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Abstract 

COVID-19 mortality prediction
Background COVID-19 has become a major global public health problem, despite prevention and efforts. The daily 
number of COVID-19 cases rapidly increases, and the time and financial costs associated with testing procedure are 
burdensome.

Method To overcome this, we aim to identify immunological and metabolic biomarkers to predict COVID-19 mortal-
ity using a machine learning model. We included inpatients from Hong Kong’s public hospitals between January 1, 
and September 30, 2020, who were diagnosed with COVID-19 using RT-PCR. We developed three machine learning 
models to predict the mortality of COVID-19 patients based on data in their electronic medical records. We performed 
statistical analysis to compare the trained machine learning models which are Deep Neural Networks (DNN), Random 
Forest Classifier (RF) and Support Vector Machine (SVM) using data from a cohort of 5,059 patients (median age = 46 
years; 49.3% male) who had tested positive for COVID-19 based on electronic health records and data from 532,427 
patients as controls.

Result We identified top 20 immunological and metabolic biomarkers that can accurately predict the risk of mor-
tality from COVID-19 with ROC-AUC of 0.98 (95% CI 0.96-0.98). Of the three models used, our result demonstrate 
that the random forest (RF) model achieved the most accurate prediction of mortality among COVID-19 patients 
with age, glomerular filtration, albumin, urea, procalcitonin, c-reactive protein, oxygen, bicarbonate, carbon diox-
ide, ferritin, glucose, erythrocytes, creatinine, lymphocytes, PH of blood and leukocytes among the most important 
biomarkers identified. A cohort from Kwong Wah Hospital (131 patients) was used for model validation with ROC-AUC 
of 0.90 (95% CI 0.84-0.92).

Conclusion We recommend physicians closely monitor hematological, coagulation, cardiac, hepatic, renal 
and inflammatory factors for potential progression to severe conditions among COVID-19 patients. To the best of our 
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knowledge, no previous research has identified important immunological and metabolic biomarkers to the extent 
demonstrated in our study.

Keywords  Biomarkers, Machine learning, Random forest classifier, Deep neural network, COVID-19

Background
Coronavirus disease 2019 (COVID-19) is an infection 
caused by severe acute respiratory syndrome corona-
virus 2. This virus was first identified in Wuhan, China, 
in December 2019 and has since led to a global pan-
demic that has affected more than 254 million people 
worldwide as of November 16, 2021, according to World 
Health Organization (WHO).

Following the initial outbreak, COVID-19 rapidly 
spread to all parts of the world and has since become 
the most significant global public health crisis of the last 
2 years. This pandemic is highly challenging because no 
specific or fully effective treatment is currently available, 
and the disease dynamics are not properly understood.

Coronaviruses compromise a large family of viruses 
that are known to cause illnesses ranging from the com-
mon cold to more severe diseases, such as Middle East 
respiratory syndrome (MERS) and severe acute respira-
tory syndrome (SARS). According to statistics from the 
WHO, issued on March 30,2020, the average mortality 
rate among confirmed COVID-19 cases was 4.6%, with a 
range from 0.2% to 15% depending on the affected indi-
viduals’ age health and immune status and location of 
residence [1, 2].

COVID-19 is mostly spread through respiratory drop-
lets, produced by coughing or sneezing, and this spread 
has occurred at an alarmingly rapid pace, moving from 
one city to whole countries and taking many lives. The 
rapid global spread of COVID-19 has led to significant 
effects in roughly 213 countries and territories. Since 
December 2019, more than 250 million cases of COVID-
19 and 5 million related deaths have been registered. 
Numerous risk variables have been linked to poor out-
comes, including lymphocyte counts [3], high levels of 
various inflammatory or coagulation indicators [4] and 
serum levels of various cytokines [5].

The clinical subtype of COVID-19 has been identi-
fied using a combination of clinical characteristics and 
biochemical markers like D-Dimer, C-Reactive Pro-
tein and lactic dehydrogenase [6]. Machine learning 
(ML) techniques have been applied to such heterogene-
ous multimodal data for the classification of COVID-19 
patients. For example, ML has been used to diagnose 
COVID-19 pneumonia, stratify patients, and construct 
a prediction model of dissemination patterns [7]. Previ-
ous studies have identified important risk factors asso-
ciated with COVID-19 mortality, such as increased age, 

cardiovascular disease, chronic pulmonary illness, dia-
betes, hypertension, smoking history, and obesity [8, 9]. 
Several studies have used machine learning algorithms 
to predict COVID-19 mortality [10–16]. The accurate 
prognosis of COVID-19 clinical outcome is more difficult 
owing to the wide range of illness severity that might be 
beneficial for appropriate triage, limited resources and 
enhance patient care within health-care systems.

Our proposed model is expected to greatly ben-
efit COVID-19 prevention, diagnosis and management 
efforts targeting the general population.

Methodology
This study included inpatients from Hong Kong’s Hos-
pital Authority public hospitals between January 1, and 
September 30, 2020, who were diagnosed with COVID-
19 using real RT-PCR tests. The Hospital Authority 
is Hong Kong’s primary public healthcare institution 
responsible for delivering hospital-based care for 90% of 
inpatient bed-days in the city. Data was obtained from 
the Hospital Authority Data Collaboration Laboratory, a 
big analytics platform that was established for the pur-
pose of facilitating biotechnological research. Figure  1 
shows the details of the original dataset and data size 
for each class.An additional document file shows more 
details of dataset features [see Additional file 1].

We developed five machine learning models to pre-
dict the mortality of COVID-19 patients, using data 
from their electronic medical records for training. We 
performed statistical analysis to compare the trained 
machine learning models using data from a cohort of 
5,059 patients (median age = 46 years, 95% confidence 
interval (CI): [45,46.1]; 49.3% male) who had tested posi-
tive for COVID-19 based on electronic records and data 
from 532,427 patients as controls. Figure 2 shows dataset 
details from an independent cohort from a public hos-
pital - Kwong Wah Hospital (131 patients), which was 
used for model validation. At the data cleaning stage, we 
removed unnecessary (e.g., Patient personal identifiers), 
redundant data elements and unlabeled data samples.

ML models were built using Python with IDE pro-
vided by PyCharm 2021.2.2 (Runtime version: 11.0.12+7-
b1504.28 amd64) with OpenJDK 64-Bit Server VM by 
JetBrains s.r.o. JDK version, Anaconda3 and Anaconda 
Navigator 2.0.4 was the project interpreter. The ML mod-
els were built based on Keras with version 2.7.0 and Ten-
sorflow with version 2.6.1.
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Data preprocessing
In the original dataset, there were 20 data tables 
including different types of data, for example: 435 
types of different laboratory result, immunization 
injection, smoke status, alcohol status, family history, 
weight, and height. First, the outcome table which 
include the COVID-19 information was the main table 
and it was merged with other tables with the mapping 
key (project-specific serial number for each patient). 
An additional document file shows more details of data 
preprocessing for data tables [see Additional file 2].

Feature selection, data splitting and imputation
A total of 171 features were extracted from the original 
dataset, including 63 immunological and metabolic bio-
markers. We consulted with a clinical team to ensure 
that all relevant features were extracted. The top 20 

features were selected using different filter and wrap-
per methods to identify the most informative biomark-
ers. Figure  3 shows the flowchart of feature selection, 
five layers of feature selection were applied in this study. 
For the first filter, the overall threshold for missing val-
ues was set as 30%; therefore, a feature was eliminated 
if more than 30% of relevant values were missing. The 
second filter was set to eliminate features that did not 
contribute significantly to machine learning, such as 
patient identification numbers and the reference dates 
of different features. The third feature selection feature 
addressed collinearity. It was included to avoid feature 
duplication, which may have inappropriately placed 
higher importance on similar types of information in 
the model. Two laboratory tests were shown to exhibit 
high collinearity and to contain 95% similar information 
in the data set.

Patients collected from Hong
Kong's Hospital Authority public

hospitals (January 1 and
September 30 2020)

(N = 537,486)

Patients diagnosed with
COVID-19 by RT-PCR

(N = 5,059)
Controls

Alive (N = 4,927) Death (N = 132) Alive (N = 505,119) Death (N = 27,318)

Fig. 1  Details of dataset provided by Hong Kong’s Hospital Authority

COVID-19 data collected from Kwong
Wah Hospital 

(October 1 2020 to March 31 2021)
(N = 131)

Alive (N = 124) Death (N = 6)
Unknown status (N

=1)

Fig. 2  Details of dataset provided by Kwong Wah Hospital
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Fig. 3  Flow Chart for variable selection
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After the third filter, the data splitting and imputation 
were implemented before the fourth filter for avoiding 
data leakage problem. The train-test ratio for the RF and 
SVM models is 80:20 and data was split randomly. The 
DNN model split the training set into the training set 
and validation set by 80:20 ratio. An iterative imputation 
method MissForest was applied to replace the missing 
values in the training set.

The fourth filter applied a random forest model to 
training data to determine the importance of the fea-
tures. Sixty-eight features were identified to have zero 
importance after one hot-encoding.

The fifth filter simplified the machine learning model to 
achieve high efficiency and reduce the running time for 
model training. This filter selected 53 features required 
for cumulative importance of 95% after one hot encod-
ing; additionally,119 features were not found to contrib-
ute to cumulative importance of 95%.

The selected biomarkers, (i.e., features) were cat-
egorized into six groups: hematological, inflammatory, 
coagulation, hepatic, muscle and renal. An additional 
document file shows more details of selected biomarkers 
[see Additional file 3].

After the feature selection processing, this study 
applied SMOTE in the training set and validation set for 
the minority group oversampling to handle the imbal-
anced data size of each class.

Machine learning algorithms and performance metrics
This study applied several machine learning algorithms 
such as DNN, RF, SVM models with linear, polynomial, 
radial basis function and sigmoid kernels.

Standard evaluation metrics, such as accuracy, sensi-
tivity, precision and specificity, were used to quantify the 
performance of the predictive models.

A receiver operating characteristic curve analysis was 
conducted to explore the balance between the true-pos-
itive (sensitivity) and false-positive rates (specificity) for 
each model. The classifiers were compared using the area 
under the curve (AUC).

Accuracy, sensitivity, and specificity are defined as 
follows:

Where the model accuracy represents the proportion of 
test records that are correctly classified.

Accuracy =
TP + TN

TP + FN + TN + FP

Sensitivity =
TP

TP + FN

where TP, TN, FP and FN represent the numbers of true 
positives, true negatives, false positives and false nega-
tives, respectively.

The threshold of outlier is defined as greater than or 
less than 3 standard deviations from the mean. Outli-
ers were removed and replaced by mean for numerical 
features and mode for the categorical features, and data 
were scaled to a range of [-1, 1] using a standardization 
formula and min-max normalization. Standardization 
and normalization prevent domination of the model 
by features with greater numeric values. The following 
standardization formula was used:

Min-max normalization was calculated using the follow-
ing formula:

The random forest algorithm was determined to achieve 
the best performance and accuracy, as indicated in Fig. 4.

The performance of each model was evaluated at dif-
ferent stages using training sets of 1,000, 2,000, 3,000 and 
4,000 patient records to determine how the number of 
records influenced the model performance.

Statistical description of the data
In this study, the data frame of the various features of 
COVID-19 patients was first split into two data frames of 
features according to the patients’ survival status (survi-
vors and deceased), which are hereafter referred to as the 
surviving group and deceased group respectively. The fol-
lowing statistical analysis were applied: 

1)	 Outliers: Outliers were detected and removed from 
each table and continuous feature using Turkey’s 
method. Briefly, after removing the missing values, 
the interquartile range (IQR), upper quantile (Q3) 
and lower quantile (Q1) were computed for each 
future. According to Tukey’s method, an outlier is 
defined as a value that is higher than Q1 by 1.5 times 
of IQR. These outliers were removed and replaced as 
NA.

2)	 Report of the robust descriptive statistics: After 
removing the outliers, the median, Q3 and Q1 are 
computed for the remaining data in both the surviv-
ing and deceased group tables and for each future. 
The results are shown in Table 1.

3)	 Hypothesis tests comparing features between Survi-
vors and deceased patients: For each feature, data 

Z =
X − X

σ(X)/
√
n

Z = minRange +
(maxRange −minRange) ∗ (unscaledData −min)

(max −min)
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were compared between the surviving and deceased 
groups via two-tailed hypothesis testing. The null 
hypothesis was formulated as: 

 The Wilcoxon rank sum test was performed for 
every feature with p-value computed using ‘wilcox.
test’ method on the R platform. The p-values are 
reported in the Table 1.

Feature importance and accuracy with different data size
From Table 1, several aspects of factors were compared 
between the alive and dead groups using Wilcoxon’s 
rank-sum tests. The null hypotheses were set to be 
that the groups had insignificantly different mean val-
ues among the listed risk factors. The p-values of the 
tests were obtained and used to select the candidates 
for the subsequent p-values corrections due to the 
multiple hypothesis tests. Using Bonferroni correc-
tion, we can minimize the high Type I error rate raised 
by multiple hypothesis tests and conclude the com-
parisons. At first, 22 risk factors were selected as can-
didates for subsequent Bonferroni correction as their 
corresponding p-values, obtained from the Wilcoxon’s 
rank-sum tests, were smaller than 0.05, the signifi-
cance level. Then, Bonferroni correction was imple-
mented on these p-values from those 22 risk factors 
by simply multiplying the p-values with the number 
of hypothesis tests. The corrected p-values and their 
corresponding factors were selected according to the 
significance level of 0.05. Those factors with corrected 

H0 : υsurvivors = υdeceased

p-values smaller than 0.05 were selected as the fac-
tors that show the significant difference between alive 
and dead groups. It turned out that 14 factors showed 
a significant difference between the alive and dead 
groups after the multiple comparisons adjustment. 
They are ages in the demographic factors;alanine ami-
notransferase, aspartate aminotransferase, gamma-
glutamyl transferase and direct bilirubin in serum or 
plasma among the liver function-related tests; C-reac-
tive protein and erythrocyte sedimentation rate which 
belong to inflammatory biomarkers; some hemato-
logical biomarkers including base excess in blood, 
bicarbonate in blood and calcium in serum or plasma; 
and also several cardiac function related biomarkers 
including cholesterol in LDL, cholesterol of non HDL, 
cholesterol total/ cholesterol in HDL and cholesterol 
in serum or plasma and also troponin T. cardiac in 
serum or plasma. These are the risk factors that sta-
tistically significantly different between the alive and 
dead groups of COVID-19 patients.

Model
Deep neural network
The DNN model used grid search hyperparameter tun-
ing tools to adjust the number of neurons and layers. 
The DNN model applied one input layer, two fully con-
nected hidden layers, and one output layer. The first hid-
den layer had 52 neurons, and the second hidden layer 
had 13 neurons. RandomNormal was chosen as the ini-
tializer to initialize the random normal values, Relu and 

Fig. 4  Performance of the best model (RF)
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Adadelta were used as the optimizer in the hidden layers 
and output layer. EarlyStopping was applied to optimize 
the number of epochs to avoid the over-fitting problem, 
and validation loss is the indicator for the EarlyStopping 
monitoring.

Random forest classifier
The RF model applied the ‘Gini’ impurity metric (mean 
decrease in impurity) to determine the feature impor-
tance. For the design of RF model, GridSearchCV 
was used to adjust the value of parameters. After the 

Table 1  Descriptive statistical characteristics of the included feature

Features: Median (IQR) Alive Group (N=4,887) Dead Group (N=132) P-value

Demographic factors
  Age (years) 43(28 - 59) 83(76 - 88) < 0.001

  Height(m) 1.61(1.54 - 1.68) 1.57(1.51 - 1.60) 0.012

  BMI(kg/M2) 25.47(22.9 - 28.04) 24.02(22.4 - 26.3) 0.119

  Weight(kg) 65.7(58.2 - 75.3) 62.8(54.4 - 70.4) 0.275

Liver function related tests:
  Alanine aminotransferase in serum or plasma ( U/L) 21 (15 - 30) 17 (12 - 25) < 0.001

  Alkaline phosphatase in serum or plasma ( U/L) 65 (54 - 78) 77 (62 - 97) < 0.001

  Aspartate aminotransferase in serum or plasma (U/L) 25 (21 - 34) 28 (23 - 52) 0.004

  Gamma glutamyl transferase in serum or plasma (U/L) 32 (21 - 56) 46.9 (34.8 - 108.3) 0.002

  Direct bilirubin in serum or plasma – umol/L 9.6 (6.2 - 12.0) 29.0 (18.7 - 46.9) < 0.001

  Bilirubin in serum or plasma (umol/L) 7.6 (5.6 - 10.3) 8.0 (6.0 - 11.5) 0.214

Liver function related tests:
  Albumin in urine (mg/L) 8.35 (2.99 - 20.86) 11.31(4.44 - 16.00) 0.844

Inflammatory biomarkers:
  C reactive protein in serum or plasma (mg/L) 2.9 (1.0 - 6.4) 25.8 (6.3 - 69.5) < 0.001

  Erythrocyte sedimentation rate (mm/hr) 21 (11 - 36) 56.5 (33.75 - 81.75) < 0.001

Pancreas function related tests:
  Amylase in serum or plasma (U/L) 64 (51 - 81) 74 (58 - 101) 0.003

Hematological biomarkers:
  Base excess in blood (mmol/L) -0.2 (-1.8 - 1.6) -1.4 (-4.2 - 1.3) 0.002

  Bicarbonate in blood (mmol/L) 24.0 (21.4 - 26.3) 23.0 (19.1 - 25.1) 0.001

  Bicarbonate in serum – mmol/L 24.39 (21.87 - 26.23) 21.75 (20.04- 23.68) 0.005

  Calcium corrected for albumin in serum or plasma (mmol/L) 2.28 (2.21 - 2.34) 2.31 (2.22 - 2.38) 0.006

  Calcium in serum or plasma (mmol/L) 2.28 (2.21 - 2.36) 2.21 (2.11 - 2.33) < 0.001

  Calcium.ionized in blood ( mmol/L) 1.11 (1.04 - 1.15) 1.10 (1.05 - 1.14) 0.816

  Carboxyhemoglobin/Hemoglobin.total in blood (%) 0.5 (0.3 - 0.9) 0.3 (0.3 - 0.3) 0.044

  Deoxyhemoglobin/Hemoglobin.total in blood (%) 3.5 (2.5 - 4.2) 3.7 (2.2 - 29.6) 0.620

  Chloride in Serum or Plasma (mmol/L) 102.0 (100.0 - 104.0) 102.9 (100.8 - 106.2) 0.020

  Carbon dioxide [Moles/volume] in Blood (mmol/L) 26.0 (23.0 - 28.5) 25.7 (20.4 - 27.0) 0.134

  Carbon dioxide [Partial pressure] in blood (kPa) 5.0 (4.3 - 5.8) 4.7 (4.1 - 5.5) 0.063

Carcinogenic biomarkers:
  Carcinoembryonic Ag in serum or plasma (ng/mL) 2.40 (1.46 - 3.70) 3.55 (2.75 - 5.30) 0.004

  Alpha-1-Fetoprotein in serum or plasma( ng/mL) 2.19 (1.65 - 2.89) 1.61 (1.33 - 1.86) 0.087

Cardiac function related tests:
  Cholesterol.in LDL in Serum or Plasma by Calculated – mmol/L 2.41 (1.89 - 3.10) 1.88 (1.40 - 2.20) < 0.001

  Cholesterol.in HDL in serum or plasma (mmol/L) 1.2 (1.0 - 1.5) 1.2 (1.0 - 1.4) 0.543

  Cholesterol non HDL in serum or plasma (mmol/L) 3.10 (2.50 - 3.83) 2.43 (1.98 - 3.13) < 0.001

  Cholesterol.total/Cholesterol in HDL in serum or plasma (mol/mol) 3.57 (2.91 - 4.48) 3.23 (2.57 - 3.85) 0.002

  Cholesterol in Serum or Plasma – mmol/L 4.4 (3.7 - 5.2) 3.7 (3.3 - 4.1) < 0.001

  Troponin T.cardiac in serum or plasma (ng/L) 5.0 (3.0 - 7.1) 21.1 (8.7 - 34.9) <0.001

Creatine kinase in serum or plasma (U/L) 81.0 (58.8 - 117.0) 90.5 (58.0 - 175.5) 0.033
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hyper-parameters tuning, the maximum depth is set at 8, 
the maximum features set at “sqrt”, the minimum samples 
leaf set at 1, the minimum samples split is set at 2, and 
the number of estimators is set at 354.

Support vector machine
Three different kernels “Linear”, “Poly” and “RBF” apply 
for SVM models to generates three SVM models. Since 
SVM models are expected to compare the performance 
with other main models rather than achieve the best 
result, SVM models used the default value of parameters 
in this study.

Result
Experiment result
A performance representation of each of the machine 
algorithms used in our study under 5-folds cross valida-
tion are presented in Fig.  5. Comparison of the models 
revealed that the random forest model outperformed 
the others, with an AUC of 0.98 and a 95% CI of 0.89-
0.98 for the prospective test set (Figs. 4 and 5). Overall, 
the significance of our work is multiple folds. For the 
general purpose, this study provides binary classification 
result using logistic regression model in the training set 
and G-mean was used to calculate the optimized thresh-
old. After converting to binary classification, a sensitiv-
ity of 0.93 (95% CI: 0.92-0.94), a specificity of 0.93(95% 
CI: 0.92-0.94), a positive predictive value of 0.28(95% CI: 
0.26-0.30) and a negative predictive value of 0.99(95% CI: 
0.98-1.00) (Fig. 6). Statistical analysis was per- formed to 

compare the trained machine learning models using data 
from our cohort of inpatients from Hong Kong’s public 
hospitals between January 1, and September 30, 2020, 
5,059 were diagnosed with COVID-19 using RT-PCR (n= 
5,059) (median age = 46 years; 49.3% male) and 532,427 
patients were controls.

The importance of each feature in the data set was cal-
culated using the feature importance package on CityU 
High performance Computing (HPC). The calculated val-
ues are shown in Table 2, and the results obtained with 
each algorithm when using different numbers of patient 
records are shown in Table 3.

The top 20 most important immunological and meta-
bolic biomarkers included in the model are ranked in 
Figs. 6 and 7 and Table 2.

Figures  6 and 7 depict SHapley Additive exPlanations 
(SHAP) beeswarm plots of the SHAP values for the most 
important immunological and metabolic biomarkers.

The biomarkers are arranged along each vertical axis by 
their mean absolute SHAP values. The position of each 
point on the horizontal axis shows the impact of that fea-
ture on the classifier’s ability to predict the outcome of a 
given COVID-19 patient.

Finally, a sample prediction of the risk of mortality is 
given using the model that helps in predicting the risk of 
mortality, as shown in Fig. 8.

Validation result
To validate the model, data from a cohort of 131 COVID-
19 patients including 124 (who had recovered), six (who 
were deceased), and one whose situation was unknown, 

Fig. 5  Comparison of ROC curves for all tested models
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were obtained from the Kwong Wah Hospital. To avoid 
potential overlap of the data between training, testing 
and validation sets, patients with a confirmed COVID-19 
infection before September 30,2020, were excluded from 
this validation data set.

Finally, 77 patients were included in the validation 
dataset, among whom 73 patients had recovered, and 4 
were deceased.

Although only 33 of the 53 input features provided 
by the hospital was included in the validation set, 18 of 
the top 20 most important features were included. The 
results of validation analysis are shown in Fig. 8. An AUC 
value of 0.90 (0.88-0.92), a sensitivity of 0.67 (0.62-0.69), 
a specificity of 0.94 (0.92-0.95), a positive predictive value 
of 0.36 (0.34-0.38) and a negative predictive value 0.98 
(0.96-0.98) was obtained for the random forest model 
(Fig. 9). The model we developed in our study effectively 
predicted mortality due to COVID-19 based on immuno-
logical and metabolic biomarkers in our sample.

Discussion
In this large study of inpatients from Hong Kong’s 
Hospital Authority public hospitals between Janu-
ary 1, and September 30, 2020, we identified top 20 

immunological and metabolic biomarkers that can 
accurately predict the risk of mortality from COVID-
19 with ROC-AUC of 0.98 (95% CI 0.96-0.98). These 
biomarkers are hematological, coagulation, cardiac, 
hepatic, renal and inflammatory factors and can be 
used by physicians to design treatment strategies to 
prevent COVID-19 patients from developing criti-
cal conditions. Optimization of clinical priorities can 
reduce the burdens currently faced by health care sys-
tems by facilitating optimization of the management 
of healthcare resources during future waves of the 
COVID-19 pandemic. The AUC value of the model pre-
sented in this paper is higher than most of the related 
findings so far [12, 13, 17–20].

Nowadays, there are some worldwide scoring systems 
applied for predicting the mortality risk of COVID-19 
[21]. Table 4 shows four commonly used scoring systems 
which are CURB-65 (confusion, uremia, respiratory rat, 
BP, age 65 years) [22], International Severe Acute Respir-
atory Infection terization Protocol-Coronavirus Clinical 
Characterization Consortium (ISARIC-4C) score [23], 
National Early Warning Score 2 (NEWS2) [24] and quick 
COVID-19 Severity Index (qCSI) [25]. Comparing the 
value of AUC of four scoring systems with the RF model 

Fig. 6  Top 20 immunological and metabolic biomarkers
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in this study, the RF model shows significantly outstand-
ing performance.

From a set of algorithms which include efficient 
machine learning approaches such as DNN, RF, SVM 
models with linear, polynomial, radial basis function 
and sigmoid kernels, our analytical experiments demon-
strated that the random forest model performed better 
than the other and identified the top 20 most important 
immunological and metabolic biomarkers in our study 
population that help to predict COVID-19 mortality.

Focusing on clinical factors, researchers have previ-
ously identified several biomarkers (using an ML-based 
approach) such as multivariable logistic regression 
model. A study by [27] showed that the value of D-dimer 
> 2mg/L was associated with mortality among COVID-
19 patients. The group has observed a significant cor-
relation between D-dimer levels and disease severity 
measured by the CT, oxygenation index, and clinical stag-
ing. Another group [28], reported lactic dehydrogenase 

(LDH), lymphocyte, and high-sensitivity C-reactive 
protein (hs-CRP) were associated with the survival of 
COVID-19 patients. In the present study, we applied 
machine learning-based prediction in a cohort of 5,059 
patients (median age =46 years, 95% confidence interval 
(CI): [45,46.1]; 49.3% male) who had tested positive for 
COVID-19 based on electronic health records. The study 
also included 532,427 patients as controls and identified 
both immunological and metabolic biomarkers that help 
to predict mortality among COVID-19 patients. Identifi-
cation of both immunological and metabolic biomarkers 
is very important for mortality prediction of the COVID-
19, which is ever mutating and can lead to serious health 
conditions.

Our result indicated that age, glomerular filtration, 
albumin, urea, procalcitonin, c-reactive protein, oxygen, 
bicarbonate, carbon dioxide, ferritin, glucose, erythro-
cytes, creatinine, lymphocytes, PH of blood and leu-
kocytes are the most important biomarkers identified 

Table 2  Feature importance results and values

Description (Feature name) Feature value

Age 0.11057

Urea [Moles/volume] in serum or plasma 0.0499

Procalcitonin [Mass/volume] in serum or plasma 0.0390

Albumin/Globulin [Mass ratio] in serum or plasma 0.0357

Magnesium [Moles/volume] in serum or plasma 0.0314

Base excess in blood 0.0298

Creatinine [Moles/volume] in serum or plasma 0.0289

Glomerular filtration rate/1.73 m2predicted[VolumeRate/Area]inserumorplasma by Creatinine-based formula (CKD-EPI) 0.02623

Calcium [Moles/volume] in serum or plasma 0.0252

Erythrocytes [/volume] in blood 0.02480

Carbon dioxide [Partial pressure] in blood 0.02071

Albumin [Mass/volume] in serum or plasma 0.01949

Lymphocytes/100 leukocytes in blood 0.01921

Lactate dehydrogenase [Enzymatic activity/volume] in serum or plasma 0.0179

Ferritin [Mass/volume] in serum or plasma 0.01778

Creatine kinase [Enzymatic activity/volume] in serum or plasma 0.01737

PH of blood 0.01696

C reactive protein [Mass/volume] in serum or plasma 0.01472

Table 3  Comparison of the models performance with different data size

Number of 
patients

SVM-linear SVM-Poly SVM-RBF SVM-sigmoid Random Forest DNN

1,000 0.87 0.74 0.86 0.72 0.91 0.80

2,000 0.89 0.80 0.89 0.50 0.92 0.91

3,000 0.91 0.77 0.87 0.45 0.94 0.92

4,000 0.92 0.77 0.89 0.66 0.98 0.95
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to predict COVID-19 mortality which are better suited 
in the effort of optimizing public health resources, tar-
geted community interventions and clinical decision 
making. Age was also identified as a key predictor of 
mortality in previous studies [29]. As with the older 
age, the immunosenescence and/or multiple medical 
conditions tend to make patients more prone to criti-
cal COVID-19 illness [30]. Lymphocytes are among 

identified immunological and metabolic biomarkers. 
They are critical components of the immune system 
and play very important role in host defense and clear-
ing infections. Medical condition due to lower num-
ber of lymphocytes in the blood, is a typical feature 
in COVID-19 patients and may be a key factor in dis-
ease mortality [31]. C-reactive protein, carbon diox-
ide, oxygen and glucose are also among the identified 

Fig. 7  Top 20 immunological and metabolic biomarkers

Fig. 8  Sample prediction of the risk of mortality



Page 12 of 14Tulu et al. BMC Digital Health             (2023) 1:6 

immunological and metabolic biomarkers that have a 
significant importance for early diagnosis and mortality 
because of COVID-19 [31].

Creatinine which is also among our identified immu-
nological and metabolic biomarkers is a waste product 
made by muscles filtered by kidney. High levels of cre-
atinine indicates that kidneys aren’t functioning properly 
which in turn has a significant role in predicting COVID-
19 mortality [31]. In our study, ferritin and albumin are 
also among the most important immunological and 
metabolic biomarkers identified for COVID-19 mortal-
ity prediction. Ferritin is a blood protein that contain 
iron leading to anaemia if low blood ferritin level and 
albumin is a protein made by liver used as storage res-
ervoir of proteins and transporter of amino acids. Low 
albumin level on presentation in COVID-19 infection 
is associated with serious outcomes and mortality [32]. 
Early identification of high-risk COVID-19 patients is 

very important, as it can speed up the establishment of 
more responsive health care systems, ensure instant 
intervention and intensive care. Besides, early recogni-
tion of critical patients can help to mitigate the burden 
on health systems, enabling the health care providers to 
prioritize the allocation of limited resources during epi-
demic peaks and optimize decision-making strategy. To 
the best of our knowledge, no previous research has iden-
tified important immunological and metabolic biomark-
ers to the extent demonstrated in our study. Our findings 
cover hematological, coagulation, cardiac, hepatic, renal 
and inflammatory factors.

This research is not without limitations. We relied 
solely on data reported by the Hong Kong Health Author-
ity, which may contain biases, sole reliance of Hospi-
tal Authority data, utilization of small validation cohort 
and missing information for some of the features used. 
All these could lead to lower accuracy of our COVID-19 
prediction model focused on immunological and meta-
bolic biomarkers. Despite these limitations, we strongly 
believe that the machine learning assisted prediction of 
COVID-19 patient outcomes can help to identify those 
patients at higher risk of death and thus reduce the mor-
tality rate. This study has room for further improve-
ment which is left for future work. For future research 
integration of machine learning and SIR/SEIR models is 
suggested to enhance the existing standard COVID-19 
epidemiological models in terms of accuracy and longer 
lead time. Another limitation for further development 
will be the analysis’s scalability. Since this study selected 
a list of specified features focused on COVID19 mortality 

Fig. 9  Receiver operating characteristic curve analysis of model validation data

Table 4  Comparison of performance with worldwide developed 
scoring systems

Model AUC​

RF model(This study) 0.98(95% CI:0.89 - 0.98)
CURB-65 [19] 0.81 (95% CI: 0.68 - 0.94)

ISARIC-4C [20] 0.79 (95% CI:0.78 - 0.79)

NEWS2 [26] 0.86(95% CI:0.84 - 0.88)

qCSI [12] 0.81 (95% CI:0.73 - 0.89)
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prediction, it may not be easy to apply the selected bio-
markers to other diseases. Still, the methodology of this 
study can be applied to similar investigations of other 
diseases with some fine-tuning of the analytical pipeline.

Overall, our study reported 20 important immunity 
and metabolic biomarkers related to COVID-19 mortal-
ity that may lead to scientific insights for the develop-
ment of immunity and metabolic based treatments. By 
leveraging the electronic health record data from the 
Hong Kong Hospital Authority, we provide a systematic 
approach for precise disease monitoring and risk strati-
fication to effectively tailor clinical care for COVID-19 
patients. In particular, we recommend physicians closely 
monitor haematological, coagulation, cardiac, hepatic, 
renal and inflammatory factors for potential progression 
to severe conditions among COVID-19 patients.

Conclusion
In conclusion, we used territory-wide data reported by 
the Hong Kong Health Authority to develop a model for 
predicting COVID-19 mortality risk based on immuno-
logical and metabolic biomarkers, which is novel.

Our model was developed after a comprehensive 
review of a big data set and the highest predictive capac-
ity in the literature. It could be used to assign early pri-
oritized COVID-19 treatment to high-risk patients and 
enable efficient utilization of public healthcare system 
recurrently severely stretched by the pandemic.

Finally, we strongly believe that our proposed tech-
nique can significantly improve healthcare systems’ deci-
sion-making processes regarding precise and targeted 
medical treatments for COVID-19, enabling medical staff 
across the globe to triage COVID-19 patients and deter-
mine these patients’ health and mortality risks effectively 
and efficiently.
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