ≤ 0.05), and their values were adjusted using Benja-
mini–Hochberg correction (false discovery rate) using 
the GEO2R analysis tool. The analysis resulted in the 
DEGs that were ranked by adjusted p-value (p-values 
corrected for multiple testing). A total of 545 DEGs were 
identified across all RA datasets, 1027 DEGs were iden-
tified across all MS datasets, 701 DEGs were identified 
across all SLE datasets, 639 DEGs were identified across 
all T1D datasets, and 621 DEGs were identified across all 
CD datasets (Supplementary Table S2). These DEGs were 
further analyzed to identify significant genes in ADs.

3.2 � Identification of 32 DEGs
When two AD datasets were compared, we found that 
30, 26, 23, and 26 DEGs were shared by RA|MS, RA|SLE, 
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RA|CD, and RA|T1D datasets. Forty-six, 52, and 46 
DEGs were shared by the MS|SLE, MS|CD, and MS|T1D 
datasets. Thirty-nine DEGs were shared between 
SLE|CD, 11 DEGs were shared between SLE|T1D data-
sets, and 20 DEGs were common between CD|T1D 
datasets. When three AD datasets were compared, we 
found 3 DEGs (GATA2, CDKN1C, PARP10) are com-
mon in RA|MS|SLE, 1 gene (F5) common in RA|MS|CD, 
and 1 gene (ORC4) is common in RA|MS|T1D data-
sets. Ten genes (S100A9, SRSF5, HNRNPDL, MCEMP1, 
CD96, NCF4, CTSW, CLIC1, HNRNPUL1, S100A6) 
and four genes (S100A8, RUNX3, SMAD7, ARF4) 
had common DEGs in RA|SLE|CD and RA|SLE|T1D 
datasets. RA|CD|T1D datasets have three common 
genes (VPS9D1, ENSA, PHF5A). MS|SLE|CD and 
MS|SLE|T1D datasets share 2 genes (NFE2, SLC25A37) 
and 4 genes (YME1L1, GAS6, ARPC4, CYBB). 
MS|CD|T1D datasets share three genes (NAMPT, 
LILRA5, FCAR). When comparing four datasets, we 
found that EGR1 is common in the RA, SLE, CD, and 
T1D datasets (Fig. 1 and Supplementary Table S3). How-
ever, there were no common genes among all 5 AD data-
sets. Thirty-two DEGs that were expressed in more than 

2 ADs were identified as significant genes in AD patho-
genesis (Supplementary Table S3).

3.3 � GO enrichment analysis of DEGs
GO enrichment analysis showed the involvement of 
significant genes in various biological processes (BP), 
molecular functions (MF), and cellular components 
(CC), respectively.

3.3.1 � Biological processes (BP)
In BP, significant DEGs were enriched in a total of 855 
pathways (Supplementary Table S4), among which the 
top 10 pathways are cell activation, secretion by cell, 
leukocyte activation, immune effector process, exo-
cytosis, leukocyte mediated immunity, regulated exo-
cytosis, response to wounding, sequestering of ions, 
and autocrine signaling which is sorted based on fold 
enrichment (Fig.  2A). The hierarchical clustering tree 
explains the correlation among the significant pathways 
in which exocytosis, regulated exocytosis, autocrine 
signaling, and sequestering of zinc ions are depicted as 
redundant pathways. It also reveals that Leukocyte and 
cell activation pathways have many shared DEGs with 

Fig. 1  Identification of common DEGs between ADs. Significant genes (32 DEGs) expressed in more than 2 ADs are highlighted
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significant p-values (Supplementary Table S5, Supple-
mentary Fig.  1A). The network plot shows the relation-
ship between the enrichment pathways in which each 
node (enriched GO pathways) is connected if at least 
20% or more genes are shared. Leukocyte and cell activa-
tion pathways show large, overlapping, and significantly 
enriched gene sets. The bar plot shows the disease sig-
nificance of BP ontology. Cell activation is considered a 
significant pathway based on larger gene sets involving 
a total of 13 genes, out of which 10 contribute to SLE 
pathogenesis (Supplementary Table S5, Fig.  3A). Sup-
plementary Table S6 shows the significant genes grouped 
by functional categories defined by high-level GO terms. 
The DEGs are enriched mainly in the immune system’s 
processes of stress and regulation of biological process 
pathways.

3.3.2 � Molecular functions (MF)
In MF, DEGs were enriched in 75 pathways (Supple-
mentary Table S4), with the top pathways involved in 
transition metal ion binding, zinc ion binding, and cal-
cium-dependent protein binding (Fig.  2B). A hierarchi-
cal clustering tree summarizes the correlation among 
the significant pathways, in which many shared genes are 

clustered together (Supplementary Table S5, Supplemen-
tary Fig. 1B). Transition metal ion binding and zinc ion 
binding pathways represent larger gene sets, with more 
overlap and enriched gene sets. The bar plot shows the 
disease significance of MF ontology. Transition metal 
ion binding is considered a significant function based on 
larger gene sets involving a total of 7 genes all of which 
contribute to RA pathogenesis (Supplementary Table S5, 
Fig.  3B). Supplementary Table S6 shows the significant 
genes grouped by functional categories defined by high-
level GO terms. The DEGs are enriched in small mole-
cule binding, molecular function regulators, transporter 
activity, enzyme regulator activity, and DNA-binding 
transcription factors.

3.3.3 � Cellular components (CC)
In CC, DEGs were enriched in 42 pathways (Supplemen-
tary Table S4). Among the top pathways sorted by fold 
enrichment, DEGs were significantly enriched in a secre-
tory vesicle, secretory granule, vesicle lumen, cytoplas-
mic vesicle lumen, and secretory granule lumen (Fig. 2C). 
Correlation of the top 10 pathways is represented in the 
hierarchical clustering tree (Supplementary Table S5, 
Supplementary Fig. 1C). Secretory granule and secretory 

Fig. 2  GO Enrichment analysis of 32 DEGs in A biological processes, B molecular functions, and C cellular components. Top pathways are sorted 
by fold enrichment enriched with significant DEGs. The dot size represents the count of differentially expressed genes, and the color depth 
represents the enrichment FDR. Detailed GO enrichment analysis has been provided in the supplemental information
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vesicle pathways represent larger gene sets, with more 
overlap and enriched gene sets. The bar plot shows the 
disease significance of CC ontology. Secretory granule 
and secretory vesicle are considered significant com-
ponents based on larger gene sets involving a total of 8 
genes, out of which 6 contribute to SLE pathogenesis 
(Supplementary Table S5, Fig. 3C). Supplementary Table 
S6 shows the significant genes grouped by functional 
categories defined by high-level GO terms. The DEGs 
are enriched in the extracellular region and extracellular 
space.

A chi-squared and Student’s t-test analysis was per-
formed to determine if significant genes have any special 
characteristic features by comparing them with other 
genes in the genome. As shown in Fig.  4A, the DEGs 
seem to have more genome span and transcript length 
than other genes in the genome. On the other hand, GC 
content and coding sequence length are comparatively 
low with reference to the genome gene sets. DEGs were 
significantly distributed mainly on chromosome 1 in 
autosomes and chromosome-X in allosomes. In contrast, 
no genes were found on 6, 9, 15, 17, 20, 21, and Y-chro-
mosomes (Fig. 4B). Most of the DEGs identified are pro-
tein-coding genes (Fig. 4C and Supplementary Table S7).

3.4 � KEGG enrichment analysis of DEGs
KEGG enrichment analysis showed that significant genes 
were enriched in 46 pathways. The DEGs were enriched 
in pathways of endocytosis, phagosome, spliceosome, 
IL-17 signaling pathway, cell cycle, osteoclast differ-
entiation, and so on (Supplementary Table S8). These 
pathways mainly involve immune cell activation, innate 
immunity, acquired immunity, and host defense against 
bacterial, fungal, and viral infections.

3.5 � Network topology‑based analysis (NTA)
The network topology was derived from the significant 
DEGs using WebGestalt, comprising 32 input seeds, 
among which 31 were selected in the network. It high-
lighted 10 GO categories (Neutrophil aggregation, 
sequestering of zinc, leukocyte migration involved in the 
inflammatory response, leukocyte aggregation, protein 
nitrosylation, peptidyl-cysteine S-nitrosylation, seques-
tering of metal ions, defense response to fungus, cellu-
lar zinc ion homeostasis, and zinc ion homeostasis) as 
the top 10 enriched GO pathways for biological process 
terms (Supplementary table S9, Fig.  5A). The sub-net-
work graph contains five seeds (S100A8, S100A9, HNRN-
PDL, SRSF5, HNRNPUL1), among which calprotectin 

Fig. 3  GO enrichment network of A biological processes, B molecular functions, and C cellular components are represented at edge cut-off 0.3. 
Each node represents an enriched GO term. Related GO terms are connected by a line, whose thickness reflects the percent of overlapping genes. 
The size of the node corresponds to the number of genes. Darker nodes represent significantly enriched gene sets. The bar plot and the genes 
in each ontology are color-coded with red (RA), blue (MS), purple (SLE), brown (CD), and orange (T1D). Significant pathways are highlighted in each 
ontology based on the larger gene sets. Detailed information has been provided in the supplemental information
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proteins (S100A8 and S100A9) are presented as neighbor 
seeds that are highlighted in all ten enriched GO catego-
ries (Fig.  5B). Literature sources suggest that these pro-
teins are regarded as proinflammatory cytokines and play 
a crucial role in inflammation. These are also found to be 
linked with cancer [42].

3.6 � Construction of protein–protein interaction (PPI) 
network and identification of candidate hub genes

The network of significant DEGs showed possible inter-
actions between the genes (Supplementary Fig.  2). The 
PPI enrichment p-value is found to be 8.04e − 07. The 
proteins interact more than expected for a random set 
of proteins of the same size and degree of distribution 
drawn from the genome. Such an enrichment indicates 
that the proteins are at least partially biologically con-
nected. Out of 32, 18 nodes that had interactions were 
visualized using the GeneMANIA Cytoscape plugin 
command line tool (Fig. 6).

The network shows 20 related genes with 38 total genes 
and 331 total links based on protein–protein interac-
tion data collected from BioGRID and PathwayCom-
mons, genetic interaction data, shared protein domains, 
co-localization, pathway data, and predicted functional 
relationships between the genes [39]. S100A8 shows a 
shared protein domain with the S100A9 protein. These 

are myeloid-related proteins that activate the innate 
immune system to alert monocytes and macrophages 
to mediate inflammation [43]. The network also shows 
genetic interactions between RUNX3, CYBB, ENSA, and 
NAMPT. SMURF1 (Smad ubiquitination regulatory fac-
tor 1) has a genetic interaction with CYBB and NMNAT3 
(Nicotinamide Nucleotide Adenylyltransferase 3) has 
a genetic interaction with EGR1. SMURF1 is a protein-
coding gene that is associated with inflammatory bowel 
disease and acts as a negative regulator of the BMP (Bone 
morphogenetic protein) signaling pathway (regulation 
of cell motility, cell signaling, and cell polarity) [44]. 
NMNAT3 is reported to play a neuroprotective role as 
a molecular chaperone [45]. ENSA (Endosulfine Alpha) 
is also a protein-coding gene that plays a very important 
role in modulating insulin secretion through the inter-
action with KATP (ATP-sensitive potassium  channel) 
channel, and this gene has been proposed as a candidate 
gene for type 2 diabetes [46, 47]. Also, S100A8, S100A9, 
MCEMP1, NAMPT, RUNX3, and SMAD7 are found to 
be co-expressed in the network (Supplementary Table 
S10). GO analysis revealed that these genes were involved 
in cell and leukocyte activation in Supplementary Table 
S5. Based on the network constructed, these genes 
were selected as candidate hub genes—EGR1, RUNX3, 
SMAD7, NAMPT, S100A9, S100A8, CYBB, GATA2, and 

Fig. 4  Chi-squared and Student’s t-tests analysis. A Distribution of the coding sequence length, transcript length, genome span, and GC content 
in significant DEGs versus other coding genes in the genome; B distribution of significant genes on chromosomes; and C distribution of significant 
genes by gene type. Analysis results have been provided in the supplemental information
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MCEMP1. These are reported to be involved in leukocyte 
and cell activation, IL-17 signaling pathway, AGE-RAGE 
signaling pathway in diabetic complications, etc., (Sup-
plementary Table S10). Thus, these candidate hub genes 
are linked to immune-related pathways, especially in AD 
pathogenesis.

3.7 � Validation of candidate hub genes and their 
significance

The hub genes were validated to get significant results. 
EGR1, S100A8, S100A9, NAMPT, and MCEMP1 are 
downregulated in expression, whereas GATA2 is upregu-
lated in RA, SLE, and downregulated in MS datasets. On 
the other hand, SMAD7 is upregulated in RA, and SLE 
and downregulated in T1D. In contrast, CYBB is down-
regulated in T1D, and SLE and upregulated only in MS. 
Notably, RUNX3 was upregulated in all ADs (RA, MS, 
and T1D) (Fig. 7A). The significance of the candidate hub 
genes was further validated from the literature sources. 
Also, its contribution to various other disorders was ana-
lyzed using ToppGene Suite (http://​toppg​ene.​cchmc.​org) 
and found all these genes were primarily involved in leu-
kemia disorders, arteriosclerosis, atherosclerosis, asthma, 

Parkinson’s diseases, apart from autoimmunity (Fig.  7B 
and Supplementary table S11).

3.8 � Chemical—gene interaction network analysis
The chemical or therapeutic compounds interacting with 
the diagnostic genes EGR1, RUNX3, SMAD7, NAMPT, 
S100A9, S100A8, CYBB, GATA2, and MCEMP1 were 
analyzed with the CTD database. The interaction net-
work was created and visualized using Cytoscape (Fig. 8). 
The network showed that multiple chemicals could affect 
the expression of these nine diagnostic genes. EGR1 
shows interaction with several chemicals, such as afla-
toxin B1, aflatoxin B2, arsenic, folic acid, S-adenosylme-
thionine, arsenic trioxide, sodium arsenite, valproic acid, 
bisphenol A, and diazinon. These interactions result in 
decreased or increased methylation of EGR1 introns, 
promotors, and genes, thereby affecting its expression 
[48–55]. RUNX3 shows interaction with aflatoxin B1, 
aflatoxin B2, arsenic, arsenite, benzo(a)pyrene, benzo(e)
pyrene, bis(4-hydroxyphenyl)sulfone co-treated with ful-
vestrant, tobocco smoke pollution, methapyrilene, decit-
abine, fonofos, etc., in which all of these genes result in 
increased or decreased methylation of RUNX3 gene, 
promoter, exons, and introns affecting its expression 

Fig. 5  Network topology-based analysis using the PPI BioGRID network for expansion. A Construction of top 10 enriched gene ontology 
biological process terms. B Sub-network graph obtained from enrichment analysis. Gene ontology enrichment analysis of biological process terms 
is visualized as a dendrogram with the ten significantly enriched terms highlighted in red. The ancestors of these enriched terms are shown in light 
yellow. The sub-network graph contains five seeds (S100A8, S100A9, HNRNPDL, SRSF5, HNRNPUL1), among which calprotectin proteins (S100A8 
and S100A9) are presented as neighbor seeds that are highlighted in all ten enriched GO terms

http://toppgene.cchmc.org
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Fig. 6  The gene interaction network of 9 candidate hub genes shows 20 related genes and 331 total links. 18 interacted nodes from the PPI 
network whose combined score > 0.4 were visualized and candidate hub genes were selected based on their interaction and involvement 
in both cell and leukocyte activation pathways, a key process in pathology associated with the autoimmune response

Fig. 7  A Correlation heatmap of the candidate hub genes. B Significance of candidate hub genes in contributing to various other disorders 
with increased frequency in autoimmune diseases
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[48, 54–68]. SMAD7 shows its interaction with aflatoxin 
B1, arsenic, benzo(e)pyrene, bis(4-hydroxyphenyl)sul-
fone co-treated with fulvestrant, bisphenol A co-treated 
with fulvestrant, bisphenol A, manganese chloride and 
methapyrilene resulting in the increased or decreased 
methylation of the SMAD7 gene and intron affecting its 
expression [48, 51, 56, 58, 69]. NAMPT interaction with 
air pollutants, occupational chemicals, CGP 52608, tolu-
ene, ethylbenzene, and xylenes affects the gene’s expres-
sion by increasing the NAMPT gene’s methylation [70, 
71]. S100A8 interacts with aflatoxin B1, benzo(a)pyrene, 
CGP 52608, and glucose. Literature sources suggest that 
these interactions promote the reaction by increasing 
the methylation of the S100A8 gene, intron, and pro-
moter, which affects its expression level in the signaling 
cascade [48, 57, 61, 71, 72]. S100A9 shows interaction 
with aflatoxin B1, benzo(a)pyrene, CGP 52608, and val-
proic acid, affecting its gene expression by a biochemical 
process called methylation and also promoting the reac-
tion [57, 61, 68, 71]. CYBB is found to interact with only 
one molecular compound aflatoxin B1 whose interaction 
results in decreased methylation of the CYBB gene [57]. 
GATA2 shows its interaction with six molecular com-
pounds such as aflatoxin B2, arsenic trioxide, benzo(a)
pyrene, benzo(e)pyrene, CGP 52608, and methapy-
rilene which decreases the methylation of GATA2 exon, 
affects the methylation of GATA2 promoter and intron, 

also promotes the reaction by increased methylation of 
GATA2 exon upon its interaction with these compounds 
[48, 50, 61, 71]. The interaction of MCEMP1 is found 
with only one molecular compound, benzo(a)pyrene 
whose interaction affects the methylation of MCEMP1 
promoter [61] (Supplementary Table S12).

4 � Discussion
Autoimmune disorders (ADs) are chronic conditions that 
result from failure or breakdown of immunological toler-
ance, resulting in the host immune system attacking its 
cells or tissues. There is no cure, and current treatment 
aims only to reduce the chronic symptoms and lower the 
level of the immune system [18, 19, 73]. Present advances 
in our understanding of the human genome, gene expres-
sion, and genetic architecture are paving the way for 
new opportunities to understand the root cause of this 
disorder and advance the vision of developing improved 
strategies for the diagnosis and prognosis of autoimmune 
disorders. 19 transcriptome datasets of whole blood/
peripheral blood cell samples with five different autoim-
mune disorders (Rheumatoid arthritis, multiple sclero-
sis, systemic lupus erythematosus, Crohn’s disease, and 
type 1 diabetes) were retrieved from the GEO database. 
A comparison of the differentially expressed genes from 
five different datasets representing autoimmune disor-
ders from whole blood samples shows that 32 genes are 

Fig. 8  Chemical-gene interactions network with therapeutic drugs and chemical compounds and nine diagnostic genes was constructed using 
the CTD database. A–I The interaction between existing therapeutic drugs and the diagnostic genes. A EGR1. B S100A9. C S100A8. D SMAD7. E 
RUNX3. F NAMPT. G MCEMP1. H CYBB. I GATA2. CTD, comparative toxicogenomics database



Page 11 of 17Rajalingam and Ganjiwale ﻿Genomics & Informatics           (2024) 22:10 	

common in more than two autoimmune disorders and 
are involved in 46 pathways such as Endocytosis, phago-
some, IL-17 signaling, and so on. The gene–gene inter-
action network of the differentially expressed genes 
indicates the involvement of the transforming growth 
factor beta receptor signaling pathway, BMP (Bone mor-
phogenetic proteins) signaling pathway, antigen process-
ing and presentation, T-cell differentiation, leukocyte 
aggregation, and lymphocyte differentiation that are 
linked to autoimmune disorders. Apart from gene–gene 
interaction, environmental factors such as infectious 
agents, ultraviolet light, chemicals, environmental pol-
lutants, smoking, and diet are linked with multiple genes 
in triggering autoimmune responses [9–13]. Our cur-
rent study identifies some biomarkers and top differen-
tially expressed genes that directly link to environmental 
factors. NAMPT, one of the biomarker genes identified 
in the study, regulates the activity of NAD-consuming 
enzymes such as sirtuins and influences various meta-
bolic stress responses involved in inflammation [74]. 
Beta-2 adrenergic receptor (ADRB2), the top differen-
tially expressed gene in systemic lupus erythematosus, is 
a G-protein coupled receptor superfamily member. Dif-
ferent polymorphic forms, point mutations, and down-
regulation of this gene are involved in the pathogenesis of 
obesity and are also involved in nocturnal asthma, type 2 
diabetes, and cardiovascular disease pathways [75].

We propose an integrated gene expression analysis to 
identify marker genes in the present study. A total of 9 
biomarker genes, EGR1, RUNX3, SMAD7, NAMPT, 
S100A9, S100A8, CYBB, GATA2, and MCEMP1, were 
identified as candidate hub genes that are involved in 
the AD pathogenesis. All genes were downregulated in 
expression except RUNX3, which was upregulated in 
type 1 diabetes, and CYBB in multiple sclerosis.

As a member of the EGR family of C2H2-type zinc-
finger proteins, Early Growth Response 1 (EGR1) is a 
transcriptional regulator involving numerous physiologi-
cal processes such as synaptic plasticity, wound repair, 
inflammation, and differentiation. It is expressed in the 
thymus, cartilage, bones, muscles, endothelium, and cen-
tral and peripheral nervous system [76]. Numerous stud-
ies on this gene at transcriptional and protein levels show 
it is involved in both cell proliferation and apoptosis [77, 
78]. It regulates the expression of proteins such as IL1B 
(interleukin-1 beta) and CXCL2 (C-X-C motif chemokine 
ligand 2) involved in the inflammatory process and the 
development of tissue damage after ischemia. It also 
mediates hypoxia [79, 80] and has tumor suppressor 
properties [81]. Apart from these functions, EGR1 plays 
a crucial role in the immune system by determining the 
differentiation pathway of myeloid cell precursors [82]. It 
is an important transcription factor in multiple sclerosis, 

confirming its role in brain plasticity and many other 
neuropsychiatric disorders [83, 84]. Thus, EGR1 is one 
of the biomarkers in autoimmune disorders and is con-
firmed in our study.

Belonging to the family of runt domains, RUNX3 is an 
essential transcriptional factor and a key regulator for 
lineage-specific gene expression. Expression of RUNX3 
is predominant in all hematopoietic origin of cells such 
as the thymus, spleen, myeloid, peripheral blood, and 
B- and T-cell lineages within the bone marrow [85, 86]. 
Any alteration in this expression level results in various 
human diseases [87]. The expression of RUNX3 is crucial 
for the development of CD8-lineage T lymphocytes. Fail-
ure results in an inadequate response towards antigens, 
contributing to the origin of autoimmune diseases [88, 
89]. Many studies have confirmed the role of the RUNX3 
gene in the pathogenesis of rheumatoid arthritis, lupus, 
and psoriasis [89]. Another interesting finding by Ofer 
Fainaru and his colleagues reported that lack of RUNX 
expression in a mouse model resulted in eosinophilic 
lung inflammation. They found the expression of RUNX3 
in mature dendritic cells of the mouse model. These den-
dritic cells mediate RUNX3 response to the TGF β (trans-
forming growth factor β) signaling pathway. When this 
gene was knocked out in the mouse model, it resulted in 
rapid maturation of dendritic cells and increased stimu-
lation of T-cells. These abnormalities in dendritic cells 
result in the defect of the primary immune system lead-
ing to eosinophilic lung inflammation. Thus, this study 
confirms that RUNX3 is the critical regulator of thymo-
poiesis [90]. Apart from these functions, RUNX3 is also 
a significant tumor suppressor gene. Studies report that 
its inactivation results in breast cancer [91] and gastric 
cancer [92].

SMAD7 gene is also known as mothers against decap-
entaplegic homolog 7 (MADH7), a gene from the 
I-Smads (inhibitory Smads) family. The protein product 
of this gene inhibits the TGF β (transforming growth 
factor β) signaling pathway. The TGF β pathway is very 
crucial in the pathological process of various disorders. 
Activation of the TGF β receptor results in the release of 
SMAD7 from the nucleus into the cytoplasm, where it 
inhibits the phosphorylation of Smad2/3 or induces the 
degradation of TGF-β receptor I and Smad2/3, thereby 
disrupting its joint partner Smad4. Thus, SMAD7 is a 
negative regulator of the TGF-β signaling pathway [93]. 
Also, the DNA binding activity of NF-κB is inhibited if 
SMAD7 is overexpressed [94]. This is the key mechanism 
involved in a lot of inflammatory diseases. So, inhibi-
tion of SMAD7 results in activation of NF-κB and TGF-β 
signaling pathways, making a way to prevent and treat 
various disorders [95]. Furthermore, the amount or level 
of its expression can also be used as a marker in various 
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diseases. SMAD7 is also involved in immunomodula-
tory functions and has both prophylactic and therapeutic 
potential. Apart from inflammation, these proteins are 
also involved in cancer, kidney disease, and many other 
diseases affecting migration, fibrosis, proliferation, and 
apoptosis. Therefore, SMAD7 is an attractive target for 
many disorders, including immune-related conditions 
[95].

Nicotinamide phosphoribosyl transferase (NAMPT) 
is also known as visfatin [96]. It is an enzyme encoded 
by the NAMPT gene. The intracellular form of this pro-
tein (iNAMPT) is the rate-limiting enzyme in the nico-
tinamide adenine dinucleotide (NAD +) salvage pathway 
that converts nicotinamide to nicotinamide mononu-
cleotide (NMN), which is responsible for most of the 
NAD + formation in mammals [97]. NAD + is involved 
in more than 500 enzymatic reactions, including redox 
reactions. Recent publications suggest the importance 
of NAD + as if its concentration or level is increased in 
diseased or old animals, it improves their health and also 
increases their lifespan [98]. Rajman et al. have confirmed 
the importance of NAD + in many biological processes 
such as mitochondrial function and metabolism, the 45 
circadian rhythms, immune response and inflammation, 
DNA repair, cell division, 46 protein–protein signaling, 
chromatin remodeling, and epigenetics, confirming it 
is a molecule of life in mammals [99]. Apart from these 
functions, NAMPT also connects the sirtuin (SIRT) sign-
aling of NAD-dependent against various stress responses 
[100]. On the other hand, extracellular NAMPT 
(eNAMPT) is reported to be involved in the pancreatic 
β-cell function. Many studies supported its involve-
ment by providing indirect evidence for the connection 
between eNAMPT and insulin signaling. Thus, NAMPT 
could be an effective therapeutic target for preventing 
and treating metabolic disorders, including obesity and 
type 2 diabetes mellitus, inflammation, and cancer [74].

S100A8 and S100A9 are also known as myeloid-
related protein 8 (MRP8) and myeloid-related protein 14 
(MRP14), belonging to the family of S100 [101]. They are 
found as heterodimers in the cytoplasm of neutrophils 
and monocytes. They are calcium-binding proteins whose 
expression is constitutive in the cells of myeloid origin 
[102]. During pathological conditions, our immune sys-
tem gets activated, releasing many cell-activating factors 
such as chemokines, chemokine receptors, alarmins, and 
their respective pattern recognition receptors [103]. One 
such alarmin is S100A8 and S100A9, released from neu-
trophils and monocytes that bind to two pattern recog-
nition receptors such as Toll-like receptor 4 (TLR4) and 
Receptor of Advanced Glycation Endproducts (RAGE). 
This activates the innate immune system to alert mono-
cytes and macrophages to mediate inflammation [43]. 

In 2004, Foell and his colleagues found the over-expres-
sion of S100 proteins, particularly S100A8, S100A9, and 
S100A12, at the site of inflammation in Rheumatoid 
arthritis, chronic inflammatory lung, and bowel disease. 
So, they confirmed that these S100 proteins could serve 
as laboratory markers in many inflammatory patholo-
gies [104]. Recent studies on COVID patients also report 
that these proteins induce aggressive inflammation in 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection, and it can be used as a novel biomarker 
[105]. This evidence supports that calprotectin proteins 
(S100A8/A9) are proinflammatory cytokines and could 
serve as an interesting drug target by blocking its activa-
tion in autoimmune disorders.

NADPH oxidase 2, abbreviated as Nox2, is also known 
as cytochrome b (558) subunit beta or cytochrome 
b-245 heavy chain. NOX2 is called CYBB or gp91phox 
(encoded by the CYBB gene). It is a multicomponent 
enzyme complex consisting of 5 subunits such as CYBA 
(cytochrome B-245 alpha chain), CYBB (cytochrome 
B-245 beta chain), NCF1 (neutrophil cytosolic factor 1), 
NCF2 (neutrophil cytosolic factor 2), and NCF4 (neutro-
phil cytosolic factor 4) [106, 107]. Its expression is found 
in myeloid cells such as monocytes, macrophages, and 
neutrophilic granulocytes. The primary and known func-
tion of the NOX2 gene is the generation of toxic deriva-
tives of oxygen (reactive oxygen species (ROS)). Myeloid 
cells produce NOX2-derived ROS as part of the innate 
immune defense against bacteria and other microorgan-
isms. When the level of ROS is increased, it results in 
oxidative stress. This results in many pathologies, includ-
ing autoimmune disorders [107]. Giulia Cardamone and 
his colleagues in the year 2018 found the altered expres-
sion of the CYBB gene resulting in the demyelination and 
axonal injury in both multiple sclerosis (MS) and experi-
mental autoimmune encephalomyelitis in the murine 
model [108]. They found that the differential expression 
of the CYBB gene resulted in the excessive production 
of ROS. This activates nuclear transcription factor kappa 
B along with other specific transcription factors, and on 
the other hand, it also activates matrix metalloprotein-
ases. These events activate proinflammatory cytokines 
and particular genes related to MS (genes are upregu-
lated), resulting in disease progression [109–115]. On 
the other hand, decreased ROS levels also contribute to 
autoimmunity [108]. Mutation of the CYBB gene results 
in the most common form of the chronic granulomatous 
disease (CGD), which is X-linked recessive. Mostly males 
are affected by this primary immunodeficiency disorder. 
The people affected by this disorder have impaired or no 
production of phagocyte NADPH oxidase because neu-
trophils can phagocytize bacteria but cannot kill them 
in the phagocytic vacuoles [116]. It is also reported that 
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one-third to one-half of children with CGD develop gas-
trointestinal inflammation, usually Crohn’s disease. Some 
studies have listed CYBB as a gene related to inflamma-
tion associated with kidney disease in type 1 diabetes 
[116, 117]. Thus, CYBB could be an effective therapeutic 
target for the prevention and treatment of immunological 
pathologies.

GATA binding protein 2 (GATA2) is one of the 6 GATA 
binding factors binding to the DNA motif GATA and 
other transcription factors via two zinc finger domains to 
regulate its expression at multiple levels [118, 119]. It is 
a key transcriptional regulator of hematopoiesis for the 
survival, self-renewal, development, and maintenance of 
a healthy stem cell pool [119]. The GATA2 gene encodes 
GATA2 protein. When particular genes are “turned on,” 
GATA2 protein directs the activity of many types of cells, 
including immune cells. Any mutation or impairment in 
the GATA2 gene results in GATA2 deficiency, presenting 
several distinct syndromes in the dendritic cell, mono-
cyte, B, natural killer lymphoid deficiency, acute myeloid 
leukemia, and natural killer (NK) cell deficiency [119]. 
Although it plays a vital role in hematopoiesis, Rossella 
Menghini and her colleagues hypothesized that GATA2 
activity is controlled by insulin during adipogenesis, 
linking metabolic homeostasis and inflammation. They 
found that the phosphorylation of GATA2 on serine 401 
in a PI-3 K/Akt–dependent manner results in the devel-
opment of adipocytes and no expression of inflamma-
tory markers such as monocyte chemotactic protein-1 
(MCP-1). They concluded their study that GATA2 can be 
a new target in preventing and treating obesity-related 
inflammation and its complications [120]. From all this 
evidence, it is clear that GATA2 can be a therapeutic bio-
marker in inflammation-related disorders.

Mast cell-expressed membrane protein, or MCEMP1, 
is the protein product of the MCEMP1 gene. It was found 
to be differentially expressed in mast cells. In the human 
defense system, there are many immune-related cells, 
among which mast cells are major immune effector cells 
against parasite infection. Activation of mast cells results 
in the release of many preformed secretory inflammatory 
mediators (histamine, tryptase, and neutrophil chemot-
actic factor), cytokines (TNFα, IL-4, IL-13, IL-5, IL-10), 
and chemokines [121–123]. Mast cells are essential in 
pathologic conditions such as asthma, allergic rhinitis, 
anaphylaxis, and atopic dermatitis. It is also involved 
in many cancer-related and inflammatory processes 
such as gastric cancer, rheumatoid arthritis, and mul-
tiple sclerosis [124–129]. The mast cell concentration is 
higher in some inflammatory disease conditions, such 
as inflammatory bowel disease [130]. Thus, the protein 
product of this gene is a single-pass transmembrane 
protein involved in regulating mast cell differentiation 

or immune responses. Hence, MCEMP1, based upon 
its concentration or level in many immune-related and 
inflammatory disorders, can also be used as an attractive 
biomarker for the diagnosis, prevention, and treatment of 
autoimmune disorders.

5 � Conclusion
To conclude, integrated gene expression analysis was 
employed on 5 different autoimmune disorders to find 
shared genes and their pathways for the prevention 
and treatment of autoimmune disorders. This analy-
sis has identified nine biomarker genes, EGR1, RUNX3, 
SMAD7, NAMPT, S100A9, S100A8, CYBB, GATA2, 
and MCEMP1, and their role in the early prediction of 
immune-related disorders, especially in a lot of inflam-
matory and autoimmune pathologies. Also, this study 
strengthens previous literature sources of confirm-
ing these biomarkers linked to causing inflammation 
and autoimmune disorders. The treatment options that 
remain today are limited and have no cure due to their 
complexity. Present advances in our understanding of the 
human genome, gene expression, and genetic architec-
ture are making a path for new opportunities to under-
stand the root causes of this disorder and advance the 
vision of developing improved strategies for the preven-
tion and treatment of autoimmune disorders in the near 
future.
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