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Abstract

Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are
essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone
synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as
dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward
our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid
metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and
highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid
accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application,
and some key areas for future research.
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Introduction
Carotenoids are a group of isoprenoid metabolites vital
for life. All photosynthetic organisms including plants,
algae, and cyanobacteria synthesize carotenoids as indis-
pensable pigments for survival. In plants, carotenoids are
essential for photosynthesis and photoprotection. They
play critical roles as light harvesting pigments and struc-
tural components of photosystems. Carotenoids also
provide precursors for the biosynthesis of phytohor-
mones abscisic acid (ABA) and strigolactones (SLs). In
addition, carotenoid derivatives can act as signaling mol-
ecules in response to environmental and developmental
cues or serve as regulators of plant growth. The massive
accumulation of carotenoids in many flowers, fruits, and
roots contributes to their vivid orange, yellow or red
colors and has significant ecological and agronomical
value.

Apart from their fundamental roles in plants, caroten-
oids are also critically important to human nutrition and
health. Provitamin A carotenoids, such as β-carotene
and α-carotene, are the dietary precursors of vitamin A,
which is essential for eyes and immune system. Vitamin
A deficiency can cause serious consequences including
blindness and death, and affects about a third of pre-
school children worldwide (https://news.un.org/en/
story/2018/05/1008782). Dietary carotenoids as antioxi-
dants help reduce the risk of various chronic diseases
such as cancer and cardiovascular diseases (Eggersdorfer
and Wyss 2018). In addition, lutein and zeaxanthin as
macular pigments are important in decreasing the onset
of age-related eye diseases (Sauer et al. 2019). Great ef-
forts have been made to increase carotenoid levels in
food crops with enhanced nutritional value and health
benefit (Wurtzel et al. 2012; Giuliano 2017; Zheng et al.
2020).
Because of the importance of carotenoids to plants

and humans, carotenoid metabolism in plants has been
intensively studied (Nisar et al. 2015; Rodriguez-
Concepcion et al. 2018; Sun et al. 2018; Wurtzel 2019).
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The carotenoid biosynthetic pathway is well established
and has been widely explored in many plant species. In
recent years, great attention has turned to the regulatory
control of carotenoid metabolism (Stanley and Yuan
2019; Luan et al. 2020; Sun and Li 2020; Liang et al.
2021). Carotenoid degradation and stable storage have
become the other areas of focus since the final caroten-
oid content in crops is a net result of biosynthesis, turn-
over, and storage (Cazzonelli and Pogson 2010; Yuan
et al. 2015b; Sun et al. 2018; Hermanns et al. 2020; Liang
et al. 2021; Torres-Montilla and Rodriguez-Concepcion
2021). While the carotenoid-derived phytohormones
ABA and SLs have been extensively investigated (Finkel-
stein 2013; Chen et al. 2020), the other apocarotenoids
in signaling and regulating plant growth and develop-
ment emerge as an exciting area of study in the caroten-
oid field (Hou et al. 2016; D'Alessandro and Havaux
2019; Felemban et al. 2019; Moreno et al. 2021). In this
review, we focus on current status of carotenoid metab-
olism and highlight recent advances in our understand-
ing of the intrinsic regulation of carotenoid metabolism
at multiple levels. Moreover, we discuss the functional
evolution of carotenoids, the agricultural and horticul-
tural application, and the opportunities and directions to
further understand carotenoid metabolism and functions
in plants.

Carotenoid metabolism pathway and enzymes
The core carotenoid biosynthesis pathway in plants
Plant carotenoids are mainly tetraterpenoids and synthe-
sized de novo in nearly all kinds of plastids (Sun et al.
2018; Li et al., 2016). Carotenoid biosynthesis starts with
the synthesis of the basic C5 building blocks of isopente-
nyl pyrophosphate (IPP) and its allylic isomer dimethylal-
lyl pyrophosphate (DMAPP) via the plastid-localized
methylerythritol 4-phosphate (MEP) pathway (Fig. 1). The
1-deoxy-D-xylulose 5-phosphate synthase (DXS) is
regarded as the major rate-limiting enzyme in the MEP
pathway (Estevez et al. 2001). Sequential condensation of
three IPP units to DMAPP generates the C20 precursor
geranylgeranyl pyrophosphate (GGPP) via GGPP synthase
(GGPPS). Plant genomes typically contain multiple copies
of GGPPS with several cell compartments and one or two
isoforms appear to be important for the production of
most GGPP needed for cell functions (Barja et al. 2021;
Barja and Rodriguez-Concepcion 2021). Direct interac-
tions between GGPPS and various GGPP-consuming en-
zymes allow channeling GGPP for the production of
carotenoids, gibberellins, chlorophylls, tocopherols, phyl-
loquinones, plastoquinones or other diterpenes (Ruiz-Sola
et al. 2016; Zhou et al. 2017; Barja and Rodriguez-
Concepcion 2021) (Fig. 1).
The core carotenoid biosynthesis pathway comprises

steps of condensation, desaturation/isomerization,

hydroxylation, oxidation, and epoxidation to generate
various carotenes and xanthophylls (Nisar et al. 2015;
Rodriguez-Concepcion et al. 2018; Sun et al. 2020a). Phy-
toene synthase (PSY) is the first committed enzyme in the
specific carotenoid biosynthesis pathway and catalyzes the
condensation of two GGPP molecules to yield the first ca-
rotenoid 15-cis-phytoene (Fig. 1). PSY is regarded as a
major rate-limiting enzyme of carotenoid biosynthesis
(Cazzonelli and Pogson 2010; Nisar et al. 2015; Sun et al.
2018). Its activity plays a key role in channeling the meta-
bolic flux into the pathway (Maass et al. 2009; Rodriguez-
Villalon et al. 2009) and greatly affects carotenoid content
(Paine et al. 2005). PSY is commonly present as a small
family with up to three members in plant genomes. The
PSY isoforms show tissue-specific expression patterns in
plants and evolved with different biochemical properties
and enzymatic activities (Fraser et al. 2000; Cao et al.
2019). The 15-cis-phytoene is then sequentially desatu-
rated and isomerized to produce red colored all-trans-
lycopene catalyzed by phytoene desaturase (PDS), ζ-
carotene isomerase (ZISO), ζ-carotene desaturase (ZDS),
and carotenoid isomerase (CRTISO) instead of a single
phytoene desaturase CrtI in bacteria (Sandmann 2021).
The multi-enzymatic steps in plants enable the production
of various cis-carotenes with signaling roles in regulating
leaf and plastids development (Avendano-Vazquez et al.
2014; Cazzonelli et al. 2020). The subsequent cyclization
of all-trans-lycopene by lycopene ε-cyclase (LCYE) and/or
lycopene β-cyclase (LCYB) leads to the formation of sym-
metric orange β- and α-carotene in the β-β and β-ε
branch, respectively. The molecular synergism between
these two bifurcated branches regulates the flux through
the branches and affects the downstream carotenoid pro-
duction (Harjes et al. 2008).
Four carotenoid hydroxylases including two non-heme

β-ring hydroxylases (BCH1 and BCH2) and two cyto-
chrome P450 type hydroxylases (CYP97A and CYP97C)
catalyze the hydroxylation of α- and β-carotene to pro-
duce yellow xanthophylls lutein and zeaxanthin, respect-
ively (Fig. 1). Zeaxanthin in the β-β branch is catalyzed
by zeaxanthin epoxidase to yield violaxanthin and re-
versed back by violaxanthin de-epoxidase (VDE). The
interconversion, called xanthophyll cycle, represents a
critical machinery to protect plants at high light intensity
(Jahns and Holzwarth 2012). The less characterized
neoxanthin synthase (NXS) catalyzes the formation of
neoxanthin (Neuman et al. 2014; Perreau et al. 2020),
which concludes the core biosynthetic pathway (Nisar
et al. 2015; Rodriguez-Concepcion et al. 2018; Sun et al.
2020a).
Following the evolution of new enzymes or enzymes

with novel functions, an array of species-specific carot-
enoids are produced, such as capsanthin and capsorubin
by a bifunctional enzyme capsanthin/capsorubin
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synthase (CCS) in red pepper (Capsicum annuum) and
tiger lily (Lilium lancifolium), and astaxanthin in the
petals of pheasant’s eye (Adonis sp.). The synthesized ca-
rotenoids are also modified often by esterification to

enhance carotenoid accumulation and stability (Berry
et al. 2019; Watkins and Pogson 2020) or by glycosyla-
tion to increase fluidity (Diretto et al. 2019).

Fig. 1 A schematic diagram of plant carotenoid metabolic pathway in plastids. Carotenoid biosynthesis utilizes the plastidial MEP pathway to
supply the C5 precursor metabolites IPP and DMAPP. The first committed step in the carotenoid biosynthetic pathway involves the condensation
of two C20 GGPPs into C40 carotenoid phytoene catalyzed by PSY, a major rate-limiting enzyme for carotenoid biosynthesis. Carotenoid
degradation involves specific enzymatic oxidative cleavages by CCDs and NCEDs, nonspecific enzymes, and non-enzymatic oxidation to produce
diverse apocarotenoids including phytohormones ABA and strigolactones. Phytohormones are highlighted with blue color. Various plastids
provide different storage capacity to accumulate very little of carotenoids in etioplasts to massive amounts of carotenoids in chromoplasts. OR is
the only known bona fide regulator of chromoplast biogenesis. MEP, methylerythritol 4-phosphate; GA3P, glyceraldehyde 3-phosphate; IPP,
isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; GGPP, geranylgeranyl diphosphate; DXS, 1-deoxy-D-xylulose 5-phosphate synthase;
GGPPS, GGPP synthase; PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CrtISO,
carotenoid isomerase; CrtI, bacterial phytoene desaturase; LCYE, lycopene ε-cyclase; LCYB, lycopene β-cyclase; BCH, β-carotene hydroxylase;
CYP97A, cytochrome P450 carotene β-hydroxylase; CYP97C, cytochrome P450 carotene ε-hydroxylase; ZEP, zeaxanthin epoxidase; VDE,
violaxanthin de-epoxidase; NXS, neoxanthin synthase; CCD, carotenoid cleavage dioxygenase; NCED, 9-cis-epoxycarotenoid dioxygenase; ZAS,
zaxinone synthase; ABA, abscisic acid; OR, ORANGE protein
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Carotenoid Degradation Pathways
Carotenoids as hydrocarbon molecules with conjugated
double bonds are unstable. They continuously degrade
in cells and sometimes at high rate (Beisel et al. 2010).
Both enzymatic and non-enzymatic oxidative cleavages
are involved in carotenoid degradation (Fig. 1), which
produce diverse apocarotenoids including phytohor-
mones, pigments, volatiles, growth regulators, and signal
molecules in plants (Sun et al. 2020a; Liang et al. 2021;
Moreno et al. 2021). Carotenoids undergo specific en-
zymatic oxidative breakdown, which is catalyzed by a
family of enzymes named as carotenoid cleavage oxygen-
ase (CCO) (Ahrazem et al. 2016; Beltran and Stange
2016; Liang et al. 2018; Dhar et al. 2020). Plant CCO
family consists of 9-cis-epoxycarotenoid dioxygenases
(NCEDs) and carotenoid cleavage dioxygenases (CCDs).
CCDs are classified into several subfamilies CCD1,
CCD2, CCD4, CCD7, CCD8, and the newly identified
zaxinone synthase (ZAS) 1990 and CCD10 (Wang et al.
2019; Ablazov et al. 2020; Zhong et al. 2020). CCOs
cleave carotenoids at specific sites with substrate specifi-
city, therefore dictating the types of apocarotenoid deg-
radation products.
Two groups of CCOs are required for phytohormone

ABA and SL synthesis. NCEDs specifically cleave 9-cis-
violaxanthin and 9-cis-neoxanthin to form xanthoxin,
the first committed step for ABA production (Schwartz
et al. 1997; Tan et al. 2003). CCD7 and CCD8 sequen-
tially cleave 9-cis-β-carotene to produce carlactone for
SL biosynthesis (Alder et al. 2012). In recent years, the
SL biosynthesis pathway has been well elucidated (Jia
et al. 2018; Fiorilli et al. 2019; Moreno et al. 2021).
Various other CCDs negatively modulate carotenoid

content or are involved in volatile and color formation in
plants (Ahrazem et al. 2016; Beltran and Stange 2016;
Liang et al. 2018; Dhar et al. 2020). CCD1 is localized out-
side plastids and cleaves a wide range of carotenoids at
various double bond positions (Vogel et al. 2008). Its ex-
pression is associated with the production of volatiles and
carotenoid level in some cases (Auldridge et al. 2006;
Dutta et al. 2021). CCD4 also has broad substrate specifi-
city and affects carotenoid content and pigmentation in
various plant species (Ohmiya et al. 2006; Falchi et al.
2013; Gonzalez-Jorge et al. 2013; Zheng et al. 2019; Gao
et al. 2021). CCD2 is limited in Crocus species and cleaves
zeaxanthin for saffron crocin production (Frusciante et al.
2014; Ahrazem et al. 2016). Recent works identify glyco-
syltransferases and specific ABC transporters involved in
the synthesis and transport of crocins (Demurtas et al.
2019; Diretto et al. 2019; López et al. 2021). CCD10 was
identified in some plant species that codes a unique CCD
and facilitates maize tolerance to phosphate starvation
(Zhong et al. 2020) .

More apocarotenoids with phytohormone-like func-
tions in regulating plant growth and development, sym-
biosis, and plant defense against herbivores have been
unraveled (Moreno et al. 2021). They include molecules
of β-cyclocitral, β--cyclogeranic acid, β-ionone, loliolide,
and α-ionone from either β-carotene or α-carotene degrad-
ation (Wei et al. 2011; D'Alessandro et al. 2018; Dickinson
et al. 2019; Murata et al. 2019) as well as a diapocarotenoid
anchorene from cleavage of violaxanthin (Jia et al. 2019b).
Recent studies identified a new CCD subfamily ZAS, com-
mon in most land plants, which cleaves zeaxanthin to pro-
duce zaxinone in regulating plant growth as well as
strigolactone and ABA biosynthesis (Wang et al. 2019;
Ablazov et al. 2020). While some of the apocarotenoids act
as signaling molecules, others such as anchorene and zaxi-
none fulfill their function via interaction with hormones
(Moreno et al. 2021).
In addition to the CCD-mediated specific cleavages,

carotenoid degradation is also carried out by nonspecific
enzymes including lipoxygenases and peroxidases as well
as by photochemical oxidation (Sun et al. 2020a). The
nonspecific oxidation of carotenoids results in the pro-
duction of unspecific apocarotenoid products by random
cleavage. Recent studies highlight the significant contri-
bution of nonspecific enzyme and non-enzymatic oxida-
tion for the degradation of carotenoids and production
of apocarotenoids during fruit maturation and grain
post-harvest storage (Schaub et al. 2017; Gao et al.
2019). Further catabolism of many apocarotenoids in
plants remains to be fully elucidated. A recent work on
the detoxification mechanism of apocarotenoids sheds
light on plant apocarotenoid metabolism (Koschmieder
et al. 2021).

Accumulation and storage of carotenoids in
plastids
Plastids and carotenoid accumulation
Plastids are the main site for carotenoid biosynthesis
and storage. Different type of plastids has dramatically
different ability and capacity to accumulate carotenoids,
ranging from very little of carotenoids in etioplasts to
massive amounts of carotenoids in chromoplasts (Li
et al. 2016; Sun et al. 2018) (Fig. 1). Etioplasts are found
in dark-grown tissues accumulating mainly lutein and
violaxanthin (Park et al. 2002). Carotenoids along with
chlorophyll precursor accumulate in the membranous
structure prolamellar body (PLB) to secure the transition
into chloroplasts upon illumination (Park et al. 2002;
Pipitone et al. 2021). The very low level of carotenoids
in etioplasts is likely a consequence of low expression
and activity of the rate limiting enzyme PSY suppressed
by phytochrome-interacting factors (PIFs) (Toledo-Ortiz
et al. 2010) and associated with PLB in an inactive form
(Welsch et al. 2000). Similarly, a light-dependent
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protochlorophyllide oxidoreductase (LPOR) responsible
for chlorophyll biosynthesis was recently discovered to
be in inactive form as the most abundant protein in the
PLB membrane of etioplasts (Floris and Kuhlbrandt
2021). During de-etiolation light activates PSY and LPOR
for the photosynthetic pigment synthesis and together
with a cis-carotene derived apocarotenoid signal (Cazzo-
nelli et al. 2020) among others to initiate chloroplast de-
velopment from etioplasts.
Amyloplasts store starch granules in seeds, roots, and

tubers. Amyloplasts primarily accumulate various xan-
thophylls such lutein, zeaxanthin, and violaxanthin in
the envelope membranes (Lopez et al. 2008a). As starch-
storing plastids, amyloplasts generally accumulate lim-
ited amounts of carotenoids (Wurtzel et al. 2012). A
number of factors such as low biosynthetic capacity, lack
of lipoprotein sequestering substructures, and carbon
flux primarily toward starch synthesis may all restrict ca-
rotenoid biosynthesis, accumulation, and/or stable stor-
age in amyloplasts (Li et al. 2016; Sun et al. 2018).
However, amyloplasts have the potential to accumulate
relatively high levels of carotenoids as documented in
many transgenic studies (Paine et al. 2005; Diretto et al.
2007; Bai et al. 2016; Mortimer et al. 2016). Because
many starchy crops are low in carotenoid content, it is
greatly important to enrich and stably store carotenoids
particularly provitamin A carotenoids in those crops for
improving human nutrition and health (Giuliano 2017;
Sun et al. 2018; Zheng et al. 2020).
Chloroplasts are the site of photosynthesis. Caroten-

oids play indispensable roles in photosynthesis and
photoprotection. Carotenoids predominantly as lutein,
β-carotene, violaxanthin, and neoxanthin accumulate in
relatively high abundance in chloroplasts but the color is
normally masked by chlorophylls. Thylakoid membranes
and the light harvesting complexes are the main sites to
harbor carotenoid molecules (Ruiz-Sola and Rodriguez-
Concepcion 2012), but how carotenoids are delivered to
these sites from the biosynthetic location of mainly enve-
lopes remains unknown. Recently, a chloroplast Sec14-
like 1 (CPSFL1) protein was reported to bind and trans-
port carotenoids in Chlamydomonas (García-Cerdán
et al. 2020). This study brings out the possibility of
translocation of carotenoid metabolites in chloroplasts.
Chromoplasts are the main site to store diverse and

large amounts of carotenoids in many colorful organs of
horticultural crops (Egea et al. 2010; Li and Yuan 2013;
Yuan et al. 2015b; Sun et al. 2018; Ohmiya et al. 2019;
Sadali et al. 2019; Hermanns et al. 2020). Chromoplasts
can be derived from chloroplasts during ripening pro-
cesses such as in tomatoes, and also arise from proplas-
tids and amyloplasts in non-photosynthetic tissues (Li
et al. 2001; Horner et al. 2007; Egea et al. 2011). Chro-
moplasts harbor carotenoid sequestration substructures,

which are diverse in different species and tissues and
sometimes even coexist in the same tissues (Schweiggert
and Carle 2017). The diversity of those sequestration
substructures including globular, crystalline, membran-
ous, fibrillar, and tubular type is likely contributed by
the level and kind of carotenoids accumulated or vice
versa (Hermanns et al. 2020; Wen et al. 2020).

Genes that regulate chromoplast formation
Although chromoplasts are frequently observed in many
vegetables and fruits, the genes that control chromoplast
biogenesis and duplication are less known. The ORANGE
(OR) gene represents the only known bona fide regulator
of chromoplast biogenesis. The gain-of-function alleles of
OR are responsible for high β-carotene accumulation in
orange curd cauliflower and melon fruit (Lu et al. 2006;
Tzuri et al. 2015) as well as apparently in carrot and
sweetpotato (Ellison et al. 2018; Gemenet et al. 2020; Coe
et al. 2021). Although wild type OR regulates PSY protein
stability (Zhou et al. 2015b; Park et al. 2016; Welsch et al.
2018), the high level of carotenoid accumulation in the
OR mutants is not due to the biosynthetic activity (Li et al.
2001; Li et al. 2006; Chayut et al. 2015; Chayut et al.
2017). Instead, it is the direct consequence of chromoplast
biogenesis (Lu et al. 2006; Lopez et al. 2008b; Li et al.
2012; Yuan et al. 2015a; Chayut et al. 2017; Yazdani et al.
2019). Co-expression of PSY and the OR gain-of-function
allele to initiate chromoplast biogenesis dramatically en-
hances provitamin A and total carotenoid content and sta-
bility in Arabidopsis seeds (Sun et al. 2021), showing the
effectiveness of regulating chromoplast storage sink for-
mation along with biosynthetic activity for carotenoid en-
richment and stable storage in seeds.
Chromoplast number and size in a cell are critically im-

portant for its capacity to synthesize and store caroten-
oids. Recently, it was discovered that chromoplast
duplication employs the binary division machinery as
chloroplasts (Sun et al. 2020b). While the gain-of-function
alleles of OR promote chromoplast biogenesis, only one or
two large chromoplasts are present in each affected cell
(Li et al. 2001; Chayut et al. 2017). The natural variant of
OR found in melon, ORHis, was discovered to specifically
interact with Accumulation and Replication of Chloro-
plasts 3 (ARC3) and compete with Paralog of ARC6
(PARC6) in suppressing chromoplast duplication (Sun
et al. 2020b). Such a suppression and restriction can be re-
laxed by increasing the expression of other plastid division
factors such as Plastid Division 1 (PDV1), which leads to
increased number of chromoplasts in the ORHis plant (Sun
et al. 2020b). Moreover, wild type OR was found to medi-
ate chloroplast biogenesis in etiolated Arabidopsis cotyle-
dons via interacting with the transcription factor TCP14
(Sun et al. 2019) and regulate preprotein import through
interacting with several Translocons at the Inner-envelope
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Membranes of Chloroplasts (TIC) in facilitating the late
stage of plastid pre-protein translocation (Yuan et al.
2021). OR represents a multifunctional regulator in plastid
development (Zhou et al. 2011; D'Andrea et al. 2018; Sun
et al. 2019; Chayut et al. 2021; Chen et al. 2021; Kim et al.
2021) in addition to carotenoid biosynthesis and accumu-
lation (Kim et al. 2018; Feder et al. 2019; Osorio 2019;
Miyagishima 2020).
Transcriptional regulators have been identified to

affect carotenoid accumulation in chromoplasts but
most factors are also general regulators associated with
fruit ripening (Stanley and Yuan 2019; Sun and Li 2020).
RCP2, a tetratricopeptide repeat protein, was recently
shown to be sufficient in regulating chromoplast devel-
opment for carotenoid accumulation in monkeyflowers
(Stanley et al. 2020). However, whether it is a
developmental-associated or chromoplast-specific regu-
lator needs to be further explored. Recently, it was re-
ported that loss of photosynthetic competence and
enhanced carotenoid accumulation in leaf tissue elicits
chloroplast to chromoplast transition (Llorente et al.

2020), revealing a mechanistic basis for chromoplast for-
mation. Moreover, ubiquitin E3 ligase SP1 homologues
in the chloroplast-associated protein degradation proteo-
lytic pathway were shown to promote chloroplast to
chromoplast transition through reconfiguration of the
plastid protein import machinery (Ling et al. 2021).
While the knowledge underlying chromoplast formation
is increasing during the past years (Torres-Montilla and
Rodriguez-Concepcion 2021), clearly the nature of
chromoplast biogenesis for high levels of carotenoid ac-
cumulation needs to be further explored.

Hierarchical regulation of carotenoid metabolism
Being essential to the plant's life in green tissues and ac-
cumulating in diverse amounts and composition in other
organs of crops, carotenoids are synthesized under tight
regulation and fine-tuning in response to the environ-
mental and developmental cues. Significant progress has
been made in our understanding of the regulatory mech-
anisms underlying carotenoid biosynthesis. Multiple
layers of regulation including transcriptional,

Fig. 2 Hierarchical regulation of carotenoid metabolism. Carotenoid metabolism is regulated by many signals including environmental cues,
developmental program, and phytohormone signaling along with retrograde signaling. These signals converge at the level of transcription factors
to regulate carotenogenic gene expression. In addition, allelic variation, mutations, and feedback and forward regulation affect the transcription
of pathway genes or the activities of key enzymes. Epigenetic regulation also controls carotenogenic gene expression. Differential splicing
provides a post-transcriptional regulation of key carotenogenic genes. Post-translational regulation plays a critical role in the control of metabolic
pathway activity and fine-tune carotenoid production through mechanisms including protein-protein interaction, enzyme complex formation,
metabolic channeling, and potential protein modification
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posttranscriptional and post-translational regulation, and
epigenetic control are involved in modulating the path-
way activity (Ruiz-Sola and Rodriguez-Concepcion 2012;
Luan et al. 2020; Sun and Li 2020), which are depicted
in Figure 2. Information is also emerging for the regula-
tion of carotenoid degradation (Watkins and Pogson
2020; Liang et al. 2021). Investigation of carotenogenic
regulatory mechanisms underlines the complexity of
crosslinking with other cellular processes, which will not
be reviewed here.

Transcriptional regulation
Transcriptional regulation has long been the focus in
understanding of the regulatory control of

carotenogenesis. Transcriptional regulation represents
the first and primary regulatory mechanism of caroten-
oid biosynthesis (Ruiz-Sola and Rodriguez-Concepcion
2012; Sun and Li 2020). It is the major contributor to
the huge diversity of carotenoids in horticultural crops
(Yuan et al. 2015b; Ohmiya et al. 2019; Hermanns et al.
2020). Modulation of the pathway structural gene ex-
pression such as by transcription factors, mutations, nat-
ural variations, and feedback and feedforward can all
affect carotenogenesis in plants (Fig. 2).
Transcription factors are central in regulating tran-

scription of carotenogenic genes. Recent advances
have identified and validated transcription factors or
regulators that transcriptionally activate or suppress

Fig. 3 Summary of some known transcription factors, post-translational regulators, and epigenetic regulators that regulate the expression of
carotenogenic pathway genes or PSY protein. Their direct actions on pathway genes or PSY protein in different organs such as leaf, carotenoid-
rich fruit, and flower are indicated. Those transcription factors are clustered by the family of transcription factors. MYB, Myeloblastosis family of
transcription factors; RCP1, REDUCED CAROTENOID PIGMENTATION1; WP1, WHITE PETAL1; NAC, NAM, ATAF, and CUC transcription factors; WRKY,
WRKYGQK motif-containing transcription factors; PHL3, PHOSPHATE STARVATION RESPONSE FACTOR LIKE3; SBP1, SQUAMOSA PROMOTER
BINDING PROTEIN1; HY5, ELONGATED HYPOCOTYL5; BBX, B-box transcription factors; RAP2.2, APETALA2/ethylene response factor-type
transcription factor 2.2; PIF, PHYTOCHROME-INTERACTING FACTORS; bHLH, basic Helix-Loop-Helix transcription factors; NOR, NON-RIPENING
transcription factor; MADS, MADS-box containing transcription factors; RIN, RIPENING INHIBITOR; OR, ORANGE protein; Clp, Clp protease; SGR, STAY
GREEN; PPSR1, Plastid Protein Sensing RING E3 ligase 1; JMJ6, Jumonji C-terminal (JmjC) domain-containing demethylase 6; LHP1, LIKE
HETEROCHROMATIN PROTEIN1; SDG8, SET DOMAIN GROUP 8. At, Arabidopsis thaliana; Sl, Solanum lycopersicum, tomato; Cp, Carica papaya L.,
papaya; Cs, Citrus sinensis, sweet orange; Cr, Citrus reticulate, mandarin orange; Ad, Actinidia deliciosa, kiwifruit; Ml, Mimulus lewisii, monkeyflower;
Mt, Medicago truncatula
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the expression of carotenoid structural genes directly
in plant species as reviewed (Stanley and Yuan 2019;
Hermanns et al. 2020; Sun and Li 2020). Additional
carotenogenic transcription factors have been continu-
ously identified (Meng et al. 2020; Gong et al. 2021;
Lu et al. 2021b; Zhu et al. 2021a). These transcription
factors transcriptionally regulate single or multiple
pathway genes (Fig. 3). While the investigated tran-
scription factors have been shown to directly bind to
the promoters of carotenoid metabolic pathway genes,
whether they are bona fide regulators and function
across or within the same crop species to modulate ca-
rotenoid metabolism remains to be fully documented.
In addition, many transcription factors are general
regulators involved in multiple processes of plant
growth and development. Some likely work indirectly
to affect carotenoid metabolism (Stanley and Yuan
2019).
Environmental and developmental signals are known to

regulate carotenoid metabolism (Dhami and Cazzonelli
2020; Sun and Li 2020) (Fig. 2). However, how these sig-
nals converge at the level of transcription factors is not
well understood. Light is the most important cue to regu-
late carotenoid structural gene expression in photosyn-
thetic tissues and in carrot roots (Llorente et al. 2017;
Quian-Ulloa and Stange 2021). PIFs and ELONGATED
HYPOCOTYL5 (HY5), the key antagonistic regulators of
photomorphogenesis, directly regulate PSY during de-
etiolation and in response to shade and temperature, link-
ing light signaling with PSY transcription (Toledo-Ortiz
et al. 2010; Toledo-Ortiz et al. 2014; Bou-Torrent et al.
2015; Wang et al. 2021b). Interestingly, a number of
photomorphogenesis and light reception genes appear
also regulating carotenoid biosynthesis and carrot storage
root development in dark (Quian-Ulloa and Stange 2021).
FcrNAC22 was recently shown to mediate the red
light-induced carotenogenesis in kumquat fruit (Gong
et al. 2021). Moreover, light triggers photoisomerization
of cis-carotenes to affect carotenogenesis (Park et al.
2002; Cazzonelli et al. 2020). In addition to light, other
environmental factors such as temperature, circadian,
and nutrient status may also affect carotenoid accumu-
lation (Dhami and Cazzonelli 2020). A citrus phosphate
starvation response factor CsPHL3 directly binds to the
LCYB1 promoter to negatively regulate carotenoid me-
tabolism, establishing a link with plant nutrient status
(Lu et al. 2021a). However, much remains unknown for
the environmental signals in activating carotenogenic
gene expression.
Developmental signals appear to be the primary deter-

minant of transcriptional regulation of carotenoid genes
in fruits and flowers (Sun and Li 2020). In many cases,
carotenoid biosynthesis is linked to the transcriptional
upregulation of several upstream biosynthetic genes and

downregulation of downstream genes (Ronen et al. 1999;
Chayut et al. 2015) or altered expression of a few key
genes like PSY1 and DXS in chilli pepper (Berry et al.
2019), LCYB and BCH in red fleshed papaya (Zhou et al.
2019), and LCYB in kiwifruit (Ampomah-Dwamena
et al. 2019). During flower development, several tran-
scription factors have been identified to regulate carot-
enoid pigments, such as MYB activators WHITE
PETAL1 in M. truncatula and reduced carotenoid pig-
mentation 1 (RCP1) in monkeyflower (Sagawa et al.
2016; Meng et al. 2019). RIN as the master regulator of
fruit ripening in tomato directly regulates SlPSY1 expres-
sion (Martel et al. 2011). These studies provide a link be-
tween developmental signals and carotenogenic gene
expression. Developmental signals also modulate the
production of phytohormones. A complex network inte-
grating both developmental and phytohormone signals
mediates carotenogenesis during fruit ripening (Liu et al.
2015; Sun and Li 2020). However, many elements in the
developmental signaling pathway are still missing.
In addition, mutations in structural genes and regula-

tors can affect their expression at mRNA and/or protein
levels to cause the accumulation of specific carotenoids
in plants, particularly in horticultural crops. A classic ex-
ample is tomato fruit with various colors. The yellow,
tangerine, orange, and orange-red tomato fruit with the
accumulation of different major carotenoids result from
mutations in the pathway genes including PSY1, CrtISO,
LCYE, or CYCB (Fray and Grierson 1993; Ronen et al.
1999; Ronen et al. 2000; Isaacson et al. 2002). A mis-
sense mutation of LCYB that affects the enzyme protein
level appears to be responsible for lycopene accumula-
tion in watermelon (Zhang et al. 2020). Mutations in Z-
ISO or ZEP produce yellow and orange fruit in ‘Pinalate’
sweet orange (Citrus sinensis), melon, Chinese cabbage,
and pepper (Galpaz et al. 2013; Zhang et al. 2015;
Rodrigo et al. 2019; Lee et al. 2021).
Natural variations in some key structural or regulatory

genes also affect carotenogenic pathway activity and the ac-
cumulation of carotenoid final products. Well-known ex-
amples are the natural variations of LYCE and β-carotene
hydroxylase (crtRB1) that affect β-carotene level in maize
grain (Harjes et al. 2008; Yan et al. 2010) as well as in sweet
corn (Baseggio et al. 2020) .The color variation in red chilli
pepper is associated with the variations of DXS and PSY1
along capsanthin esteration (Berry et al. 2019). The allelic
variations of structural genes alter their transcript abun-
dance/activity and modulate the accumulation of specific
carotenoids. Natural variation in the promoter of CCD4b1
was found to be tightly associated with differential CCD4b
expression, β-citraurin accumulation and color variation in
the citrus peel (Zheng et al. 2019).
Furthermore, feedback and feedforward regulation also

provides another control. By investigating lines with a
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bacterial desaturase (crtI) overexpressed in the tangerine
and old gold crimson mutants of tomato, which are de-
fective in CRTISO and chromoplast-specific lycopene cy-
clase CYCB, respectively, it was found that altered
metabolites cause a negative feedback regulation of PSY1
and feedforward control of CYCB expression (Enfissi
et al. 2017). Feedback loops are an important component
of regulation in metabolic pathways. A close circuit that
senses, connects and coordinates the accumulation of
end products with the initial transcriptional and post-
transcriptional mechanisms forms the basis of the feed-
back regulations and maintain the flux to ensure
carotenoid homeostasis in plants (Kachanovsky et al.
2012; Fantini et al. 2013; Arango et al. 2014; Wright
et al. 2014; Simpson et al. 2018; Koschmieder et al.
2021).

Post-translational regulation
In comparison with the understanding of transcriptional
regulatory mechanisms, less is known about the post-
transcriptional and post-translational regulation of caro-
tenogenesis in plants. Carotenoid production in living
cells is a dynamic process in responding to various sig-
nals and stimuli. Post-translational along with post-
transcriptional regulation such as differential splicing
(Alvarez et al., 2016) or regulatory RNAs provides add-
itional layer of regulation to modulate carotenogenic en-
zyme activity and fine-tune carotenoid production (Sun
and Li 2020) (Fig. 2). Post-translational regulation in-
cludes machineries like protein-protein interactions and
metabolic channeling through multi-enzyme complexes
(Ruiz-Sola and Rodriguez-Concepcion 2012; Nisar et al.
2015; Sun and Li 2020).
An increasing knowledge of post-translational regula-

tion of carotenogenic enzymes via protein-protein inter-
actions has emerged in recent years. The interactions of
carotenogenic enzymes with molecular chaperones and
Clp protease adjust the functional forms of pathway en-
zymes and tightly control their proteostasis for caroten-
oid biosynthesis. For example, DXS enzyme activity and
proteostasis are regulated posttranslationally in response
to the physiological status of the plastids. Inactive forms
of DXS is recognized by a DnaJ-like protein J20 and de-
livered to Hsp70 chaperone, which interacts with
Hsp100/ClpC1 for degradation via the Clp protease
complex and with Hsp100/ClpB3 for activation (Pulido
et al. 2013; Pulido et al. 2016; Llamas et al. 2017). Simi-
larly, PSY enzyme protein level and proteostasis are me-
diated posttranslationally to fine-tune carotenogenesis.
PSY physically associates with OR chaperones for activ-
ity and with Clp protease recognized by Hsp100/
ClpC1 for degradation (Li et al. 2012; Zhou et al. 2015b;
Park et al. 2016; Chayut et al. 2017; D'Andrea et al.
2018; Welsch et al. 2018). Interestingly, a recent study

reports that a plastid protein sensing RING E3 ligase 1
(PPSR1) interacts with PSY1 and presumably ubiquiti-
nates the PSY1 precursor in cytosol to affect the steady
state level of plastidial PSY1 protein for carotenogenesis
in tomato fruit (Wang et al. 2020b). It is also discovered
that in tomato and citrus, the activity of PSY is regulated
by its interaction partner STAY GREEN, a magnesium
dechelatase involved in chlorophyll degradation (Luo
et al. 2013; Zhu et al. 2021b) (Fig. 3).
Enzyme complex formation is important in affecting the

metabolic flux and possibly sub-organellar localization. By
enzyme fusions of GGPPS with PSY or 3, 3ˈ β-carotene
hydroxylase with 4, 4ˈ β-carotene oxygenase, the meta-
bolic flux is effectively directed toward carotenogenesis
and astaxanthin production, respectively (Camagna et al.
2019; Nogueira et al. 2019), implying the importance of
enzyme complex in facilitating carotenoid biosynthesis.
Although multiple putative complexes are proposed
(Ruiz-Sola and Rodriguez-Concepcion 2012), the in vivo
evidence of the existence of enzyme complexes in carote-
nogenesis are merely reported except a few enzymes that
were shown to be in large protein complexes (Lopez et al.
2008a).
Post-translational modification (PTM) enables a quick

regulation of protein function in response to metabolic
and environmental changes. Therefore, it is a ubiquitous
mechanism for protein activity modification. There are
many identified types of PTM in chloroplasts including
phosphorylation, lysine acetylation, lysine methylation,
tyrosine nitration, S-nitrosylation, glutathionylation,
sumoylation, and glycosylation, while phosphorylation is
a well-studied post-translational modification of many
photosystem proteins (Grabsztunowicz et al. 2017).
PTMs can function in regulating some isoprenoid pre-
cursor biosynthetic enzymes (Hemmerlin 2013). Several
carotenoid biosynthetic enzymes also have predicted
phosphorylation sites by PhosPhAt (Durek et al. 2010).
However, these PTMs and their roles on carotenogenesis
still need to be experimentally identified in the future.

Epigenetic regulation of carotenogenesis
The discovery of epigenetic regulation of carotenogen-
esis expands our understanding of the regulatory control
of carotenoid metabolism, although it is still a less stud-
ied area of carotenoid research. Different epigenetic
mechanisms such as histone modifications and DNA
methylation and demethylation add another tier of regu-
lation on carotenogenesis (Anwar et al. 2021) (Fig. 2). A
well-known regulator of carotenogenesis by histone
modifications is SDG8, a histone lysine methyltransfer-
ase that specifically regulates the expression of CrtISO
by maintaining the histone H3 lysine K4 trimethylation
(H3K4me3) marks in CRTISO promoter and gene body
(Cazzonelli et al. 2009). Other histone modifiers
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including a histone lysine demethylase JMJ6, heterochro-
matin Protein 1b (LHP1), and the histone variant H2A.Z
were found to regulate PSY1 and/or other carotenogenic
gene expression during tomato fruit ripening (Li et al.
2020; Liang et al. 2020; Yuan et al. 2021) (Fig. 3).
DNA methylation and demethylation have been shown

to directly or indirectly alter carotenoid levels. As DNA
demethylation controls fruit ripening (Zhong et al. 2013;
Lang et al. 2017), carotenogenic regulation may repre-
sent one of the impacted processes during fruit ripening.
TAGL1 is a tomato fruit ripening regulator and its in-
tensive DNA methylation decreases PSY1 expression and
reduces carotenogenesis (Liu et al. 2020). Mutations in
demethylases such as sldml2 result in higher DNA
methylation in the promoters of PSY1, Z-ISO, ZDS, and
CrtISO and reduce ripening process including caroteno-
genesis (Lang et al. 2017). DNA methylation alters the
binding of R2R3-MYB transcription factors on target
genes (Wang et al. 2020a). Hypomethylation of genomic
regions surrounding the transcription start sites of the
CaPSY1, CaPDS, CaRIN and CaNCED1 has been shown
to regulate their transcript abundance to affect caroteno-
genesis during pepper fruit ripening (Xiao et al. 2020).

Functional evolution of carotenoids
Carotenoids in photosynthesis: accessory or central role?
Carotenoid biosynthesis was coevolved with photosyn-
thesis to provide metabolites with specific functional
roles (Takaichi 2011; Sandmann 2021) (Fig. 4). Caroten-
oids absorb light energy and transfer to chlorophylls in
the spectrum 450-550 nm, a range that chlorophylls do
not absorb (Hashimoto et al. 2016). As such, carotenoids
expand the light wavelength range of photosynthesis for
phototrophic organisms including plants and algae.
From an evolutionary aspect, carotenoids have been

present in the reaction center in association with bacte-
riochlorophyll from ancient photosynthetic bacteria
(Cardona et al. 2019). During the evolution of different
phylogenetic groups, the lateral transfer of carotenoid
biosynthetic genes established new connections between
carotenoids and photosynthesis (Sandmann 2021). In
cyanobacteria, CrtP and CrtQ, which function in phy-
toene and ζ-carotene desaturations, respectively, started
to use oxidized plastoquinones as cofactors in the desat-
uration reactions (Breitenbach et al. 2013). This change
in the carotenoid biosynthesis pathway connects the ca-
rotenoid desaturation steps to the photosynthetic

Fig. 4 Basic and acquired functions of carotenoids during plant evolution. Carotenoids play central roles in photosynthesis and photoprotection
as the key components of photosystems. Carotenoids also contribute to the pigmentation of seeds, fruits, and flowers, which showed co-
evolution with seed dispensers and pollinators. Carotenoid derived phytohormone, including abscisic acid (ABA) and strigolactone (SL), arise from
the evolution of land plants. Apocarotenoid signaling affects plant growth, development, and stress response, but more signaling molecules and
the pathways need to be further elucidated
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electron transport, providing a short-term adaptation
mechanism for carotenogenesis to photosynthesis.
In land plants, lutein, β-carotene, violaxanthin and

neoxanthin are typical and also the most abundant ca-
rotenoids in chloroplasts (Al-Babili and Beyer 2005;
Ruiz-Sola and Rodriguez-Concepcion 2012). The light-
harvesting complexes (LHCs) as the major light energy
collectors in green plants are the assembly of chloro-
phylls, carotenoids and proteins (Liu et al. 2004; Pan
et al. 2011; Pan et al. 2020). Carotenoids play an add-
itional role of structural stabilization in LHCs. Since the
energy transport and conversion finally involve chloro-
phylls, they are traditionally considered playing the lead-
ing role while carotenoids are ‘accessory’ pigments
(Collini 2019).
The timescale of energy transfer between carotenoids

and chlorophylls can be as fast as tens of femtoseconds
(Meneghin et al. 2018; Son et al. 2020). The complexity
of the light harvesting apparatus also brings challenges
to reveal the intrinsic role of carotenoids in photosyn-
thesis. In recent years, with the application of structural
biology and ultrafast detection technology, the role of
carotenoids is reconsidered from ‘accessory’ to ‘central’
(Collini 2019). With the quantum chemical evaluation,
the carotenoid to chlorophyll energy transfer was found
to be coherent rather than loose interaction (Ghosh
et al. 2017; Meneghin et al. 2018). The lutein molecules
in LHCII have been identified as key chromophores for
the control of the excitation energy flow (Son et al.
2019). These studies point a central role of carotenoids
rather than accessory function in light harvesting.
Besides being photosynthetic complex-bound, caroten-

oids also perform a structural role in the formation and
dynamics of the thylakoid membrane system and regu-
late thylakoid membrane fluidity (Havaux and Gruszecki
1993; Havaux 1998; Bykowski et al. 2021). Moreover,
xanthophyll carotenoids were found to function as “glue”
molecules to stabilize chlorophyll biosynthesis in cyano-
bacteria (Proctor et al. 2020). Since cyanobacteria are
the prokaryotic origin of chloroplast, such a function of
carotenoids may occur in chloroplasts, which needs to
be further investigated.

Photoprotection: guarding the plants
Carotenoids have a vital function in photoprotection to
adapt to the changing light environment. They are
known to deactivate triplet chlorophyll and singlet oxy-
gen as well as to dissipate excess light energy to prevent
photodamage of the photosynthetic apparatus in LHCs
of photosystem II (Frank and Cogdell 1996; Jahns and
Holzwarth 2012) (Fig. 4). β-Carotene is present in the
core of photosystems in all organisms and quenches
singlet oxygen (Telfer 2005; Umena et al. 2011; Qin
et al. 2015), although a recent study shows that other

carotenoids can replace it (Xu et al. 2020). Xanthophylls
are present in the peripheral LHC (Qin et al. 2015).
There have been tremendous evolutionary changes in
the antenna systems that not only capture and transfer
light energy but also dissipate excitation energy in land
plants (Ruban and Murchie 2012).
As the most rapid and efficient mechanism of excess

light energy dissipation into heat from photosystem II,
non-photochemical chlorophyll fluorescence quenching
(NPQ) involves the conversion of violaxanthin into zea-
xanthin (Niyogi and Truong 2013; Murchie and Ruban
2020). The cyclical interconversion of violaxanthin,
antheraxanthin and zeaxanthin, also known as xantho-
phyll cycle (Fig. 1), exists in green algae and land plants
as an energy dissipation strategy and thereby reducing
reactive oxygen species production (Jahns and Holz-
warth 2012). In land plants, zeaxanthin plays a central
role in NPQ because quenching of excess absorbed light
energy undergoes energy transfer from chlorophylls to
chlorophyll-zeaxanthin heterodimer before being dissi-
pated into heat (Holt et al. 2005; Ahn et al. 2008). The
presence of zeaxanthin has been shown to influence the
interaction of the antenna system LHCII with PsbS, es-
sential in NPQ for photoprotection (Wilk et al. 2013;
Sacharz et al. 2017).

Pigmentation: coevolution with pollinators and seed
dispensers
Many flowering plants rely on pollinators to facilitate
the reproductive process. The interactions between
flower and pollinator are a major driver for floral trait
diversification and speciation (Kay and Sargent 2009;
Yuan et al. 2013). Pigmentation is an important trait to
attract specific pollinators and natural pollinators have
clear preferences to flower pigmentations (Shang et al.
2011). In the model system Mimulus lewisii, the lower
flower petals contain two yellow ridges pigmented by ca-
rotenoids, which are regulated by RCP1 and RCP2
(Sagawa et al. 2016; Stanley et al. 2020). This pigmenta-
tion pattern specifically serves as nectar guides for the
bumblebee pollinators (Owen and Bradshaw 2011). A re-
cent study of floral traits in bee and hummingbird polli-
nated sister species of Aquilegia further suggests the
importance of evolving suites of traits including caroten-
oid color trait with pollinators (Edwards et al. 2021).
The combination of biotechnology and evolutionary gen-
omics provides essential methods to understand the evo-
lutionary dynamics of flower pigmentation and
pollinator attraction mechanisms (Frachon et al. 2021).
Some seeds accumulate high levels of vivid colored ca-

rotenoids, which are visually attractive to seed dispensers
like birds. For example, the red color carotenoid tobirax-
anthins in Pittosporum tobira seeds act as attractant for
birds to eat seeds and disperse them (Fujiwara et al.
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2002). Carotenoids contribute to the bright color of
fruits, which is a conspicuous visual signal to encourage
discovery and consumption by seed dispensing animals.
It has been revealed that the occurrence of fruit color is
largely independent of phylogeny; instead, it is shaped by
abiotic factors and the interaction with seed-dispersers
(Valenta et al. 2018). Moreover, the emission of caroten-
oid cleavage products (such as β-ionone and 6-methyl-5-
hepten-2-one) together with other volatiles suggests the
ripening of fruits and also attracts seed-dispersing organ-
isms (Dudareva et al. 2006; Goff and Klee 2006)

Carotenoids derived classic hormone: ABA
Abscisic acid (ABA) is a carotenoid derived hormone
that has been extensively studied and regulates many
physiological activities in plants including stomata move-
ment, seed germination, root development, and leaf sen-
escence as well as responses to abiotic and biotic
stresses (Finkelstein 2013; Chen et al. 2020) (Fig. 4).
ABA can be detected in several cyanobacteria and algae.
However, only in green algae, the common substrate 9’-
cis-neoxanthin for ABA biosynthesis in higher plants
can be detected (Giossi et al. 2020).
ABA is perceived by a family of PYR/PYL receptors

(Park et al. 2009; Cutler et al. 2010). Most algae genomes
do not encode PYL-like proteins except a few. Those
PYL-like proteins present PP2C activities but are inde-
pendent from ABA, which may represent the ancestral
function of PYL (de Vries et al. 2018; Cheng et al. 2019).
Meanwhile, a ligand-independent origin of abscisic acid
perception by ABA-mediated fine-tuning of the PP2C–
SnRK2 signaling cascade through PYL is a key evolution-
ary hallmark for land plants to conquer variable stresses
(Blázquez et al. 2020).

Carotenoid derived new hormone: strigolactones
Strigolactones (SLs) are another class of carotenoid-
derived plant hormones initially found promoting symbi-
otic interactions with arbuscular mycorrhizal fungi
(Akiyama et al. 2005). As a new class of phytohormones,
SLs regulate axillary shoot growth, leaf senescence, and
root architecture among many functions in land plants
(Gomez-Roldan et al. 2008; Al-Babili and Bouwmeester
2015; Bürger and Chory 2020; Moreno et al. 2021) (Fig.
4). The synthesis of SLs from carotenoids in plants pri-
marily involves a core pathway including a carotene
isomerase (DWARF27), CCD7, CCD8 and a cytochrome
P450 enzyme (MAX1) (Alder et al. 2012; Abe et al.
2014; Abuauf et al. 2018). In some groups of charophyte
algae and Physcomitrella patens, SLs can also be identi-
fied but no CCD8 orthologues have been found (Proust
et al. 2011; Delaux et al. 2012), suggesting alternative
pathways for SL biosynthesis in the evolutionary ances-
tors of plants (Waters et al. 2017).

Intensive efforts have contributed to the mechanistic
understanding of how SL works through receptors to trig-
ger downstream response (Waters et al. 2017; Moreno
et al. 2021). The findings of physical interaction between
transcriptional repressor D53 and SL receptor D14 con-
nect the signal perceiving and gene expression (Jiang et al.
2013; Zhou et al. 2013). As the receptor of SLs, D14 has
relatively relaxed structural requirements and is possibly
the result of gradual neo-functionalization within the
D14-like protein family (Waters et al. 2017). D14 has both
hydrolase activity to cleave SLs and SL perception ability,
which is uncommon for phytohormone receptors. A re-
cent study describes the sequential action of the D14 dual
functions, which D14 deactivates bioactive SLs by the
hydrolytic cleavage after signal perception (Seto et al.
2019).

Apocarotenoid signaling: how does it work?
Plants have recruited apocarotenoids as signals or regu-
lators during evolution (Wang et al. 2021a). In addition
to ABA and SLs, an array of known and unidentified
apocarotenoids act as signaling molecules or regulators
to affect plant growth and development and in response
to environmental stresses, although the roles of vast
apocarotenoids remain unknown (Hou et al. 2016;
D'Alessandro and Havaux 2019; Havaux 2020; Moreno
et al. 2021) (Fig. 4). β-cyclocitral, a volatile apocarote-
noid derived from either non-enzymatic or enzymatic
oxidation of β-carotene, serve as a signal in response to
abiotic stresses (Ramel et al. 2012; Shumbe et al. 2014).
It is also a conserved root growth regulator (Dickinson
et al. 2019) and enhances resistance to herbivores along
inhibition of DXS activity by binding to its cofactor
binding site (Mitra et al. 2021). Zaxinone cleaved from
zeaxanthin is a novel growth regulator distributed in
many plants (Mi et al. 2018; Wang et al. 2019; Ablazov
et al. 2020). Anchorene derived from β-carotene is a
new signaling molecule required for anchor root devel-
opment by modulating the auxin distribution (Jia et al.
2019a; Jia et al. 2021). Besides, there are some cis-caro-
tene-derived unidentified apocarotenoid signals to medi-
ate leaf and plastid development in plants (Avendano-
Vazquez et al. 2014; Alagoz et al. 2018; Cazzonelli et al.
2020; Escobar-Tovar et al. 2021; Moreno et al. 2021).
One key question to fully understand apocarotenoid

signaling is: how do cells perceive those signals? It is
possible that more apocarotenoid receptors may exist
following successful isolation of strigolactone and ABA
receptors. In mammalian cells, it has been demonstrated
that retinoid receptors can bind β-apocarotenoids (Ero-
glu 2012; Harrison and Quadro 2018). Indeed, simply
mutation of three amino acids can repurpose a plant
karrikin receptor to a strigolactone receptor (Arellano-
Saab et al. 2021), which imply the flexibility of
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apocarotenoid receptors. Whether carotenoid-derived
hormone receptors can also recognize other apocarote-
noid molecules need to be further studied. With the
availability of high accuracy protein structures (Jumper
et al. 2021), molecular docking of apocarotenoid signal-
ing molecules to potential receptor proteins may provide
some clues.
One way of apocarotenoid signaling is feedback

regulation of the carotenoid metabolic pathway
(Kachanovsky et al. 2012), although the mechanisms
remain unknown. RNA structure can serve as a switch
of protein translation in a ligand binding manner (de
Jesus et al. 2021). The relatively small size and high
mobility make apocarotenoids good candidates of
RNA binding ligands to directly regulate protein ex-
pression. Whether this kind of apocarotenoid-
dependent RNA switch is a universal mechanism
needs to be further investigated.

Horticultural and Agricultural application
Since carotenoids are important nutrients and phytonu-
trients, significant efforts have been made to generate
crops enriched with carotenoids (Giuliano 2017; Zheng
et al. 2020). The advances and innovations of approaches
for metabolic engineering will facilitate production of
more nutritious crops (Wurtzel 2019; Irfan et al. 2021).
Crops in which the carotenoid pathway is modified also
have the potential to be useful for horticultural and agri-
cultural applications in developing new and/or improved
varieties. Carotenoids provide plant organs with color.
Alteration of carotenoid level and composition can gen-
erate crops with new color, expanding crop diversity.
Since carotenoids are the precursors for the biosynthesis
of phytohormones ABA and strigolactones, manipula-
tion of the pathway genes can generate plants tolerant to
stresses and/or change plant architectures. Examples in-
clude CRISPR/Cas9-mediated mutation of CCD8 in to-
mato to develop host resistance to Broomrapes, a group
of plant parasites that cause severe damage to crops
(Bari et al. 2019), and overexpression of LCYB2 to im-
prove abiotic stress tolerance in sweetpotato (Kang et al.
2018). In addition, CCD7 and Z-ISO mutants in rice
have been shown to improve tiller number and grain
yield (Liu et al. 2013; Zhou et al. 2021) and knockout of
CCD8 changes shoot architecture in grapevine (Ren
et al. 2020).
Manipulation of pathway and regulatory genes may

also improve some other desirable horticultural and
agronomic traits. Heterologous expression of GGPPS en-
ables fast plant growth, early flowering, and higher seed
yield in plants (Tata et al. 2016). The OR gene as a major
posttranslational regulator of PSY for carotenoid biosyn-
thesis is a chaperone protein (Zhou et al. 2015a; Park
et al. 2016; Chayut et al. 2017; Welsch et al. 2018). Its

overexpression promotes early flowering, fruit set, and
seed production in transgenic tomato (Yazdani et al.
2019) as well as enhances heat stress tolerance in sweet-
potato plants (Kim et al. 2021). Expression of LCYB was
also found to promote faster plant growth, early flower-
ing, and increased biomass in tobacco (Moreno et al.
2020) and extended shelf life of tomato fruit (Diretto
et al. 2020). These works suggest a substantial potential
of genetic manipulation of carotenoid metabolic pathway
and regulatory genes for horticultural and agricultural
applications.

Conclusion and key areas for future research
Significant progress has been achieved in our under-
standing of carotenoid metabolism and regulation as
well as in elucidating the new functions of carotenoid
metabolites in plant growth and development. The rapid
technique advances also allow more crop systems to be
taken advantage of to reveal the common and unique
regulatory mechanisms. These bring carotenoid research
to a golden era. Nevertheless, there are still various out-
standing questions for future carotenoid research.
The identification and verification of intrinsic regula-

tors of carotenoid metabolism are still a focusing area of
carotenoid research. While some transcription factors
and regulators have been shown to regulate the expres-
sion of carotenoid metabolic pathway genes or enzymes,
gaps remain whether they are bona fide regulators,
whether they function across plant species, or what their
modes of action are in modulating carotenoid
metabolism.
Both environmental and developmental signals regu-

late carotenogenic gene expression to affect carotenoid
metabolism. Much remains unknown for what are the sig-
naling pathways or how these signals control
carotenogenesis.
Carotenogenic enzymes are believed to form enzyme

complexes for efficiently driving the metabolic flux
through the pathway. However, solid evidence for the
enzyme complexes is lacking. Revealing carotenoid bio-
synthetic enzyme complexes and understanding their as-
sembly will also be highly demanded in future.
Since carotenoids are essential photosynthetic pig-

ments, synthesis of carotenoids in green tissue of plants
must be under tight control with chlorophyll synthesis
for optimal photosynthesis and chloroplast development.
How these two biosynthesis pathways are coordinately
regulated or what the common regulators are needs to
be investigated.
The recent discovery of carotenoid derived apocarote-

noid signals expands the current knowledge of plant sig-
naling. Some basic questions need to be answered
including: What are the identities of many unknown
apocarotenoid signaling molecules? What are the
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perception mechanisms of the apocarotenoid signaling?
How do the developmental and/or environmental cues
trigger apocarotenoid signaling?
Since chromoplasts are the organelle for carotenoid

accumulation, chromoplast development is critically im-
portant for high levels of carotenoid accumulation in
many horticultural plants. Although the gain-of-function
alleles of OR is known to trigger chromoplast formation,
the nature of chromoplast biogenesis remains unknown,
which needs to be further explored not only for plastid
biology but also carotenoid enrichment in major food
crops.
Carotenoids are nutritionally essential and health im-

portant. Biofortification of crops with carotenoids re-
mains a main focus in carotenoid research. Better
understanding of regulatory mechanisms and enzyme
kinetics of carotenoid metabolism and chromoplast for-
mation will steer both conventional breeding and genetic
engineering of carotenoids. Knowledge of enzyme kinet-
ics will guide the directed-evolution of more powerful
carotenogenic enzymes, while the rapid-evolving gene
editing technology will make the metabolic pathway
optimization and redesign possible in crops. Since the
biosynthesis, degradation and stable accumulation in
plastids together define the carotenoid levels in plant or-
gans, multi-target engineering will provide us more ef-
fective and precise ways for carotenoid biofortification in
major crops. With more genetic tools and strategies
added in the toolbox, more golden crops can be devel-
oped for better human nutrition and health. In addition,
crops can be improved with some desirable horticultural
and agronomic traits to enhance resilient agricultural
system.
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