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Introduction
In recent years, wind energy sources draw the increasing attention of researchers due 
to their advantages as compared with fossil fuel-based energy sources. However, one of 
the main drawbacks of wind energy is that its generation seriously depends on weather 
conditions. Therefore, accurate forecasting of wind power becomes of great importance 
to the exploitation of renewable energy resources. Several researchers have made great 
efforts in the development of wind power forecasting methods. The developed methods 
can be split into two categories: physical and statistical approaches. Physical approaches, 
such as the numerical weather prediction model, use physical rules that govern the 
atmosphere’s demeanor and rely on weather data to predict the local wind speed and 
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direction [1]. Statistical approaches make use of a large amount of historical data and 
optimize model parameters to minimize the error between the forecasted and observed 
values [2]. Because of the high acquisition and computation costs associated with math-
ematical weather prediction, statistical-based models are the most appropriate option 
for short-term wind power forecasting [3, 4]. A wide range of statistical approaches has 
been proposed for short-term wind power forecasting. Time series techniques were the 
focus of early methods, including the Kalman filter [5], autoregressive moving average 
(ARMA) [6], and autoregressive-integrated moving average (ARIMA) [7]. However, 
there are numerous significant limitations to these methods, one of which is their insuf-
ficient accuracy [8, 9].

In recent years, conventional machine learning-based methods such as artificial neu-
ral network (ANN) [10], decision tree (DT) [11], random forest (RF) [12], and adaptive 
neuro-fuzzy inference system (ANFIS) [13] have been widely used in wind power fore-
casting. It is common for conventional machine learning methods to be computationally 
simple, but their ability to extract in-depth features and prediction accuracy is typically 
poor [14].

The support vector regression (SVR) [15] model is considered one of the strong 
conventional machine learning tools that can efficiently solve complex nonlinear 
regression problems. Therefore, it has been widely employed in short-term wind 
power forecasting [16, 17]. The SVR method uses statistical learning theory and 
structural risk minimization principles, which enables it to improve the generali-
zation ability and determine the best balance between experience, risk, and confi-
dence range using limited data sets [15]. In comparison to other traditional machine 
learning methods, SVR has been proven to be more effective and superior [16]. 
Despite the excellent characteristics of SVR, there are still some limitations, mainly 
in selecting the appropriate hyper-parameters, such as kernel function parameters, 
non-sensitivity coefficients, and penalty factors that could affect its accuracy and 
speed [18, 19]. Often, these parameters are selected by experts based on their expe-
rience, and the system has a low performance. To improve the performance of the 
SVR model and overcome the low accuracy caused by the unsuitable choice of its 
hyper-parameters, several optimization methods have been proposed. Conventional 
methods, such as grid search [20] and gradient descent [21] are usually used to opti-
mize the hyper-parameters of the SVR. However, these methods are unable to per-
form large-scale calculations with high precision [22]. To deal with this problem, 
numerous metaheuristic optimization algorithms have been proposed. For instance, 
a new approach based on the SVR and an enhanced particle swarm optimization 
(e-PSO) algorithm was developed and applied in short-term wind power forecast-
ing [23]. In the developed model, the proposed intelligent e-PSO algorithm opti-
mized the hyper-parameters of SVR to increase the forecast accuracy. However, the 
performance of this method is imperfect, as the particle’s multiple parameters can 
influence the PSO’s efficiency [24]. Li et al. [22] propose a short-term wind power 
prediction model based on data mining technology and an improved SVR model. 
A cuckoo search algorithm (CS) is used in the proposed model for optimizing the 
kernel function and penalty factor of the SVR. The obtained results show that the 
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proposed model has the highest performance against ARIMA and BPNN models. 
According to [25], the CS algorithm has three main shortcomings related to the 
initialization process, the parameter tuning, and the boundary issue. In [26], an 
improved dragonfly algorithm (IDA), by the introduction of adaptive learning fac-
tors and differential evolution strategies, was combined with the SVR model to 
forecast wind power over short periods. In the proposed model, optimal parameter 
settings for SVR are determined using the IDA algorithm. Data from the La Haute 
Borne wind farm in France have been used to confirm the effectiveness of the pro-
posed model. Li et al. [27] developed a hybrid model, by combining the SVR model 
with a hybrid improved cuckoo search (HICS) algorithm, for short-term wind power 
forecasting based on wind speed and wind direction input vectors. Compared with 
the GA–SVR, IDA–SVR, and CS–SVR, the proposed hybrid HICS–SVR displayed 
more ability to predict short-term wind power output. However, the hybrid HICS-
SVR also has some disadvantages such as the complex structure of the HICS algo-
rithm [27].

As a new nature-inspired intelligent algorithm, bald eagle search (BES) [28] has 
attracted the attention of researchers since proposed. In this paper, a new short-
term wind power forecasting model based on the SVR and BES algorithms is pre-
sented. In the proposed model, the BES algorithm is adopted to fine-tune the 
hyper-parameters of the SVR model to enhance its forecasting accuracy. The data 
gathered from the real wind farm of Sotavento Galicia in Spain is used to evalu-
ate the performance of the developed wind power forecaster. The obtained results 
are compared to the results provided by other existing forecasting models such as 
decision tree (DT), random forest (RF), traditional SVR, hybrid SVR, and gray wolf 
optimization algorithm (SVR–GWO) and hybrid SVR and manta ray foraging opti-
mizer (SVR–MRFO). The comparison reveals that the proposed model has a better 
performance.

The following points summarize the current paper’s main objective and contributions:

•	 An improved SVR model is introduced. In this model, the BES algorithm is used to opti-
mize the hyper-parameters of SVR to enhance the prediction efficiency

•	 The proposed hybrid artificial intelligence tool (SVR−BES) is adopted to forecast short-
term wind power using historical datasets gathered from the Sotavento Galicia wind 
farm in Spain.

•	 The predicting capability of the proposed SVR−BES model is investigated and assessed 
using performance evaluation measures such as root-mean-square error (RMSE), mean 
absolute error (MAE), mean absolute percentage error (MAPE), and correlation coef-
ficient (R).

•	 Comparisons are carried out with other machine learning techniques including deci-
sion tree (DT), random forest (RF), SVR, SVR–GWO, and SVR–MRFO to provide 
strong evidence regarding the accuracy of the proposed model.

The remainder of this paper is organized in the following sections. Section 2 pre-
sents a background of the methods. Section  3 illustrates the proposed forecasting 
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model. Section 4 shows simulation results and compares the proposed model against 
other approaches. Finally, section 5 draws conclusions.

Methods
Support vector regression (SVR)

SVR is a powerful machine learning tool that solves non-linear regression problems and 
ensures a globally optimal solution. Generally, it involves transforming samples from the 
input space into a high-dimensional feature space using nonlinear transformations. The 
network architecture of the SVR model is shown in Fig. 1. The regression function of the 
SVR model can be defined as follows [29]:

where F is the forecasted output, ω is the weight vector, b is the bias, and φ(x) is the 
high-dimensional input vector.

The ω and b coefficients can be calculated by minimizing the risk function R(F) given 
by:

where C represents the penalty parameter used to determine the trade-off between 
function intricacy and losses, ε represents the loss, and Lε(yi, Fi) is the ε-insensitive loss 
function.

Equation (2) can be transformed into the following form [29]:

(1)F = ωTϕ(x)+ b

(2)R(F) =
1

2
�ω�2 + C

1

n

n

i=1

Lε yi, Fi

(3)minimize
1

2
�ω�2 + C

n
∑

i=1

(

ξi + ξ∗i
)

Fig. 1  The network structure of the SVR model
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where ξ and ξ∗ are two positive slack variables.
As described below, the optimization problem in (3) is easier to solve when expressed 

in its dual formulation.

where α and α∗ are nonlinear Lagrangian multipliers.
The dual maximization problem in (3) can be solved in the following way to obtain the 

SVR function F [27]:

where k is a kernel function which can either be a linear, polynomial, sigmoid, or radial 
basis. Usually, the radial basis function (RBF) has been used due to its simplicity and 
reliability [30]. This function can be expressed as follows:

where γ represents the bandwidth of the RBF function.

Bald eagle search (BES) algorithm

BES is a novel nature-inspired optimization algorithm developed by Alsattar et  al. 
[28]. This method mimics the social behavior of bald eagles, which are known for 
their clever hunting techniques. The BES algorithm is mathematically modeled in 
three stages as shown in Fig.  2: (i) selecting space, (ii) searching in space, and (iii) 
swooping. The eagle chooses the space with a lot of prey in the first stage. The eagle 
then moves indoors this space to look for prey in the second stage. In the third stage, 
the eagle swings from the best-identified position in the second stage towards the 
prey [29]. The mathematical modeling of the BES algorithm can be summarized as 
follows:

Selecting space

The selection of the appropriate space can be expressed by equation [28].

where Pbest is the search space chosen by bald eagles, α is the control parameter in 
the interval [1.5 2], r is a random number in the range [0 1], Pmean designates that these 
eagles have used up all of the information from the preceding points, amd Pi is the cur-
rent position of the eagle.

(4)
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
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(7)Pnew,i = Pbest + α × r(Pmean − Pi)
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Searching in space

In this stage, the eagle updates its position based on Eq. (8) [28]:

where

where a and R are coefficients that take values in the ranges [5 10] and [0.5 2], 
respectively.

(8)Pnew,i = Pi + y(i)× (Pi − Pi+1)+ x(i)× (Pi − Pmean)

(9)x(i) = xr(i)/max (|xr|)

(10)y(i) = yr(i)/max
(∣

∣yr
∣

∣

)

(11)xr(i) = r(i)× sin (θ(i))

(12)yr(i) = r(i)× cos (θ(i))

(13)θ(i) = a× π × rand

(14)r(i) = θ(i)× R× rand

Fig. 2  Steps of bald eagle hunting in order
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Swooping

The swooping strategy of eagles can be described by [28]:

where c1, c2 ∈ [1, 2]

Based on the aforementioned stages, the initial arbitrarily generated collection of 
candidate solutions is enhanced during several iterations until the global optimum is 
achieved.

Proposed forecasting model
This section deals with the presentation of the proposed hybrid SVR–BES model 
employed in wind power forecasting. As aforementioned, to build an effective SVR 
model with good predicting ability, three hyper-parameters must be properly chosen. 
These parameters are the penalty parameter (C), the non-sensitivity coefficient (ε), 
and the Gaussian RBF kernel (γ) [31]. The proposed model can estimate wind power 
by learning from historical data. In the training process, the data collected from his-
torical measurements of wind speed (m/s), wind direction (degree), and wind power 
(MW) provided by a wind farm are used to train the proposed SVR–BES model as 
shown in Fig. 3. The BES algorithm is applied to optimize the hyper-parameters of the 
SVR. This process is repeated until the number of iterations (t) reaches its maximum 
value. The root mean squared error (RMSE), expressed in Eq. (22), is chosen as the fit-
ness function (f) to evaluate the performance of the proposed model.

where a and P are the actual and forecasted outputs, respectively, and n is the number 
of training samples.

(15)Pnew,i = rand × Pbest + x1(i)× (Pi − c1 × Pmean)+ y1(i)× (Pi − c2 × Pbest)

(16)x1(i) = xr(i)/max (|xr|)

(17)y1(i) = yr(i)/max
(∣

∣yr
∣

∣

)

(18)xr(i) = r(i)× sinh (θ(i))

(19)yr(i) = r(i)× cosh (θ(i))

(20)θ(i) = a× π × rand

(21)r(i) = θ(i)

(22)f =

√

√

√

√

(

1

n

n
∑

i=1

(

ya − yp
)2

)
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Fig. 3  The framework of the SVR–BES wind power forecasting model
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To describe the remaining operations and facilitate the implementation of SVR–
BES, the pseudo-code of its complete algorithm is provided in Algorithm 1.

Algorithm 1  Hybrid SVR–BES algorithm

Results and discussion
Description of the data set

The performance of the proposed hybrid SVR−BES model has been evaluated using 
the real power generated from the Sotavento Galicia wind farm in Spain (Fig. 4). This 
wind farm has a line of 24 wind turbines of 5 different technologies. Its nominal power 
is 17.56 MW, and its average annual generation is 38.5 MWh [32]. The proposed model 
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has been employed to forecast 48-h-ahead of Sotavento wind power values, taking into 
account the previous 3-week (504 h) dataset consisting of wind speed, wind direction, 
and the measured output power of the corresponding wind generator with a time inter-
val of 1 h. The overall simulation period is as follows:

•	 Training period: 17 November 2020–2007 December 2020
•	 Evaluation period: 08 December 2020–2009 December 2020

The graphical representation of historical wind speed and wind direction data gath-
ered from the Sotavento wind farm for 1 h are shown in Fig. 5a. Figure 5b represents the 
hourly wind power series. A typical three-dimensional graph of wind power versus wind 
speed and wind direction is shown in Fig. 5c.

Evaluation procedure and comparative methods

The performance of the developed wind power forecasting model is evaluated based 
on the common statistical error criteria including root-mean-square error (RMSE), 
mean absolute error (MAE), mean absolute percentage error (MAPE), and cor-
relation coefficient (R). The formulas of these statistical metrics are expressed as 
follows:

Fig. 4  The location of the Sotavento wind farm shown on Google map
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(23)RMSE =

√

√

√

√

(

1

n

n
∑

i=1

(

ya − yp
)2

)

(24)MAE =
1

n

n
∑

i=1

∣

∣ya − yp
∣

∣

(25)MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

ya − yp

ya

∣

∣

∣

∣

× 100%

(a)

(b)

(c)
Fig. 5  Sotavento wind farm hourly data from November 17, 2020, to December 07, 2020. a Wind speed and 
direction profile, b wind power generation, and c wind power with respect to wind speed and direction
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where a and P are the actual and forecasted outputs, respectively, amd n is the number 
of hours in the testing period; a and P are the rate of the actual and forecasted values, 
respectively.

The predictive ability of the proposed hybrid SVR–BES model is compared with the 
following five machine learning techniques:

•	 Decision tree (DT): it is a supervised learning method utilized in statistics, data min-
ing, and machine learning. It can be used as a forecasting model to draw conclusions 
about a set of observations. Inherent simplicity and intelligibility make DT among 
the most popular algorithms in machine learning.

•	 Random forest (RF) algorithm: it is one of the most popular supervised machine 
learning techniques used for classification and regression. This technique uses sev-
eral decision trees on various subsets of the dataset and takes the average to improve 
the predictive accuracy.

(26)R =

∑n
i=1

(

ai −
_
a
)

(

Pi −
_

P
)

√

∑n
i=1

(

ai −
_
a
)2∑n

i=1

(

Pi −
_

P
)2

Table 1  Parameters of the BSE algorithm

Parameter Value

Population size 50

Maximum number of iterations 100

α 2

a 10

R 1.5

Fig. 6  Convergence curve of BES algorithm
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Table 2  Forecasting results of 08 and 09 December 2020

Time Actual data DT RF SVR SVR–GWO SVR–MRFO SVR–BES

1 10.79 8.24 10.73 10.50 9.85 9.82 9.98

2 10.22 6.95 7.02 8.17 7.25 7.36 7.31

3 6.99 7.02 5.47 5.18 4.61 4.74 4.86

4 6.47 5.60 5.73 6.35 6.04 6.17 6.04

5 5.95 5.60 5.80 6.29 6.10 6.22 6.06

6 6.23 7.02 6.39 5.30 5.47 5.51 5.41

7 5.41 6.95 6.67 6.62 5.98 6.15 6.13

8 3.47 7.02 6.09 5.39 4.89 5.02 5.11

9 4.06 7.02 5.16 5.05 4.97 5.03 5.03

10 3.13 2.85 2.09 2.94 3.32 3.24 3.06

11 2.70 2.85 3.25 3.83 3.94 3.91 3.85

12 3.50 5.60 5.55 5.56 5.04 5.18 5.26

13 3.51 7.02 5.63 5.13 5.54 5.54 5.39

14 3.72 6.95 6.59 6.80 6.27 6.42 6.29

15 4.81 6.95 6.41 7.06 6.44 6.59 6.45

16 6.78 6.95 7.35 8.27 7.20 7.26 7.16

17 5.69 5.60 5.92 5.53 6.81 6.69 6.19

18 4.95 6.95 6.59 6.82 6.28 6.43 6.30

19 4.13 7.02 5.03 4.85 4.99 5.01 4.96

20 2.77 3.36 3.39 3.92 3.29 3.36 3.45

21 2.64 2.36 2.01 2.70 3.25 3.15 2.92

22 2.43 7.02 4.02 4.64 5.22 5.16 5.00

23 3.38 2.85 3.25 3.81 5.11 4.88 4.52

24 1.92 2.78 2.48 2.02 2.03 2.03 1.92

25 0.90 1.96 2.02 1.68 1.65 1.66 1.57

26 0.71 0.06 0.16 0.29 0.21 0.13 0.20

27 0.07 0.06 0.32 0.25 0.34 0.34 0.43

28 0.08 0.29 0.05 0.01 0.15 0.15 0.18

29 0.13 0.06 0.05 0.19 0.25 0.26 0.34

30 0.09 0.06 0.05 0.17 0.24 0.25 0.32

31 0.01 0.00 0.02 0.10 0.01 0.00 0.00

32 0.17 0.06 0.03 0.08 0.00 0.02 0.02

33 0.31 0.24 0.49 0.58 0.40 0.43 0.51

34 0.77 2.20 0.87 0.88 0.92 0.96 1.07

35 1.28 1.62 1.69 0.84 0.86 0.90 1.01

36 1.44 2.20 1.20 1.00 1.18 1.23 1.34

37 1.90 5.62 4.00 2.52 3.68 3.77 3.86

38 3.33 4.36 4.33 4.63 6.65 6.43 6.56

39 2.93 4.46 3.85 3.41 4.82 4.82 4.97

40 5.51 6.61 6.86 5.88 8.11 7.84 7.87

41 7.64 6.61 6.86 5.89 8.65 8.32 8.38

42 7.53 6.61 7.03 6.44 8.93 8.70 8.72

43 8.29 6.61 7.00 6.52 9.37 9.12 9.14

44 9.10 9.82 8.67 6.96 9.65 9.52 9.53

45 10.80 9.82 10.12 7.23 10.12 10.0 10.04

46 11.00 9.82 7.86 8.07 10.48 10.70 10.72

47 11.73 9.82 11.06 9.01 10.92 11.42 11.46

48 13.24 11.77 12.52 9.74 12.85 13.05 12.95
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•	 Conventional SVR: this technique has been described in “Support vector regression 
(SVR)” section.

•	 Hybrid SVR–GWO: in this hybrid model, the SVR is tuned using the well-known 
GWO optimization algorithm. GWO is formulated based on the hierarchy of leader-
ship and hunting mechanisms of grey wolves in the wild. For simulations of the lead-
ership hierarchy, four different types of gray wolves are used, namely alphas, betas, 
deltas, and omegas. The optimization process also involves the use of three main 
stages, namely search, encroachment, and prey attack [33].

•	 Hybrid SVR–MRFO: this technique uses a manta ray foraging optimization (MRFO) 
algorithm to optimize the hyper-parameters of the SVR. MRFO is a novel bio-

Fig. 7  Forecasting results of different algorithms
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inspired optimization technique inspired by three foraging behaviors of Manta rays 
including chain foraging, cyclone foraging, and somersault foraging. In comparison 
to other optimizers, MRFO offers a faster convergence rate during the optimization 
process and obtains competitive solutions with less computational effort for most 
engineering problems [34].

Fig. 8  Scatter plots of forecasted wind power for 48 h
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Forecasting results

The proposed model has been trained and tested using the data collected from the Sotavento 
Galicia wind farm. As previously described, the SVR parameters (C, γ, and ε) are optimized 
using the BES algorithm. In this work, the BES algorithm parameters used to train the SVR 
model are presented in Table 1. Figure 6 shows the convergence characteristic of the BES 
algorithm. According to this figure, the optimal fitness value is determined after 50 iterations. 
The optimal fond values of C, γ, and ε are 53.255, 0.982845, and 0.001, respectively. There-
after, the trained SVR model is tested for 2 days (48 h) from 08 to 09 December 2020. The 
results obtained by the proposed forecasting model are presented in Table 2 and Fig. 7 and 
compared with the obtained results of 5 other methods including DT, RF, SVR, SVR−GWO, 
and SVR−MRFO. From these results, it is clear that the best forecasting performance with 
the lowest deviation from the actual values is achieved using the proposed SVR–BES model.

The proposed model will be evaluated against the aforementioned methods based on the 
correlation coefficient R. The R values of the proposed SVR–BES model and the five other 
compared methods (DT, RF, SVR, SVR−GWO, and SVR−MRFO) are indicated in Fig. 8 
and Table 3. It can be seen from these results that the proposed model provided the best 
R value of 0.9457 for the testing phase. The second-best performing method in the R coef-
ficient is the SVR–MRFO with a value of 0.9443. This was followed by the SVR–GWO 
model which had a testing score of 0.9396, while the conventional SVR and DT models 
demonstrated the worst testing results with a correlation coefficient of 0.9107 and 0.8817, 
respectively. From these results, it is seen that the proposed SVR–BES forecaster outper-
forms all five comparative techniques in terms of correlation coefficient statistical criteria.

To illustrate the advantages of the proposed model, RMSE, MAE, and MAPE met-
rics are also used as comparative indicators. The results obtained by the proposed 
model along with those obtained using the five aforementioned methods are shown 
in Table  3 and Fig.  9. For example, based on RMSE calculated error, the forecasted 
results using the proposed SVR–BES model were about 25.58%, 6.33%, 15.58%, 
4.79%, and 1.89% better than those forecasted using the DT, RF, SVR, SVR–GWO, 
and SVR–MRFO models, respectively. Similarly, the proposed approach’s MAE index 
improvement for the previous methods is 26.60%, 7.25%, 15.86%, 6.78%, and 2.99%, 
respectively. The proposed approach also shows the lowest value of the MAPE index 
against the previous methods. From these results, it can be noticed that the pro-
posed hybrid SVR–BES model provided the minimum values of RMSE, MAE, and 
MAPE and the highest value of R for the DT, RF, SVR, SVR–GWO, and SVR–MRFO 

Table 3  Goodness-of-fit results of SVR−BES versus other forecasting models

Method SVR hyper-parameters Error criterion

C γ ε R RMSE MAE MAPE (%)

DT - - - 0.8817 1.7395 1.2772 9.6428

RF - - - 0.9308 1.3396 1.0107 7.6304

SVR 10 5 0.001 0.9107 1.4924 1.1141 8.4110

SVR–GWO 521.3222 1.175882 0.00199 0.9396 1.3202 1.0056 7.5920

SVR–MRFO 132.6669 1.083281 0.01984 0.9443 1.2837 0.9655 7.2895

SVR−BES 14.8385 0.828621 0.09595 0.9457 1.2598 0.9374 7.0774
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prediction methods. As a result, the proposed forecasting model can be considered a 
new and efficient tool for wind power short-term forecasting.

Conclusions
This paper proposed a new hybrid model for short-term wind power forecasting by com-
bining the support vector regression (SVR) and bald eagle search (BES) optimization 
algorithm. In the proposed model, the bald eagle search (BES) nature-inspired optimiza-
tion algorithm optimized the hyper-parameters of support vector regression (SVR), i.e., 
C, γ, and ε to improve its forecasting accuracy. To show the prediction ability of the pro-
posed model in comparison with other machine learning techniques such as traditional 
SVR, hybrid SVR, and gray wolf optimization algorithm (SVR–GWO) and hybrid SVR 
and manta ray foraging optimizer (SVR–MRFO), we tested these models on real power 
generated from the Sotavento Galicia wind farm in Spain. Four statistical indicators (R, 
RMSE, MAE, and MAPE) are taken as the criteria for the evaluation of the model’s per-
formance. The simulation results show that the proposed hybrid SVR−BES model has 
the lowest values of RMSE, MAE, and MAE and the highest value of R which reveals the 
efficiency of the proposed model in short-term wind power forecasting.

The hybrid SVR–BES model also has some weaknesses, and there are future studies 
to be completed. Although, fine-tuning the SVR parameters can enhance its perfor-
mance; however, finding optimal hyper-parameters using meta-heuristic algorithms is 
time-consuming. The BES algorithm can be enhanced to overcome this problem. The 
BES algorithm could also be combined with other machine learning methods to develop 
powerful tools that can be used in a wide range of engineering applications. Further-
more, other advanced optimization algorithms could be incorporated with the SVR 
model to enhance its performance.
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