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Abstract 

This paper presents a low-cost system for simultaneous localization and mapping 
(SLAM) for unknown indoor environments. The system is based on a low-cost mobile-
robot platform. The low-cost mobile robot is designed and fabricated in our control 
laboratory. The Rao-Blackwellized particle filter algorithm is used for SLAM computa-
tions, Xbox 360 Kinect module is utilized for stereo-camera imaging, and a Linux-
based microcomputer (Raspberry Pi3) was used as the main onboard processing unit. 
An Arduino board is used to control the DC motors for mobile robot wheels. Rasp-
berry Pi unit was wirelessly connected to a ground station machine that processes 
the information sent by the robot to build the environment map and estimate its pose. 
ROS (Robot Operating System) is used for map visualization, data-handling, and com-
munication between different software nodes. The system has been tested virtually 
on a simulator and in real indoor environments and has successfully identified objects 
greater than 30 cm × 30 cm × 30 cm and added it to the map. It also shows promising 
capability to work autonomous missions independently without aid from any external 
sensors and with a fraction of the cost of similar systems based on Lidars.

Keywords: SLAM, ROS, Raspberry Pi, Probabilistic robotics, Particle filters, Mobile robot, 
Arduino, Self-driving cars

Introduction
Simultaneous localization and mapping (SLAM) problem is the computational process 
of creating a map of an unknown environment using mobile robot(s). The robot should 
also figure out its location in the environment or the created map. SLAM problem had 
attracted researchers’ attention in the recent years with the rise of self-driving cars, Mars 
exploration, deep sea Exploration, etc. SLAM enables the robot to perform its autono-
mous mission independently without aid from any external sensors or systems like GPS 
(Global Positioning System) or IPS (Indoor Positioning System). SLAM utilizes its own 
onboard sensors to have a good environment perception to navigate easily.

The mapping task in SLAM is a crucial problem in autonomous navigation which 
depends on maps for goal setting and path execution. Maps are built by combining robot 
poses (positions and orientations) with relative scans of the seen landmark and adding 
it all to the global map frame of reference. The localization task is a challenge that arises 
when there is no localization source inside the environment like a GPS or IPS. In that 

*Correspondence:   
akassem@cu.edu.eg

1 Aerospace Department, Faculty 
of Engineering, Cairo University, 
Cairo, Egypt

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-024-00486-8&domain=pdf
http://orcid.org/0000-0002-1641-6057


Page 2 of 15Kassem and Asem  Journal of Engineering and Applied Science          (2024) 71:158 

case, you will need a map with landmarks to determine your location. It is more like 
an egg-chicken problem where mapping needs localization and vice versa. Repeated 
passes in the target scene can improve both mapping and localization of the SLAM sys-
tem. Different approaches and algorithms are used to solve the SLAM problem [1–3] 
and we have selected to use a Rao-Blackwellized particle filter [4] in this work. Solving 
the SLAM problem depends on distance measurements. This measurement task can be 
accomplished by utilizing either high-cost, precise laser scanners (Lidars) or less expen-
sive but less precise stereo-cameras. However, for commercial applications in shopping 
malls and similar facilities, this work will focus on using Kinect stereo cameras which 
offer a satisfactory balance between cost and accuracy. Our objective is to construct an 
affordable robotic system that utilizes off-the-shelf components and employs the most 
stable SLAM algorithms available.

Literature review of the SLAM problem
Chatila and Laumond [5] and Smith et al. [6], in the eighties of the last century, were the 
first to introduce the concept of concurrently estimating the pose (position + orienta-
tion) while building the map which is known later as simultaneous localization and map-
ping (SLAM) and is referred to as concurrent localization and mapping (CML) in some 
publications. During this period the probabilistic approaches were at their beginning to 
be introduced to Artificial Intelligence (AI) and Robotics. Several key papers were pub-
lished that establish a statistical basis: for describing the relationship between landmarks 
and manipulating geometric uncertainty like the work done by Durrant-Whyte [7, 8] and 
for utilizing the ultrasonic sensors and Kalman filter in navigation as done by Crowley 
[9].

Literature has revealed a variety of solutions to this problem which can be divided 
into filtering and smoothing approaches. Filtering is intended to solve the online SLAM 
problem as it estimates the current robot pose and the environment map, and then it 
updates and refines the state belief(estimate) by fusing the new available state measure-
ments. Kalman [10] and particle filters [11, 12] form two of the most popular techniques 
used to solve the online SLAM problem.

In contrast, smoothing techniques which rely on least square error minimization, esti-
mate the full trajectory of the robot from the full set of measurements [13–15] to solve 
the full SLAM problem.

Basically, the localization and mapping problems were addressed and studied indepen-
dently assuming that the map is given in the case of the localization problem [16, 17] and 
the pose is given in the case of the mapping problem which is known as mapping with 
known poses problem.

Realizing simultaneous localization and mapping (SLAM) problem requires dealing 
with practical considerations like sensors and actuator noise in addition to the uncer-
tainties associated with the mathematical models due to assumptions made in deriva-
tions. These noises and uncertainties are accumulated with time leading to a non-reliable 
solution for the problem.

Filters are proposed as an efficient and online solution to overcome the error accumu-
lation process. Different filters are used based on the Bayes filter and Bayesian estima-
tion [18] by estimating the current state depending on the last state and observations.
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Extended Kalman filter (EKF) was used as an early solution to solve the SLAM prob-
lem by formulating the problem under the state space model using a state vector to rep-
resent the state of the robot and the environment, and a covariance matrix to express the 
uncertainty associated with the state vector.

The work presented by Leonard showed the application of extended Kalman filter EKF 
in the problem of navigation in a known environment by tracking known geometric bea-
cons which formed a good motivation for the later work in estimating both the pose and 
the map concurrently.

Randall et al. [19] introduced the concept of the stochastic map, i.e., a map that shows 
the uncertainties and the relationship between its entities (landmarks). It used proba-
bilistic approaches for the estimation of this stochastic map; it used the Kalman filter as 
an initial solution and then introduced the extended Kalman filter to deal with the non-
linearities associated with the observation and the motion models.

The work done by Castellanos et al. [3] evaluates the influence of correlation between 
map entities on the process of robot relocation and global map building of the envi-
ronment of a mobile robot navigating in an indoor environment. It uses the EKF filter 
approach besides a probabilistic model to represent the uncertainties in the state. The 
filter was used to incorporate the onboard sensor measurements (like laser range radar) 
with the predictions from the dynamical model to have a good belief about the current 
state.

Particle filters Fox et al. [1, 16] were the first to use particle filter for localization then 
it was used later after enhancement (Rao-Blackwellized particle filter) for estimating the 
pose and the map concurrently. Monte Carlo localization is named after particle filter 
implementation in localization problems. Their work presented the solution of the local-
ization problem based on probabilistic methods; it aims to get the probability distribu-
tion over the robot position. It represents the probability density by maintaining a set of 
samples that are randomly drawn from it, contrary to the Kalman filter which is based 
on parametric Gaussian distributions. Monte Carlo localization (MCL) can represent 
arbitrary non-parametric distributions (i.e., do not have mean and variance) for localiza-
tion across a map without knowledge of the robot’s starting location.

Rao-Blackwellized particle filter (FastSLAM) [4, 12, 20–22] is a variant of the parti-
cle filter algorithm used in state estimation problems, such as simultaneous localization 
and mapping (SLAM). It is a probabilistic algorithm that combines particle filtering with 
the Rao-Blackwellized technique, which is a method for factoring a joint probability dis-
tribution into a product of conditional probability distributions. It is used to solve the 
SLAM problem by dividing the problem into a robot localization problem and landmark 
estimation problems (i.e., estimation of each landmark location alone) that are condi-
tioned on the robot pose estimate.

FastSLAM uses a modified particle filter (Rao-Blackwellized particle filter) [23, 24] 
for estimating the posterior over the robot path, each particle possesses a number of 
K Kalman filters that estimate K landmark locations. The advantage here is that a 2 × 2 
Kalman filter (as it estimates the x and y locations of the landmark) is used per landmark 
instead of using a huge Kalman filter matrix as in EKF SLAM that contains the robot 
state and all landmarks’ states in a single covariance matrix.
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Recent research as the work of Xiaobin Xu et al. [25] concentrates on Lidar sensors for 
improving the accuracy of positioning of the robot using an Adaptive Federated Kalman 
Filter. The cost of Lidars is approximately 15 times higher than that of the Kinect camera. 
While Lidar offers greater distance measurement accuracy, the work done by Ahmad el. 
Al. [26] proves that we can get acceptable positioning accuracy with Kinect Camera for 
commercial applications, such as cleaning and garbage collection, in shopping malls and 
similar facilities, where higher levels of positioning accuracy are not essential.

The mobile base used in this work is a differential drive robot which is the simplest 
form of mobile robots which uses two wheels. Differential drive robots are commonly 
used in robotics research [27, 28], and education, as well as in industrial applications 
such as material handling and warehouse automation. They are relatively simple and 
inexpensive to build and can be highly maneuverable in tight spaces.

Scientific background
Problem definition

Simultaneous localization and mapping (SLAM) refers to the problem of estimating the 
pose of a robot, and the map of an unknown environment surrounding it concurrently 
using onboard sensors only [2].

It is considered a chicken-and-egg problem, as a map is needed for localization and 
localization is needed for mapping. This is a key problem in probabilistic robotics and 
autonomous navigation as it estimates the robot’s state and the environment map.

SLAM problem can be formulated as:
Given:

1. The robot’s controls: which command its motion, u1:T = {u1; u2,…, uT} with uncer-
tainty to a limit in their execution as they are transmitted via noisy hardware actua-
tors.

2. The observations: are the information we get about the environment and robot state 
z1:T = {z1; z2,…, zT} through the robot sensors which are inherently noisy.

Required:

1. A map of the environment m that describes the locations of the needed
2. The path of the robot x0:T = {x0, x1, x2,…, xT}

Which can be summarized in the following term of probability distribution:

This probability distribution is the SLAM problem target which seeks to find the path 
and the map of the robot environment given the observation and the controls.

(1)
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Figure 1 represents the problem in a graph model that shows the connection between 
the unknown and the observed nodes. xt is the robot current state, ut is the current con-
trol input, zt current observation from the robot’s point of view and m is the map or 
landmark’s locations.

Control inputs (known) affect the current state (unknown) that is affected by the pre-
vious state. The state affects the observation model as the robot’s observation for the 
landmark depends on its location and affects its observation.

Mobile robot kinematics

Mobile robot introduced in this research is a differential drive robot that uses two wheels 
to move and turn. The robot’s motion is controlled by varying the relative speeds of the 
two wheels. By driving the wheels in opposite directions at the same speed, the robot 
will move forward or backward. By driving the wheels at different speeds in opposite 
directions, the robot will turn in place. The robot can be modeled mathematically by two 
systems of equations (Eqs. 2 and 3) [27]. System of Eq. 1 relates the angular velocity W 
of the robot, and the linear velocity command v to the robot states x, y, q (as shown in 
Fig. 2).

System of Eq. 2 relates the control inputs of the robot v and q to each robot DC motor 
angular velocity Qr for the right motor and Ql for the left one, given the wheel diameter 
of the robot R and the width of the robot L as shown in Fig. 3.

Odometry calculation

Wheel encoders are used to estimate the position and the heading of the robot incre-
mentally overtime from a starting location. Optical wheel encoders were used. It divides 
each revolution of the N divisions and uses a light source and a light sensor to detect 
how many pulses are generated (ticks) by cutting the light source. Cutting or ticking N 

(2)ẋ = v.cos(θ), ẏ = v.sin(θ), θ̇ = �

(3)�r =
2v +�L

2R
,�l =

2v −�L

2R

Fig. 1 Graph model of SLAM problem p(x0:T ; l1:M |z1:T ; u1:T ) 



Page 6 of 15Kassem and Asem  Journal of Engineering and Applied Science          (2024) 71:158 

Fig. 2 Body and global frames of reference of the robot

Fig. 3 Mobile robot wheel and width dimensions
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times indicates a full revolution. Equation  4 calculates the distance traveled D during 
time Dt.

Figure 4 shows the distance traveled by each wheel, right Dr and left Dl, and the center 
of mass Dc.

The distance traveled by the center of mass is considered as the distance traveled by 
the robot. Equation 5 calculates the distance traveled by the center of mass given the dis-
tance covered by each wheel after the encoder readings.

The absolute position from the starting point and the heading can be calculated incre-
mentally using Eq. 6. So, the feedback of the states (x, y, q) can be measured using the 
wheel encoders.

Xbox Kinect Stereo Camera

A single camera can’t infer the depth directly, as all the points on the same line of sight 
with different depths are projected into a single point on the image plane. Using two 
cameras as in Xbox Kinect enables us to estimate the depth of the points. Calculating the 
depth of a point requires finding th esame point in the two pictures, taken from the two 
stereo cameras, which is a computationally involved procedure with many image pro-
cessing sub-functions such as rotation, translation, and rectification [26, 29, 30].

Rao‑Blackwellized particle filter (FastSLAM)

Particle filter [16] can be used for solving the SLAM problem given the observations and 
the control commands if the problem dimensions are relatively low. As the landmark 
number increases the problem dimensions increases which in turn affects the particle 

(4)△tick = tick
t+1

− tick
t+1

, D = 2πR
△tick

N

(5)Dc =
Dl + Dr

2

(6)xt+1 = xt + Dc.cos(θ), y
t+1 = yt + Dc.sin(θ), θ

t+1 = θ t +
Dr + Dl

L

Fig. 4 Right Dr and left Dl distance traveled by each wheel of the differential drive robot, Dc is the distance 
traveled by the center of the robot
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filter performance. A factorized solution was introduced [11] to avoid the dimensional-
ity problem by solving the problem using two methods in conjunction, particle filter and 
EKF (Extended Kalman Filter).

The probability distribution in 1 can be factorized to

By referring to the graph model in Fig. 1 the conditional independence between land-
marks’ position could be deduced easily as the following:

Equation 7 could be written as:

The path posterior p(x0:T |z1:T, u1:t) can be solved using the particle filter efficiently 
as it has low dimensions related to the robot pose, only [x, y, q], while map posterior 
∏M

i=1 p
(

li|x0:t,z1:t
)

 could be solved by only 2 × 2 EKF for each landmark to estimate x 
and y positions of the landmark. So, the problem could be solved after factorization by 
exploiting the advantage of the particle filter and the EKF in conjunction.

Methods/experimental
The intended use of the proposed robotic system is to address the SLAM problem, which 
involves the robot navigating its environment while the stereo-camera captures images 
of the landmarks and calculates their distances. The fast-SLAM algorithm is employed 
to create an initial map and approximate the robot’s location. As the robot continues to 
move and gather additional data, the map and location estimates are refined, leading to a 
final version after several iterations.

Figures 5 and 6 show the system hardware. The figures show Xbox Kinect, Raspberry 
Pi board, the motors micro-controller, the main LiPo battery on the middle layer of 
the robot as well as the DC motors with their encoders. They also show the two caster 
wheels (front and back) and the main robot wheels are on the bottom layer of the robot. 
The robot is made from low-cost plywood and assembled using bolts and nuts in addi-
tion to spacers. The main wheels are designed and made from acrylic. The structure is 
custom made in our lab and was designed on SolidWorks software and manufactured 
using laser cutting technique. Figure 7 shows the dimensions of the robot in millimeters 
(mm). 

Figure 8 shows the connections schematic between different hardware components on 
the robot and the command station.

Software implementation
ROS (Robot Operating System) is a Linux-based meta-operating system initiated by 
Stanford [31]. ROS provides a collection of libraries and tools that simplify the devel-
opment of complex robotic systems. It provides a distributed computing architecture 
that enables multiple software components to communicate and work together. ROS 

(7)p(x0:T , l1:M |z1:T ,u1:t) = p(x0:T |z1:T ,u1:t)p(l1:M |x0:T , z1:T )

(8)p(l1:M |x0:t , z1:t) =
M

i=1
p li|x0:t,z1:t

(9)p(x0:T , l1:M |z1:T ,u1:t) = p(x0:T |z1:T ,u1:t)
∏M

i=1
p
(

li|x0:t,z1:t
)
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nodes are the basic building blocks of ROS applications, and they can communicate with 
each other using a publish/subscribe messaging system [32]. It was used as the main 
software framework to handle different software parts in the form of nodes. Nodes are 
programmed individually and connected under the ROS network of nodes to execute a 
certain task. Nodes can be written in different programming languages and on different 
hardware platforms. Communication between nodes over different hardware platforms 
can be done wirelessly over a WIFI router using HTTP protocols.

Nodes are mainly run on three hardware platforms as shown in Fig. 9.

Fig. 5 SLAM system hardware (sideview)

Fig. 6 SLAM system hardware (front view)
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1. Command station (laptop):

(a) Command station is a laptop equipped with 4 cores Intel core i5 @2.5 GHz and 
a 4 GB RAM running Linux Ubuntu 16.04 LTS. It is responsible for:

(b) Running the main ROS node (roscore) that handles and organizes the work 
between different software nodes.

Fig. 7 Robot dimensions

Fig. 8 Hardware connections schematic
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(c) Running teleoperation node (teleop_twist_keyboard), which translates the key-
board commands to a velocity and directions command over “/cmd.vel” topic.

(d) Processing the encoder messages received from Arduino to calculate the robot 
odometry under “\odom” topic using odom_pub node that will be used later by 
the mapping node.

(e) Running the mapping node which generates the occupancy grid map, given the 
odometry readings and laser scans from the Xbox Kinect sensor.

(f ) Running visualization node (Rviz) that shows the map, the odometry, and all 
the processed information in a graphical form.

2. Onboard main processing computer:

 Raspberry Pi 3 model B is the main onboard computer. It is equipped with Cortex-
A53 ARM processor with 4 cores @1.2GHz and 1GB RAM in addition to supporting 
Wi-Fi and Bluetooth peripherals. The onboard computer is responsible for:

(a) Establishing a serial connection between Raspberry Pi and Arduino over USB 
under ROS network, to send and receive ROS messages using rosserial_python 
node.

(b) Acquiring the depth images and points cloud from Xbox Kinect camera sensor 
and convert it to laser scans passing it through Wi-Fi to the command station 
using depth_image_to_laser_scan node.

(c) Command the Arduino which is connected through USB by the commands 
received through Wi-Fi from the command station.

Fig. 9 ROS nodes
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3. Micro-controller unit (Arduino Mega):

 It is a micro-controller unit that is dedicated to the main DC motors with their 
attached magnetic encoders. Arduino Mega has a 16 MHz CPU frequency and 256 
KB ash memory in addition to 16 analog input pins, 54 digital I/O pins 15 of them 
can be used for PWM (Pulse Width Modulation). It is equipped with an Adafruit v1 
motor driver shield that supports up to 4 DC motors. It is responsible for

(a) Sending the encoder counts status after processing it to the command sta-
tion. It sends it to the Raspberry Pi over USB then to the command station 
over Raspberry Pi Wi-Fi, the encoder status is published over “/encoder” topic 
under the ROS network.

(b) Execution of the motor commands sent by the command station over “cmd-
vel” topic.

Results and discussion
Two different environments had been mapped by the robot. The first was a tall cor-
ridor with some obstacles while the second was a large hall with many obstacles. The 
two environments show successful identification and mapping of objects greater than 
30 cm × 30 cm × 30 cm.

Corridor setup result

Figure 10 shows the real environment. On the right, an RGB photo of the corridor with 
different objects. On the left, the occupancy grid map is located where black lines are the 
obstacles, white spaces mean free of obstacle, and gray means no information whether 
occupied or free. The system had succeeded in capturing the walls and the obstacles as 
well.

Fig. 10 Corridor result
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Wide area setup result

In Fig.  11, another wide setup is presented. The map had succeeded in capturing the 
three boxes in the middle in addition to the desks.

The two experiments show the functionality of the system and its ability to map and 
localize itself simultaneously.

Conclusions
This paper presents a low-cost simultaneous localization and mapping system for 
commercial applications. It can explore its environment by mapping the obstacles as 
well as localizing itself using noisy sensors. Computer vision and stereo imaging algo-
rithms are used to extract depth information out of Kinect low-cost stereo camera to 
help in mapping the environment instead of using high-cost Laser scanners (Lidars). 
The Rao-Blackwellized particle filter, based on the Bayes rule, worked in filtering the 
sensor noise and in performing the simultaneous localization and mapping (SLAM) 
effectively. The Raspberry Pi board is the main onboard computer used to communi-
cate wirelessly with the commanding station, while the Arduino board was dedicated 
to motors and their encoders. ROS powered the robot and made its programming 
more modular and maintainable, as well as upgradeable and integrable with further 
future work. This SLAM robotic system provides a cheap mature platform for devel-
oping and testing further autonomous navigation components such as path planning 
and following.
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