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Abstract

Flocculation is an important method to treat paper manufacturing wastewater.
Coagulants and flocculants added to wastewater facilitate the aggregation and
sedimentation of various particles in the wastewater and lead to the formation of
floc networks which can be easily removed using physical methods. The goal of this
paper is to determine the optimal hydraulic conditions using machine learning in
order to enable efficient flocculation and improve performance during the treatment
of deinking wastewater. Experiments using polymerized aluminum chloride as
flocculant to treat deinking wastewater were carried out. Based on the orthogonal
array test, 16 different combinations of hydraulic conditions were chosen to
investigate the performance of flocculation, which was indicated by the turbidity of
the solution after treatment. To develop a model representing the relationship
between the hydraulic conditions and the performance of wastewater treatment, the
machine learning methods, support vector regression and Gaussian process
regression, were compared, whereby the support vector regression method was
chosen. According to the fitness function derived from the support vector regression
model, a genetic algorithm was applied to evaluate the optimal hydraulic conditions.
Based on the optimal conditions determined by the genetic algorithm and real-life
experience, a set of hydraulic conditions were implemented experimentally. After
treatment under higher stirring speed at 120 rpm for 1 min and lower stirring speed
at 20 rpm for 5 min at a temperature of 20 °C, the turbidity of deinking wastewater
was measured as 1 NTU. The turbidity reduction was as high as 99.6%, which
indicated good performance of the deinking wastewater treatment.

Keywords: Deinking wastewater, Flocculation, Gaussian progress regression, Genetic
algorithm, Hydraulic conditions, Support vector regression

Introduction
Water is one of the most essential natural resources for the basic necessities of life. It

is a scarce resource because water shortages already exist in many regions. The chal-

lenge presented by water scarcity will be exacerbated since climate change is aggravat-

ing the contradiction between world development and water demand [1]. In order to

address this problem, researchers have been developing technologies to enhance water
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supplies and optimize water resource management so that the efficiency of the usage of

water can be improved [1, 2].

Wastewater reclamation and reuse are promising solutions to cope with water scar-

city. They can expand water supplies, provide environmental benefits and increase eco-

nomical sustainability. The successful wastewater reclamation and reuse depend on the

development of wastewater treatment technologies. Usually, wastewater treatment in-

cludes primary, secondary, and tertiary treatment. Primary treatment clarifies wastewa-

ter by the separation of larger solids. Secondary treatment removes the dissolved and

suspended organic matter in the effluent from primary treatment. Tertiary treatment

further purifies wastewater so that it can be used for industrial, agricultural, and muni-

cipal supplies [3].

The paper-making industry generates a great amount of wastewater, which is a major

pollution source around the world. The treatment of wastewater in pulp and paper

mills has attracted attention from researchers for decades [4, 5]. As wastepaper recyc-

ling continues to increase because of economic and environmental initiatives, deinking

becomes one of the most important steps that determine the performance of wastewa-

ter treatment [6]. Deinking is to remove the printing ink from newsprint, printed paper,

and so on, when these papers are defibrated for wastepaper recycling [7]. Flotation

deinking is the most widely used deinking technology, and the other methods used for

deinking are bleaching deinking, enzymatic deinking, and washing deinking, etc. [8, 9].

The wastewater during paper deinking processes is of a very complex composition, in-

cluding a large number of ink particles, fine fibers, fillers, paper additives, and other

substances [10]. The characteristics of the wastewater after deinking processes are dif-

ferent depending on the deinking technologies, which leads to the various wastewater

treatment methods adopted. For example, the deinking wastewater after enzymatic

deinking has low biological oxygen demand (BOD) and chemical oxygen demand

(COD), and it is hard to be biodegraded [11]. Like other wastewater, the deinking

wastewater treatment mainly includes physical, chemical, and biological treatment pro-

cesses [12, 13]. Physical treatment can remove suspended solids through filtration, sedi-

mentation, flotation, and so on, which is used in primary and tertiary treatment [14].

Chemical treatment methods include coagulation and flocculation, adsorption, oxida-

tion, etc., and they also can be used in primary and tertiary treatment [12]. The deink-

ing wastewater is commonly pretreated using coagulation and flocculation to reduce

the cost and improve the performance of wastewater treatment [15]. Biological pro-

cesses such as fungal treatment, aerobic, and anaerobic digestion, are used for second-

ary treatment [5, 16]. In order to improve the performance of deinking wastewater

treatment, an integrated system with multiple treatment methods is usually imple-

mented [15, 17]. Simstich et al. used a thermophilic aerobic membrane bioreactor,

which was a combination of biological treatment and ultrafiltration, to treat deinking

wastewater [18]. Yu et al. combined coagulation and flocculation, activated sludge

process, and a Fenton reaction system for primary, secondary, and tertiary treatment

[13].

Coagulation and flocculation have long been utilized to process water and wastewa-

ter. In addition, they can be applied to various industries to remove miscellaneous con-

taminants because of their effectiveness and convenience. Coagulants and flocculants

are chemical agents that can be used to complete the two-phase process, coagulation
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and flocculation, to remove contaminants [19]. Coagulants added to wastewater

destabilize the suspended particles and allow for the aggregation and sedimentation of

suspended particles, while flocculants are bridging compounds and they facilitate the

formation of floc. Floc is the networks of clustering micro-floc and macro-floc of aggre-

gated fine particles, which can be efficiently removed by physical methods [20].

The primary condition of forming floc in wastewater is the contact and collision

among the various particles. There are three main ways for the particles to come into

contact with each other in wastewater: the Brownian movement of the particles, colli-

sions caused by differences in the particles’ settling velocities, and the hydraulic effect

of the flowing water especially the shear conditions [21]. The contact and collision

caused by Brownian motion are significant if the particles are small enough. As the net-

works of floc increase, the effect due to Brownian movement is negligible [22]. The sec-

ond way of collision and aggregation can be due to the different settling speeds among

particles. It does play a role in floc formation and sedimentation. However, compared

with the strong disturbance of water flow in the flocculation jar during mixing pro-

cesses, the effect of relatively low settling speeds among particles is limited [22]. Espe-

cially at the initial stage of flocculation, the particles are small, their settling speeds are

low, and the difference among the settling speeds is even smaller. Thus, the contact

and collision of particles mainly depend on the hydraulic effect of the flowing water in

the flocculation jar [22]. Rapid mixing is crucial because it facilitates the growth of floc

by expediting the dispersion of coagulants and improving the collision efficiency of sus-

pended containments. Though, high intensity and long duration of rapid mixing cause

micro-floc breakage and reduce floc re-growth potential [23, 24]. Slow stirring takes

longer, and usually, the floc size is constant indicating a dynamic balance between floc

growth and break [23]. The increase of slow stirring speed results in the decrease of

steady-state floc size. The hydraulic conditions significantly affect coagulation and floc-

culation processes, which in turn determine the performance of deinking wastewater

treatment [21]. However, modeling coagulation and flocculation processes is complex,

and there are contradictory recommendations of hydraulic conditions in the literature

[23]. Therefore, it is imperative to better understand the relationship between the hy-

draulic conditions and the efficiency of flocculation in order to address complex waste-

water treatment issues. The goal of this paper is to evaluate the optimal hydraulic

conditions that enable efficient flocculation and result in a substantial reduction of the

turbidity of deinking wastewater.

Machine learning is a family of algorithms that enable computers to accomplish tasks

through learning from usually limited datasets presented to them, where information

about the task is not available thoroughly. Machine learning techniques have an exten-

sive variety of applications in all aspects of modern life, including classification, recog-

nition, optimization, prediction, and so on. As awareness of environmental issues rises,

machine learning algorithms have seen a wide range of applications in wastewater

treatment [25–27]. In this paper, machine learning methods were utilized to examine

the hydraulic conditions for efficient flocculation during the treatment process of

deinking wastewater. Support vector machines (SVM), Gaussian process regression

(GPR), and genetic algorithms (GA) are frequently used machine learning algorithms.

Researchers have been inspired to take advantage of these algorithms to explore new

applications [28–30]
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Support vector machines are supervised learning algorithms that can be utilized for

classification and regression analysis. SVMs determine the decision boundary by con-

structing the maximum margin hyperplane which has the maximum distances with the

nearest data points of all separated classes [31]. SVMs can choose different kernel func-

tions appropriately to perform not only linear classification but also nonlinear classifi-

cation in a higher-dimensional space [32]. In contrast to neural networks, SVMs do not

need a large number of observation data for training, which is suitable for tasks with

limited prior data. SVMs are relatively easy to implement, and their training speed is

fast. SVMs are also one of the most robust prediction algorithms. Therefore, SVMs

have been extensively applied to solve real-world problems.

Support vector regression (SVR) utilizes the same principles as SVMs to implement

regression analysis. SVR can interpret the datasets presented to it and identify the

underlying relationship between the input variables and the output response in order

to predict a decision outcome [33, 34]. The essential goal of SVR is to find the most ap-

propriate function over the training datasets, which is the hyperplane that has the max-

imum number of data points.

Gaussian process regression is another machine learning method to solve nonlinear

regression problems. It is a nonparametric Bayesian approach using probability distri-

bution to estimate and predict uncertainties [35]. Since GPR does not focus on individ-

ual data samples, it can work well with smaller datasets [36]. Moreover, GPR can use

kernel functions to integrate prior knowledge to capture the inherent properties in the

sample datasets. Appropriate selections of kernel functions can optimize the modeling

of observed datasets [37].

Genetic algorithms belong to the family of evolutionary algorithms (EAs) which are

inspired by Darwin’s theory of evolution. Individuals in a population undergo descent

with modification, and the mechanism of natural selection leads to the survival of the

fittest individuals. GAs are adaptive heuristic search algorithms that have been exten-

sively utilized in global optimization [38]. In order to find the optimal solution of a fit-

ness function, individuals of a population generated randomly have to go through the

evolution of generations by selection, crossover, migration, and mutation [39]. The it-

erative processes terminate when the population has converged, i.e., the change of the

population can be ignored or the maximum number of generations has been reached.

In this study, the performance of flocculation in the deinking wastewater treatment,

which was induced by different hydraulic conditions in the flocculation jar, was investi-

gated. The performance of flocculation was indicated by the measured turbidities after

each treatment. The hydraulic conditions included the fast stirring speed and time, low

stirring speed and time, and temperature. The boundary values for hydraulic conditions

are infinite since any speed, time and temperature could be chosen to conduct the co-

agulation and flocculation processes. In order to simplify the task, each condition was

divided into four levels which are frequently adopted. The effect on the performance of

wastewater treatment was examined under different combinations of these levels.

Based on the orthogonal array test, 16 different combinations of hydraulic conditions

were implemented, and the corresponding turbidity was measured after each run. Ma-

chine learning methods were utilized to analyze the experimental results and determine

the optimal hydraulic conditions. The machine learning methods used in this study

were provided by MATLAB toolboxes. Both SVR and GPR were adopted to model the
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relationship between the hydraulic conditions and the performance of deinking waste-

water treatment. The performance of the two methods was compared to determine

which model represented the experimental data better. SVR was chosen to develop the

model relating the hydraulic conditions to the performance of wastewater treatment.

After the model was set up, GA was applied to evaluate the optimal combination of the

hydraulic conditions resulting in the best performance of wastewater treatment, i.e., the

lowest turbidity. GA determined the optimal conditions based on the fitness function,

the constraints, and the upper and lower bounds. Taking into account the real-life con-

ditions of flocculation, a set of hydraulic conditions was adopted.

Methods
The deinking wastewater was obtained from a paper mill of a newspaper company that

uses froth floatation for deinking. During the deinking process, air is blown into a tank

containing suspended pulp recovered from wastepaper. Air bubbles transport ink and

other contaminant particles to the surface and form a froth layer that can be skimmed

easily. The effluent of this process was the deinking wastewater used in this study. Its

properties are listed in Table 1. The turbidity was measured as 275 NTU. Turbidity re-

fers to the light scattering in water due to the presence of suspended solids, which

makes the water appear cloudy. In this study, turbidity was measured in nephelometric

turbidity units (NTU) using a turbidity meter. The turbidity meter was calibrated first

by standard solutions and then utilized to measure the turbidities of deinking wastewa-

ter before and after treatment.

The coagulant and flocculant used in this experiment was polymerized aluminum sili-

cate chloride prepared in the lab. It has larger molecular weight and can improve the

strength of bridge formation and the performance of coagulation [40, 41]. It was pre-

pared by introducing polymerized silicic acid solution into polyaluminum chloride solu-

tion. It was constituted of 7.8% Al2O3, the basicity was 45%, the density was 1.2g/cm3,

the Al/Si ratio was 2/1, and the pH value was 3.4.

A 100-ml deinking wastewater sample was used in the experiment. It was stirred well

and carefully in the flocculation jar to prepare for the experiment. Then polymerized

aluminum silicate chloride including 80 mg/l of the active ingredient Al2O3 was added

to initiate the coagulation and flocculation processes. First, the solution was stirred at a

Table 1 Properties of deinking wastewater

Wastewater indicator Deink

Temperature (°C) 32

pH 9.21

CODcr (mg/l) 1050

Density (g/cm3) 1.002

Viscosity (cP) 1.2067

Light transmission (%) 2.4

Turbidity (NTU) 275

Solid content Sedimentable solids (g/l) 1.38

Filterable solids (g/l) 0.291

Soluble solids (g/l) 2.158

Total solids (g/l) 3.829

Li et al. Journal of Engineering and Applied Science           (2021) 68:35 Page 5 of 14



higher speed for a certain amount of time, and then it was stirred at a lower speed for

a certain amount of time. After the stirring stopped, the solution was allowed to settle

for 30 min so that the floc networks could sediment to the bottom of the jar. Then the

upper layer liquid about 20 to 30 mm from the surface was extracted and its turbidity

was measured. This experiment was repeated under different hydraulic conditions

which were separated into four levels as listed in Table 2.

Although the hydraulic conditions included five categories and four levels, the combi-

nations of the hydraulic conditions were too large to be experimented on. Instead of

testing the hydraulic conditions exhaustively, 16 different combinations were chosen to

conduct the experiment, based on the orthogonal array test. After each run of the dif-

ferent conditions, the turbidity was measured to examine the performance of wastewa-

ter treatment. The goal was to find the optimal hydraulic conditions that could

expedite the formation and sedimentation of floc networks. Thus, the performance of

the wastewater treatment would be improved and the turbidity measured would be the

lowest, ideally.

Results and discussion
The 16 different combinations of hydraulic conditions and the measured turbidities

after each experiment were shown in Table 3.

The relationship between the hydraulic conditions and the performance of wastewa-

ter treatment was first evaluated by SVR. The training datasets included the hydraulic

conditions as the variables and the according turbidities as the response. The five-fold

cross-validation was implemented to avoid overfitting, though the ten-fold cross-

validation was found to be a better practice [42]. Because the training datasets only had

the limited 16 experimental observations, the five-fold cross-validation was adopted.

Based on the model determined by the SVR with a linear kernel, the predicted turbid-

ities according to the 16 different hydraulic conditions were illustrated in Fig. 1, as

compared with the true value of the measured turbidities. This model could also be ap-

plied to estimate and predict new datasets. Figure 2 shows the progress to minimize

the error of each iteration. The RMSE (root mean square error) of the model was 2.634

and the R2 was 0.65. Figure 2 also highlights the best point hyperparameters and the

minimum error hyperparameters.

GPR solves nonlinear regression problems based on probability distributions. It is a

supervised learning model and can take advantage of prior knowledge by kernel func-

tions. GPR aims to identify the underlying relationship in the training datasets and pre-

dict the response of new inputs assuming they have the similar relationship. In this

paper, a GPR model with a squared exponential kernel was developed to represent the

Table 2 Different hydraulic conditions

Level High-stirring
speed (rpm)

High-speed stirring
time (min)

Low-stirring
speed (rpm)

Low-speed stirring
time (min)

Temperature
(°C)

1 60 0.5 20 0.5 0

2 80 1 40 1 10

3 100 2 60 2 20

4 120 3 80 5 30
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Table 3 Combinations of hydraulic conditions

High-
stirring
speed (X1)

High-speed
stirring time
(X2)

Low-
stirring
speed (X3)

Low-speed
stirring time
(X4)

Temperature
(X5)

Turbidity
(NTU) (Y)

Reduction of
turbidity (%)

1 1 1 1 1 1 6 97.81%

2 1 2 2 2 2 10 96.35%

3 1 3 3 3 3 12 95.62%

4 1 4 4 4 4 15 94.53%

5 2 1 2 1 4 6 97.81%

6 2 2 1 2 3 5 98.18%

7 2 3 4 3 2 3 98.91%

8 2 4 3 4 1 12 95.62%

9 3 1 3 1 2 4 98.54%

10 3 2 4 2 1 6 97.81%

11 3 3 1 3 4 2 99.27%

12 3 4 2 4 3 3 98.91%

13 4 1 4 1 3 4 98.54%

14 4 2 3 2 4 4 98.54%

15 4 3 2 3 1 1 99.64%

16 4 4 1 4 2 2 99.27%

Fig. 1 Actual observations vs. predicted by SVR
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experimental data. Equation (1) shows the squared exponential kernel which is the co-

variance function of the training datasets.

k xi; x jð Þ ¼ σ2f exp −
1
2

xi−xj
� �T

xi−xj
� �

σ2
l

" #

ð1Þ

where σf and σl are hyperparameters: σf is the standard deviation of the signal span, and

σl is the characteristic length scale [43].

Figure 3 shows the comparison of the GPR predicted turbidities versus the actual

measured turbidities based on the 16 different hydraulic conditions. It is obvious that

the performance of GPR was not as good as SVR, the RMSE of the estimation of GPR

was 3.35, and the R2 was 0.44. Since the SVR model expressed the inherent relationship

of the training datasets better, the SVR model was chosen over the GPR model to esti-

mate and predict the turbidities based on various hydraulic conditions.

GA can perform heuristic optimization in order to find the global optimum. It ran-

domly generates an initial population and searches for the global optimum through a

series of evolutionary operations. The iterative process includes [44, 45]:

• Selection: select the parents to generate the next generation of the population ac-

cording to the fitness function

• Crossover: combine the genetic information of two parents to form the children for

the next generation

• Mutation: alter gene values of individual parents randomly to generate new

offspring

The GA in the MATLAB toolbox was used to select the optimal conditions for floc-

culation. The fitness function was derived from the SVR model and was set up to find

the minimum turbidity. The lower and upper bounds were set as [60 0.5 20 0.5 0] and

[120 5 80 5 30], which were the minimum and maximum values of the higher stirring

Fig. 2 Minimaxing error
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speed, higher speed stirring time, lower stirring speed, lower speed stirring time, and

temperature, respectively. The lower and upper bounds of the stirring speeds and time

were determined based on the equipment and operating conditions in the paper mill.

The temperature was based on the manufacturing environment of the paper mill. The

other settings adopted the default value as follows:

• Population: double vector with a size of 50

• Selection: tournament with a size of 2

• Crossover fraction: 0.8

• Mutation function: constraint dependent

• Migration: direction as forward and fraction as 0.2

The optimal result was [118.28 0.82 23.97 4.98 7.5], and Fig. 4 shows the decrease of

the diversity of subsequent generations during the evolution.

From the optimal conditions determined by the GA, and the real-life conditions of

flocculation, the following hydraulic conditions were chosen, as shown in Table 4. The

deinking wastewater sample was treated under these conditions. After the treatment,

the turbidity was measured as 1 NTU and the turbidity reduction was 99.6%, which in-

dicated that the performance of the treatment was satisfactory.

Figure 5 shows the absolute correlation coefficients of hydraulic conditions with tur-

bidity. High-stirring speed was negatively related to turbidity, and the correlation coeffi-

cient was − 0.75. The other hydraulic conditions had positive correlations to turbidity

and the correlation coefficient between temperature and turbidity was 0.077.

Fig. 3 Actual observations vs. predicted by GPR
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From the results, it can be noticed that at the first stage, the hydrolysis reaction

of the coagulant/flocculant happened very fast. A series of Al hydrolysis products

e.g. monomers such as Al(OH)2+, polymers such as Al13O4(OH))24
7+, and amorph-

ous hydroxide precipitate were formed immediately [46]. Charge neutralization of

negatively charged aquatic particles adsorbed by hydrolysis products, and sweep

flocculation of impurity particles enmeshed in growing hydroxide precipitate en-

abled the processes of coagulation and flocculation [46]. The coagulant/flocculant

needed to be dispersed rapidly and evenly to facilitate floc formation. Thus, high-

speed stirring at the beginning of flocculation was necessary to increase the

chances for particles to contact and collide [47]. Although temperature was an im-

portant factor affecting the rate of hydrolysis, in this very short period of time, the

effect of temperature was minimal.

During the second stage, particles continued to accumulate, so it was necessary to stir

the solution. But at the same time, the rate of the mechanical mixing needed to be

maintained so as not to destruct the formation of floc networks. Therefore, the slow

mechanical stirring speed was the main factor in the second stage of floc formation

[23]. Floc networks took form by slow mechanical agitation, and this process needed to

last for several minutes. The slow stirring time at this stage was also an important fac-

tor affecting particle aggregation and sedimentation.

Fig. 4 Average distance between individuals of generations

Table 4 Optimal hydraulic condition

High-stirring
speed (rpm)

High-speed stirring
time (min)

Low-stirring
speed (rpm)

Low-speed stirring
time (min)

Temperature
(°C)

Turbidity
(NTU)

120 1 20 5 20 1
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Conclusions
Using flocculation to treat deinking wastewater depends on the properties of wastewa-

ter, flocculants, and other factors. It is necessary to evaluate these factors and deter-

mine the optimal conditions to perform wastewater treatment. In this paper, the

optimal hydraulic conditions were investigated in order to enable efficient flocculation

during deinking wastewater treatment.

Based on the orthogonal array test, 16 experiments were carried out under different

combinations of hydraulic conditions, and the corresponding turbidities of the solution

were measured after treatment. The relationship between the performance of wastewa-

ter treatment, as measured by its turbidity, and the hydraulic conditions was identified

by SVR and GPR models. Since the SVR model fit the training datasets better than the

GPR model, it was chosen to estimate and predict the performance of wastewater treat-

ment based on the hydraulic conditions. The optimal hydraulic conditions were further

examined by the GA according to the fitness function derived from the SVR model.

Based on the results determined by the GA and the real-life conditions of flocculation,

the optimal hydraulic conditions for deinking wastewater treatment using polymerized

aluminum silicate chloride were at 20 °C, the flocculant was added to the wastewater, it

was stirred for 1 min at a fast stirring speed of 120 rpm, then stirred for 5 min at a slow

stirring speed of 20 rpm, and finally allowing for the solution to settle for 30 min. The

turbidity of the liquid was measured as 1 NTU which was 99.64% reduction of the tur-

bidity of wastewater.

Fig. 5 Correlation coefficients between hydraulic conditions and turbidity
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Therefore, controlling mechanical stirring speed and stirring time was effective to

control the formation of floc networks and the performance of deinking wastewater

treatment. Using machine learning methods such as SVR and GA can help identify the

fundamental relationship between hydraulic conditions and the performance of waste-

water treatment. Accordingly, optimal hydraulic conditions can be identified to effect-

ively improve the performance of deinking wastewater treatment.
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