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Cancer non-stem cells as a potent regulator
of tumor microenvironment: a lesson from
chronic myeloid leukemia
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Abstract

A limited subset of human leukemia cells has a self-renewal capacity and can propagate leukemia upon their
transplantation into animals, and therefore, are named as leukemia stem cells, in the early 1990’s. Subsequently, cell
subpopulations with similar characteristics were detected in various kinds of solid cancers and were denoted as
cancer stem cells. Cancer stem cells are presently presumed to be crucially involved in malignant progression of
solid cancer: chemoresitance, radioresistance, immune evasion, and metastasis. On the contrary, less attention has
been paid to cancer non-stem cell population, which comprise most cancer cells in cancer tissues, due to the lack
of suitable markers to discriminate cancer non-stem cells from cancer stem cells. Chronic myeloid leukemia stem
cells generate a larger number of morphologically distinct non-stem cells. Moreover, accumulating evidence
indicates that poor prognosis is associated with the increases in these non-stem cells including basophils and
megakaryocytes. We will discuss the potential roles of cancer non-stem cells in fostering tumor microenvironment,
by illustrating the roles of chronic myeloid leukemia non-stem cells including basophils and megakaryocytes in the
pathogenesis of chronic myeloid leukemia, a typical malignant disorder arising from leukemic stem cells.
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Introduction
Pluripotent stem cells in embryo can self-renew and can
generate all mature cell types in the body as their po-
tency to self-renew progressively decreases [1]. Adult or-
gans possess populations of tissue-resident stem cells,
which are capable of self-renewal to differentiate into all
types of cells in the corresponding tissue [2]. Tissue-
resident stem cells can generate new stem cells through
symmetric divisions (producing two similar stem cells)
or asymmetric divisions (producing a stem cell and a
non-stem cell) (Fig. 1) [3]. The resultant tissue-resident
cells can be sustained by interacting with their micro-
environment, niche, through activation of various

signaling pathways, particularly Wnt/β-catenin, Hed-
ghog, and Notch pathways [2]. Simultaneously, non-
stem cells lose self-renewal capacity and differentiate
through a progenitor stage with a restricted differenti-
ation capacity, to mature cell types, which are specific to
their tissue of origin [2, 3]. Thus, tissue-resident stem
cells are crucial for tissue homeostasis maintenance
under both physiological and pathological conditions.
A seminal study reported the presence of a minor frac-

tion of leukemia cells which can in vitro continue to
proliferate similarly as hematopoietic stem cells (HSCs)
can [4]. In 1990’s, evidence is accumulating to indicate
that these cells have a self-renewal capacity and can
propagate leukemia upon their serial transplantation into
animals [5, 6]. Based on these properties, they are named
as leukemia-initiating cells or leukemia stem cells (LSCs)
[7]. Subsequently, cell subpopulations with similar char-
acteristics were detected in various kinds of solid cancers
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including breast [8], brain [9, 10], colorectal [11], hepato-
cellular [12], and pancreatic cancers [13], and melanomas
[14], and have been termed as cancer-initiating cells or
cancer stem cells (CSCs). Like normal tissue-resident stem
cells, LSCs and CSCs have a self-renewal ability to gener-
ate new stem cells through symmetric or asymmetric divi-
sions [15, 16]. Self-renewal capacity of CSCs is maintained
by the activation of several signaling pathways used by
tissue-resident stem cells, such as Wnt/β-catenin [17, 18],
Hedgehog [19], or Notch pathway [20], in a cell context-
dependent manner. CSCs are presumed to be crucially in-
volved in various carcinogenesis steps, particularly malig-
nant progression [15, 16]. In addition to CSCs,
asymmetric divisions simultaneously generate cancer non-
stem cell populations which compose most of cancer cells
present in cancer tissues (Fig. 1), but the roles of cancer
non-stem cells in carcinogenesis are often overlooked.
In this review, we will briefly summarize biological as-

pects of CSCs and will discuss the potential roles of can-
cer non-stem cells in tumor microenvironment
formation, by delineating the roles of non-stem cells in
the pathogenesis of chronic myeloid leukemia (CML), a
typical malignant disorder arising from LSCs.

Properties of Cancer stem cells (CSCs)
Cellular origin of CSCs
CSCs show very similar phenotypes to tissue-resident
normal stem cells, and indeed, in several types of

cancers, tissue-resident stem cells are the origin of CSCs
(Fig. 2). For example, crypt stem cells are the origin of
intestinal cancer [21] while skin basal cancer can arise
from hair follicle stem cells [22]. This may arise from
the conversion of normal stem cells to CSCs by random
mutation accumulation during DNA replication [23].
Moreover, oncogenic BCR-ABL can transform
hematopoietic stem cells into LSCs, and eventually can
induce CML. On the contrary, other leukemogenic fu-
sion genes, such as MLL-ENL [24] or the MOZ-TIF gene
[25] can convert more committed hematopoietic pro-
genitor cells (HPCs) into LSCs of acute myeloid
leukemia (AML). Similarly, PIK3CAH1047R, the most fre-
quent mutation observed in human breast cancer, can
dedifferentiate lineage-committed cells of adult mouse
mammary glands into multipotent CSC-like cells [26].
Thus, CSCs are derived from differentiated cells as well
as tissue-resident multipotent stem cells (Fig. 2).
Accumulating evidence indicates that cancer non-stem

cells can acquire CSC-like phenotypes under various
conditions (Fig. 2). Genomic instability induces cancer
non-stem cells to acquire CSC-like phenotypes, when
the instability is enhanced by various causes including
DNA damages induced by ultraviolet and mitomycin C,
overexpression of a key regulator of cell cycle, Mad2, in-
hibition of an important kinase in mitosis such as Aur-
ora B, or a key E3 ligase in cell cycle such as Cdh1 [27].
These events account for genomic instability-induced

Fig. 1 Hierarchy of stem and non-stem cells in normal and cancer tissues. Normal tissue-resident stem cells generate new stem cells through
symmetric divisions (producing two similar stem cells) or asymmetric divisions (producing one stem and one non-stem cells). Stem cells self-
renew to maintain homeostasis while non-stem cells lose self-renewal capacity and differentiate into mature cell types to exert normal tissue
functions. Like normal tissue-resident tissue stem cells, CSCs generate a small number of CSCs with self-renewal capability and cancer non-stem
cells, which predominate cancer tissues
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generation of CSCs from cancer non-stem cells, particu-
larly at tumor recurrence after anti-cancer treatment. In-
jury to a tissue can enhance spontaneous fusion of tissue
resident stem cells with non-stem cells, which can gen-
erate new hybrid pluripotent cells [28]. It was proposed
that similar cell-cell fusion events can occur among can-
cer cells or between cancer cells and normal cells, and
can eventually create CSCs [29]. This assumption is sub-
stantiated by the observations that human breast cancer
cells acquired CSC-like phenotypes through the fusion
with normal breast epithelial cells [30] or adipose tissue-
derived stem cells [31]. Normal resident cells present in
tumor microenvironment can maintain CSC phenotypes
by secreting various mediators. Endothelial cells can sus-
tain CSCs by secreting interleukin (IL)-6 [32, 33] or
basic fibroblast growth factor [34], while fibroblasts can
maintain CSC phenotypes by secreting soluble mediators
such as a chemokine, CCL2 [35, 36].
The activation of transcription factors can trigger CSC

generation from non-CSC population (Fig. 2). Hypoxia
induces cancer non-stem cells to exhibit CSC-like phe-
notypes by activating hypoxia-inducible factor [37] or
signal transducer and activator of transcription (STAT)3
pathway [38]. IL-6-STAT3 pathway activation induced
cancer-associated fibroblasts (CAFs) to generate micro-
vesicles containing miR-221, which was horizontally
transferred to breast cancer non-stem cells, thereby pro-
moting their acquisition of CSC-like phenotypes, par-
ticularly in combination with hormone therapy [39].
Additionally, cancer and stromal cells produce various
inflammatory cytokines, such as IL-1, IL-6, and IL-8,

which in turn activate STAT3/NF-κB pathways in both
cancer and stromal cells [40]. Activation of these path-
ways further enhances cytokine production and eventu-
ally forms a positive feedback loops that in turn drive
CSC generation from cancer non-stem cells and their
self-renewal. Additionally, as CSC generation from cancer
non-stem cells can be promoted by a number of transcrip-
tion factors including TWIST, SNAIL, ZEB1, and ZEB2,
the transcription factors that regulate epithelial-
mesenchymal transition (EMT), CSC generation is accom-
panied by EMT [41, 42], which can provide epithelium-
derived cancer cells with mesenchymal phenotypes in-
cluding a motile capacity to exit from the primary sites
[43]. Thus, CSCs are presumed to be prone to metastasize
due to their mesenchymal phenotypes [43].

Phenotypes of CSCs
CSCs are defined functionally as a cancer cell with a
capacity to develop tumor upon its serial transplantation
into an animal or to form in vitro spheres upon serial
passages [15, 16]. However, both assays are time-
consuming and lack reproducibility as exemplified by
differences in tumorigenic capacity according to the
types of transplanted animals [14]. Thus, a vast number
of studies have been conducted to identify surface
markers, which are expressed selectively by CSCs (Table
1) [44]. CD44 is a transmembrane glycoprotein, which
arises from a single gene which in humans contains 19
exons, but its alternative splicing generates variant CD44
isoforms (CD44v) as well as the standard form of CD44
(CD44s) [45]. CD44 is expressed by CSCs in various

Fig. 2 The origin of CSCs. Genetic mutations generate CSCs from tissue resident stem cells or differentiated cells. CSCs can be generated also by
cell fusion between normal and cancer cells. Hypoxia induces cancer non-stem cells to display CSC phenotypes by activating hypoxia inducible
factor (HIF) or signal transducer and activator of transcription (STAT)3 pathway. Moreover, the interaction between cancer and stromal cells
produces various cytokines to activate STAT3/nuclear factor (NF)-κB pathways in both cancer and stromal cells, thereby driving CSC generation
from non-CSC populations. Furthermore, CSCs are generated from non-CSC population by the action of a number of EMT-inducing transcription
factors such as TWIST, SNAIL, ZEB1, and ZEB2
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types of cancers including breast, ovary, prostate, and
pancreas cancer, head and neck squamous cell cancers,
and can sustain stemness by interacting with hyaluronan
present in CSC niche [47]. Another notable surface
marker of CSCs is CD133 [46], which is a five trans-
membrane glycoprotein consisting of two large extracel-
lular loops and two small cysteine-rich intracellular
loops [48]. CD133 is expressed also by CSCs in various
types of cancers including breast, ovary, prostate, colon,
liver, lung, and renal cancers, glioblastoma, and medullo-
blastoma, but it still remains elusive on the roles of
CD133 in CSC maintenance.
Aldehyde dehydrogenase (ALDH)1, a member of

ALDH family, is a detoxifying enzyme responsible for
intracellular aldehyde oxidation [49] and can induce the
differentiation of stem cells by oxidizing retinol to
retinoic acid [50]. ALDH1 is abundantly expressed in
CSCs of breast [51], ovarian [52] and colorectal cancers
[53]. ALDH1-expressing cells can be identified by using
flow cytometry-based Aldefluor assay, which relies on a
capacity of ALDH1 to convert a non-fluorescent mol-
ecule to a fluorescent product [54]. An additional flow
cytometrical method is used to detect CSCs, based on
their augmented expression of ABC transporters includ-
ing ATP-binding cassette subfamily-B member 1
(ABCB1) and ATP-binding cassette subfamily-G mem-
ber 2 (ABCG2) [55]. With these transporters, CSCs can
eject out a fluorescent dye, Hoechst 33342, with a high
efflux efficiency and appear as a negatively-stained popu-
lation or side population (SP) on a flow cytometry [56].
Until present, no single molecules, however, have been

identified as a specific marker for CSCs. Moreover, even
with the combined use of several markers, the propor-
tions of CSCs among total cancer cells are frequently es-
timated to be high in solid cancers, reaching higher than
10 %. Considering that normal tissue-resident stem cells
comprise less than 1 % of total cells, it is highly likely
that hitherto identified CSCs contain non-CSC popula-
tion in solid cancers. Thus, identification of specific
markers is required to discriminate CSC from non-CSC
populations and to elucidate the functions of CSCs and
cancer non-stem cells in more detail.

Pathological roles of CSCs
Evidence is accumulating to indicate the crucial involve-
ment of CSCs in various aspects of malignant progres-
sion of cancer cells, including resistance to therapy [57],
immune evasion [58], and metastasis [59]. Several mech-
anisms are presumed to account for CSC-mediated re-
sistance to anti-cancer therapies (Fig. 3). In order to
maintain tissue homeostasis, adult tissue-resident stem
cells are in a state of cellular dormancy, where cells are
recruited into G0 phase but remain capable of cell div-
ision in response to mitotic stimuli [60]. CSCs are also
in a cellular dormant state and as a consequence, are re-
sistance to chemotherapy and irradiation, which are
mainly effective against proliferating cells [61]. However,
as non-CSC population can also be moved into a dor-
mant state [62], non-CSC population can also contribute
to resistance to anti-cancer therapy. Additionally, most
anti-cancer treatments can induce apoptosis in cancer
cells [63] but CSCs in prostate and breast cancer exhibit
enhanced expression of a potent anti-apoptotic mol-
ecule, B-cell lymphoma 2 (Bcl-2) [64, 65], thereby coun-
teracting drug-induced apoptosis. Moreover, CSCs
express higher levels of ABC transporters including
ABCB1 and ABCG2, than non-CSC population [55].
These transporters can efficiently expel a wide variety of
chemotherapeutic drugs including alkylating agents, an-
timetabolites, topoisomerase inhibitors, taxanes, and
vinca alkaloids [66] and eventually endow CSCs with re-
sistance to these drugs. Furthermore, normal tissue-
resident stem cells and CSCs express higher levels of re-
active oxygen species (ROS) scavengers, such as glutathi-
one biogenesis synthesis genes, thereby preventing ROS-
induced DNA damages upon irradiation [67]. Glioma
CSCs exhibit radioresistance by augmenting DNA
checkpoint activation as evidenced by increased phos-
phorylation of the ataxia-telangiectasia-mutated (ATM),
checkpoint 1 (Chk1), and Chk2 [68].
CSCs are equipped with an ability to suppress the rec-

ognition by innate and adaptive immunity and to re-
shape tumor microenvironment into an
immunosuppressive one (Fig. 3). CSCs recruit macro-
phages and induce their polarization towards M2

Table 1 Representative surface markers to identify CSCs in various types of cancers

Surface marker Cancer type Reference

CD15 glioblastoma, medulloblastoma [44]

CD24 breast, liver, colon, gastric cancer [44]

CD33 acute myeloid leukemia [44]

CD44 breast, ovary, prostate and pancreas cancer, head and neck squamous cell carcinoma [45]

CD123 acute myeloid leukemia [44]

CD133 breast, ovary, prostate, colon, liver, lung, and renal cancer, glioblastoma, medulloblastoma [46]

CD166 lung, colon cancer [44]
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macrophage with a capacity to inhibit immune response
[69]. Melanoma and glioma CSCs can inhibit effector T
cell activation and simultaneously can induce regulatory T
cells (Treg), thereby counteracting specific tumor immun-
ity [70, 71]. Moreover, compared with non-CSC popula-
tion, CSCs in breast and lung cancers express higher
levels of immune checkpoint molecules including PD-L1
[72] and CD47 [73], respectively. PD-L1 and CD47 can in-
hibit the activities of activated T cells and macrophages,
respectively, thereby hampering tumor immunity. Further-
more, lung cancer CSCs and AML LSCs exhibit reduced
expression of HLA class I antigen [74] and NKG2D ligand
[75], respectively. Decreased HLA class I antigen and
NKG2D expression can constrain cytotoxicity mediated
by effector T cells and natural killer cells, respectively.
CSCs are presumed to contribute also to metastasis

process. EMT provides cancer cells with mobile mesen-
chymal cell-like phenotypes, which can facilitate their
exit from the primary sites and therefore, is an essential
step for metastasis [43]. As EMT can induce cancer cells
to express CSC phenotypes [41, 42], CSCs exhibit EMT
phenotypes, which are presumed to have crucial roles in
metastasis [76]. Moreover, circulating tumor cells have
an ability to metastasize to distant organs and exhibit
specific changes in DNA methylation that are shared by
CSCs [77]. However, more detailed studies are necessary
to elucidate the roles of CSCs in metastasis.
CSCs have presently been an intensive focus of cancer

research due to their crucial involvement in malignant

progression processes such as therapy resistance, im-
mune evasion, and metastasis, whereas less attention is
paid to cancer non-stem cells, which compose most can-
cer cells in cancer tissues. The study on cancer non-
stem cells meets with difficulties due to the shared func-
tional and phenotypic characteristics between CSCs and
cancer non-stem cells in solid cancer. In CML, however,
non-stem cells, major components of leukemia cells, are
phenotypically distinct from stem cells [78]. Thus, CML
can be a good subject to study the roles of non-stem
cells in carcinogenesis. In the following sections, we will
discuss the potential roles of non-stem cells in CML
pathogenesis, in order to facilitate the understanding of
the roles of cancer non-stem cells in solid tumor
progression.

Chronic myeloid leukemia (CML)
Leukemia stem cells (LSCs) in CML
CML harbors a characteristic abnormal chromosome,
the Philadelphia chromosome (Ph), which arises from a
reciprocal translocation between the long arm of
chromosome 9 (ch9) and 22 (ch22) [78]. This reciprocal
translocation replaces the upstream control element of
the ABL-1 gene, the human analogue of the v-ABL onco-
gene, with the BCR gene and generates BCR-ABL fusion
gene, which encodes a constitutively activating tyrosine
kinase with a capacity to phosphorylate various sub-
strates including molecules involved in cell proliferation
[79]. As a consequence, BCR-ABL-expressing

Fig. 3 Presumed biological properties of CSCs. CSCs are in a dormant state and therefore, are resistance to chemotherapy and irradiation, which
are mainly effective against proliferating cells. Moreover, CSCs exhibit enhanced expression of ABC transporters and anti-apoptotic molecules,
efficiently expel chemotherapeutic drugs and to counteract drug-induced apoptosis, respectively. Furthermore, CSCs display higher levels of
reactive oxygen species (ROS) scavengers and augmented DNA checkpoint activation, to counteract ROS-induced adverse effects and to prevent
DNA damages, respectively. CSCs dampen tumor immunity by inhibiting effector T cell and inducing immunosuppressive M2-macrophages and
regulatory T cells (Tregs). Moreover, CSCs exhibit enhanced expression of immune checkpoint molecules to hamper T cell-mediated tumor
immunity. CSCs further express reduced expression of HLA class I antigen and KKG2D ligand to escape cytotoxicity mediated by effector T cells
and natural killer (NK) cells, respectively. Furthermore, CSCs display EMT phenotypes, which are indispensable for metastasis processes
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hematopoietic cells can proliferate as LSCs to induce
pathological changes observed in CML [80, 81] (Fig. 4).
Moreover, the transduction of BCR-ABL gene conferred
the capacities to self-renew in vitro and to cause
leukemogenesis on murine HSCs but not HPCs [25] in
contrast to acute myeloid leukemia models, where
leukemia can develop upon the transduction into HPCs
of oncogenic fusion genes such as the MLL-ENL [24] or
the MOZ-TIF gene [25]. Thus, it is probable that CML
LSCs are derived from BCR-ABL-transformed HSCs.
However, a single BCR-ABL copy expressed from en-
dogenous BCR locus, enhanced bone marrow grafting
capacity without inducing any neoplasm [82]. Thus,
BCR-ABL is prerequisite but not sufficient for CML LSC
generation, which might additionally require BCR-ABL
copy number amplification, secondary mutations and/or
genomic instability [78].
In CML, LSCs are presumed to reside within lineage

marker (Lin)-CD34+CD38- fraction of leukemia cells [83,
84], but this phenotype is shared by normal HSCs [85].
Subsequent studies identified IL-2 receptor-α (CD25)
[86], dipeptidyl peptidase 4 (DPP4, CD26) [85], Siglec-3
(CD33) [85], scavenger receptor-B2 (SR-B2, CD36) [85,
87], and IL-1 receptor accessory protein (IL-1RAP) [85,
88] as surface markers expressed predominantly by CML
LSCs (Table 2). Several mechanisms are presumed to be
involved in CML LSC maintenance and survival (Fig. 5).
Phosphoinositide 3-kinase (PI3K)/Akt/FOXO axis [89],
Wnt signaling [90, 91], and Janus kinase (JAK)2/STAT5
signaling [92], are directly activated by kinase activity of
BCR-ABL and sustain LSC survival. Moreover, frequent
failure of BCR-ABL kinase inhibitors to eradicate com-
pletely CML LSCs suggests the involvement of BCR-
ABL kinase-independent intrinsic pathways in LSC

maintenance. Indeed, activation of Hedgehog signaling
[93] and ALOX5 [94] can sustain LSC survival inde-
pendently of BCR-ABL kinase activity. LSC survival fur-
ther requires their localization to bone marrow niche
with the help of several LSC-expressing adhesion mole-
cules such as cadherins [95], CD44 [96], and galectin-3
[97]. Furthermore, bone marrow resident cells maintain
CML LSCs by secreting various soluble factors such as
Jagged 1 (a NOTCH ligand) [98], transforming growth
factor (TGF)-β1 [99], bone morphogenic proteins
(BMPs) [100], a chemokine, CXCL12 [101], IL-1 [102],
and exosomes containing miR-126 [103].

Clinical aspects of CML
CML has three distinct clinical phases: chronic phase
(CP), accelerated phase (AP), and blast phase (BP) [104].
At diagnosis, most CML patients are in CP, which is
characterized by increases in neutrophil, eosinophil and
basophil numbers in peripheral blood and bone marrow,
with the predominance of mature leukocytes over blasts
(usually less than 5 %). As the origin of CML LSCs is
HSCs, a minor population among hematopoietic cells
[25], BCR-ABL generates only a limited number of LSCs.
LSCs appear in bone marrow in a small number and
proliferate clonally in competition with a large number
of normal hematopoietic cells. Thereafter, LSCs occupy
bone marrow and eventually migrate into other tissues
including peripheral blood and spleen (Fig. 4). As CML
LSCs still share a differentiation ability with normal
HSCs, CP-CML LSCs simultaneously differentiate into
various morphologically mature but molecularly malig-
nant BCR-ABL-expressing leukocytes. Thus, the leuko-
cytes in CP are heterogeneous, consisting of a small
number of LSCs with the majority of leukemia non-stem

Fig. 4 CML progression. BCR-ABL gene transforms HSCs into LSCs, which gradually and clonally proliferate in competition with a large number of
normal hematopoietic cells to eventually occupy bone marrow and migrate into other tissues including peripheral blood and spleen. CML LSCs
simultaneously differentiate into more mature leukemia non-stem cells and as a consequence, CML cells consist of a small number of LSCs with
the majority of leukemia non-stem cells including neutrophils, eosinophils, basophils and megakaryocytes. Moreover, these differentiated cells
morphologically exhibit distinct features from LSCs but similar characteristics with normal counterparts
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cells (Fig. 4). Nonetheless, tyrosine kinase inhibitors
(TKIs) targeting BCR-ABL can efficiently eradicate most
BCR-ABL-expressing CP-CML cells and as a conse-
quence, have drastically improved the prognosis of CP-
CML patients since their clinical introduction two de-
cades ago [104].
BP is defined as the state of an increased proportion of

blasts (usually more than 20 %) in blood or bone mar-
row and is also called as blast crisis, while AP is an inter-
mediate phase between CP and BP, with resistance to
TKIs and less blasts (less than 20 %) in blood or bone

marrow [105]. Thus, BP is generally a late feature of pro-
gression but is also observed in a small proportion of
newly diagnosed CML patients [106]. Evidence is accu-
mulating to indicate that LSCs in CP may evolve into
those in BP through several molecular changes. BCR/
ABL affects the efficiency and fidelity of major DNA
double strand breaks (DSBs) repair mechanisms by
stimulating WRN (mutated in Werner syndrome),
thereby facilitating genomic instability [107]. Genomic
instability predisposes to additional gene mutations,
which are observed in BP-CML cells, such as p16

Table 2 Expression pattern of surface markers on normal and CML CD34+CD38- and CD34+CD38+ cell populations

Marker CML CD34+CD38- Normal CD34+CD38- CML CD34+CD38+ Normal CD34+CD38+

IL-2 receptor α
(CD25)

++ - +/- +/- [86]

Dipeptidyl peptidase 4
(DPP4, CD26)

++ - +/- - [85]

Siglec-3
(CD33)

++ - + ++ [85]

scavenger receptor-B2
(SR-B2, CD36)

++ +/- ++ ++ [85, 87]

IL-1 receptor accessory protein (IL-1RAP) + - + + [85, 88]

Fig. 5 Presumed mechanisms involved in CML LSC maintenance. Phosphoinositide 3-kinase (PI3K)/Akt/FOXO axis [89], Wnt signaling [90, 91], and
janus kinase (JAK)2/ signal transducer and activator of transcription (STAT)5 signaling [92], are directly activated by kinase activity of BCR-ABL and
sustain LSC survival. Moreover, activation of Hedgehog signaling [93] and ALOX5 [94] can maintain LSC survival independently of BCR-ABL kinase
activity. LSC survival further requires their localization to bone marrow niche with the help of several LSC-expressing adhesion molecules such as
cadherins [95], CD44 [96], and galectin-3 [97]. Furthermore, bone marrow resident cells secrete various mediators including Jagged 1 (a NOTCH
ligand) [98], transforming growth factor (TGF)-β1 [99], bone morphogenic proteins (BMPs) [100], a chemokine, CXCL12 [101], interleukin (IL)-1
[102], and exosomes containing miR-126 [103] to sustain the stemness of CML LSCs
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deletion [108], p53 loss of function [109], loss of retino-
blastoma gene product [110], increased Evi-1 expression
[111], or mutations in RUNX-1, ASXL1, and isocitrate
dehydrogenases [112]. Moreover, aberrant histone deace-
tylase activities induce epigenetic dysregulation, thereby
conferring more aggressive phenotypes on cells in BP
[113]. Musashi2, an oncogenic RNA binding protein, is
aberrantly expressed in BP leukemia cells and is physic-
ally associated with the transcript of BCAT1, a cytosolic
aminotransferase for branched-chain amino acids to en-
hance its expression and to eventually promote cell pro-
liferation [114]. Intrinsic refractoriness of AP-blast cells
to TKIs commonly necessitates additional chemothera-
peutic agents, which are mostly ineffective [106].
TKI treatment can keep CP-CML patients under fa-

vorable long-term disease control with about 90 % over-
all survival, 90 % complete cytogenetic response, and 90
% major molecular response which was defined as a re-
duction of at least 3 log in the BCR-ABL1 value from
the standardized baseline level on the International
Scale, at 10 years after the treatment initiation [115].
This incited the attempt to discontinue TKI treatment
in CP-CML patients in 2-year long molecular remission
defined as BCR–ABL/ABL levels lower than a detection
threshold corresponded to a 5-log reduction [116]. This
first study demonstrated that approximately 40 % CP-
CML patients did not relapse until 1 year after the dis-
continuation of a TKI, imatinib, and that all relapsing
patients responded well to the reintroduction of ima-
tinib. These observations were validated by a subsequent
meta-analysis on CML patients who underwent imatinib
termination [117]. Moreover, a large-scale multi-center
trial demonstrated that molecular relapse-free survival
was 50 % at 24 months after the treatment discontinu-
ation, in the patients who were treated with imatinib or
second-line TKIs, and stayed for at least 1 year in deep
molecular response, which was defined as less than 0.01
% BCR-ABL on the International Scale or undetectable
BCR-ABL in samples with 10,000 or more ABL tran-
scripts or 24,000 or more GUS transcripts [118].
Recurrence is presumed to arise from LSCs, which

survive TKI treatment through several mechanisms [7].
Additional mutations in BCR-ABL gene can confer re-
sistance to TKIs on LSCs [119]. Moreover, BCR-ABL in-
duces ROS generation in CP-CML cells and eventually
genomic instability, which can contribute to resistance
to TKIs [120] as similarly observed on BP-CML cells.
CP-CML LSCs can survive TKI treatment by activating
BCR-ABL-kinase-independent pathways including
Hedgehog signaling [93] and ALOX5 [94]. Furthermore,
bone marrow resident cells confer TKI resistance on
LSCs by either promoting the interaction of LSCs with
bone marrow niche [95–97] or secreting stemness-
maintaining mediators [98–103]. Nevertheless, the

interaction with various types of cells present in bone
marrow, is required for CML LSC maintenance.
Even in TKI era, a small number of CP-CML still pro-

gresses to AP-CML and eventually BP-CML [105]. Thus,
it is necessary to identify and/or predict CP-CML pa-
tients who are at a high risk to develop AP-CML and/or
BP-CML. Two scores were proposed to predict the
prognosis of CP-CML patients based on the clinical
findings at diagnosis [121, 122]. Both scores utilize four
parameters: blast proportions and platelet counts in per-
ipheral blood, age, and spleen size. Moreover, the World
Health Organization proposed the criteria for AP-CML:
basophilia (20 % more in peripheral blood), treatment-
resistant persistent leukocytosis, splenomegaly and
thrombocytosis, and increased proportions of blasts in
peripheral blood and bone marrow [105]. Alternatively,
increases in non-stem cells such as basophils and plate-
lets are associated with poor prognosis of CML patients
and therefore, it is highly likely that leukemia non-stem
cells such as basophils and megakaryocytes, a precursor
of platelets, can contribute to CML pathogenesis and
progression. We will discuss this assumption in detail in
the following sections.

Basophils in CML pathogenesis
Basophils are the least abundant granulocytes in periph-
eral blood. Basophils and tissue-resident mast cells share
many biological features including the presence of cyto-
plasmic basophilic granules, surface expression of high-
affinity IgE receptor, and activation-induced release of
chemical mediators, but they are distinct cell lineage dif-
ferentiated from HSCs in bone marrow [123]. Human
basophils develop from common basophil-eosinophil
precursors, which differentiate from HSCs through the
stage of common myeloid precursors [124]. In addition
to basophil-eosinophil precursors, basophil-mast cell
progenitors were identified in mouse but not human
bone marrow, and a transcription factor, CCAAT/en-
hancer binding protein (C/EBP) α, determined the fate
of precursors to basophil differentiation [125]. IL-3 and
thymic stromal lymphopoietin (TSLP) can induce bone
marrow progenitors to generate basophils with distinct
gene signatures [126]. Basophils and basophil-committed
colony-forming units are aberrantly produced in most
CML patients [127], partly due to BCR-ABL-mediated
C/EBPα activation [128]. Moreover, evidence is accumu-
lating to indicate the association of basophilia with poor
prognosis in CML patients in pre-TKI [129, 130] and
post-TKI eras [131]. Several mechanisms were proposed
to explain this association.
Vessel density is increased, together with tortuous ves-

sel architecture and augmented branching in CML bone
marrow [132] and was proposed to be an independent
parameter to predict worse prognosis of CML patients
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[133]. Moreover, CML patients’ serum displayed en-
hanced levels of several angiogenic factors including vas-
cular endothelial growth factor (VEGF) and hepatocyte
growth factor (HGF) [134]. Human normal basophils
contain VEGF in their secretory granules and can release
it upon immunological activation [135]. BCR-ABL can
induce VEGF expression in a mouse hematopoietic pro-
genitor cell line [136], but it remains elusive on the cap-
acity of basophil-like CML cells to secrete VEGF.
Increased plasma HGF levels were associated with poor
prognosis of the patients [133]. Basophil-like CML cells
were identified to be a major cellular source of HGF,
which could augment endothelial cell migration [137].
Additionally, basophil-like CML cells release abundantly
tryptase [138], which is stored in their cytoplasm and
can stimulate vascular tube formation [139]. Moreover,
as tryptase is a potent mitogen for fibroblasts [140], it
can contribute to the development of bone marrow fi-
brosis, which is associated with poor prognosis of CML
patients [141] and their poor response to TKI treatment
[142]. Thus, these basophil-derived mediators may be
able to induce CML progression by affecting bone mar-
row microenvironment.
A characteristic feature of CML LSCs is their low abil-

ity to stay in bone marrow niche and their high capacity
to redistribute to peripheral blood [143]. Their decreased
remaining in bone marrow is associated with decreased
availability of a chemokine, CXCL12, which can retain
LSCs as well as normal HSCs [144]. CXCL12 can be de-
graded and inactivated by a surface enzyme, DPP4/CD26
[145], which is expressed by basophil-like CML cells
[127] as well as CML LSCs [85]. Thus, CD26-mediated
CXCL12 inactivation may account for LSC redistribution
to peripheral blood. Their redistribution can be further
facilitated by vascular permeability-enhancing mediators
such as histamine, which is generated by the action of
histidine decarboxylase expressed by basophil-like CML
cells [146]. HGF can in vitro augment granulocyte-
macrophage (GM)-colony forming unit (CFU) formation
from CML blast cells, which express Met, a specific re-
ceptor for HGF [147]. However, the pathological rele-
vance of this observation has not been yet determined in
CML models or patients.
CCL3, previously known as macrophage inflammatory

protein (MIP)-1α, can directly inhibit normal
hematopoietic stem/progenitor cell (HSPC) proliferation
[148, 149], through the interaction with its specific re-
ceptors, CCR1 or CCR5 [150]. The transplantation of
BCR-ABL-expressing LSCs in vivo induced aberrant
CCL3 expression in bone marrow [144]. Moreover, ABL
gene conferred the resistance to CCL3 by abrogating
CCL3-mediated intracellular calcium influx with few ef-
fects on its receptor expression [151]. These observa-
tions prompted us to investigate the role of

endogenously-produced CCL3 in CML pathogenesis
[152]. When BCR-ABL gene was transduced into CCL3-
deficient mouse-derived HSPCs to generate CML LSCs,
the resultant LSCs induced CML development in irradi-
ated hematopoiesis-incompetent mice but failed to do in
un-irradiated hematopoiesis-competent mice, which pre-
served normal hematopoietic cells in bone marrow.
Moreover, admixture with CCR1- or CCR5-deficient
HSPCs blunted the leukemogenic ability of wild-type
mouse-derived LSCs [152], suggesting that leukemia
cell-derived CCL3 acts mainly on CCR1- or CCR5-
expressing normal hematopoietic cells in bone marrow
to promote leukemogenesis. Given the differential effects
of CCL3 on ABL-expressing and non-expressing cells
[151], it is likely that CCL3 can dampen normal
hematopoiesis and can reciprocally favor leukemogenic
hematopoiesis (Fig. 6).
This notion has been further substantiated by our sub-

sequent study [153]. CCL3 was expressed constitutively
by normal basophils as well as basophil-like CML cells
in mouse CML bone marrow, and negatively regulated
normal hematopoietic process, particularly
hematopoietic reconstitution after bone marrow trans-
plantation. Depletion of basophil-like CML cells mark-
edly reduced LSC numbers and eventually delayed CML
progression [153]. Moreover, the administration of a
CCR5 antagonist, maraviroc [154], prevented dramatic-
ally CML development when it was administered imme-
diately after LSC transplantation but the effects were
abrogated when administration started 2 weeks after
LSC injection [153]. Thus, massively expanding
basophil-like CML cells produce abundantly CCL3,
which can inhibit normal hematopoiesis and can recip-
rocally facilitate CML LSC proliferation, particularly at
the early phase, thereby advancing CML development
(Fig. 6). As CCL3 was abundantly expressed by basophils
in bone marrow of CML patients, it is probable that hu-
man leukemic basophils can contribute to LSC prolifera-
tion in CML.

Megakaryocytes in CML pathogenesis
Platelets have diverse impacts on development and pro-
gression of solid tumors, particularly by accelerating
tumor growth through angiogenesis induction and sup-
porting tumor cells to evade the immune system and ex-
travasate to metastatic organs [155]. However, until
present, there are no reports on the precise roles of
platelets in CML pathogenesis and progression [156].
Megakaryocytes in CML exhibit atypical features such

as cytoplasmic vacuolation, smaller diameter, and heter-
genous distribution of cytoplasmic granules [157]. More-
over, CML megakaryocytes displayed a shift towards
lower ploidy number and about 60 % were less than 8N,
compared with healthy volunteers showing the mean
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modal ploidy number of 16N [158, 159]. Of interest is
that either interferon-α treatment in pre-TKI era [160]
or TKI treatment [161] decreased small-sized megakar-
yocytes, together with improved cytogenetic response,
suggesting that morphological abnormalities in megakar-
yocytes are closely associated with CML pathogenesis.
Furthermore, in pediatric CML, increased megakaryo-
cyte proliferation was associated with bone marrow fi-
brosis [162], an independent poor prognostic
complication of CML [163], although it remains elusive
how megakaryocyte promoted fibrosis in CML.
We recently observed that bone marrow transplantation

of BCR-ABL-transduced LSCs induced massive accumula-
tion of BCR-ABL-expressing megakaryocytes in bone
marrow in CML model [164], similarly as observed on hu-
man CML patients [165]. Senescence can be induced in fi-
broblasts and epithelial cells by the activation of
oncogenes such as Ras or B-Raf [166]. Likewise, we ob-
served that senescence was provoked selectively in
expanding megakaryocytes in CML by an oncogenic fu-
sion protein, BCR-ABL, and was abrogated together with
megakaryocyte reduction by deletion of p16 and p21
[164], the molecules crucially involved in senescence
[167]. Thus, senescence may be required for megakaryo-
cyte generation also in CML as well as that in normal
hematopoiesis [168]. Senescence is frequently accompan-
ied by senescence-associated phenotype (SASP)

characterized by enhanced expression of several pro-
inflammatory cytokines including IL-1, IL-6, CXCL8 and
TGF-β1 [169] and indeed, senescent CML megakaryocytes
expressed TGF-β1 in p16- and p21-dependent manner
[164]. TGF-β1 was proposed to contribute crucially to
maintenance of CML LSCs [99, 170] but its cellular source
has not been determined. We proved that senescent
megakaryocytes were a major source of TGF-β1 and dem-
onstrated that p16- and p21-double-deficient LSCs failed
to increase megakaryocyte numbers at the first transplant-
ation and lacked the leukemogenic capability to cause
CML development at the secondary transplantation [164].
We further revealed that bone marrow megakaryocytes in
human CML patients expressed both p16 and p21, sug-
gestive of senescence in these cells. Thus, it is likely that
CML leukemia non-stem cells, BCR-ABL-transformed
megakaryocytes, can support the leukemogenic capacity of
CML LSCs by providing them with TGF-β1 (Fig. 6).
Moreover, as the resistance to TKIs was well correlated
with bone marrow megakaryocyte numbers at diagnosis, it
is highly likely that megakaryocytes can contribute to LSC
maintenance in human CML patients.

Perspective on the roles of cancer non-stem cells
in solid tumors
CSCs are presently presumed to be crucially involved in
malignant progression of solid cancer: chemoresistance,

Fig. 6 Presumed roles of basophil-like and megakaryocytic leukemia non-stem cells in CML pathogenesis. LSCs massively generate basophil-like
leukemia non-stem cells, which abundantly produce a chemokine, CCL3. The produced CCL3 inhibits the functions of normal HSCs which are
present in a large number especially at the early phase of CML bone marrow and as a consequence, gives advantage to LSC proliferation.
Concomitantly, BCR-ABL gene expression induces the appearance of senescent megakaryocytic leukemia non-stem cells in bone marrow. These
megakaryocytic leukemia non-stem cells abundantly produce TGF-β1, which can sustain leukemogenic capacity of LSCs in bone marrow, thereby
promoting CML propagation
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radioresistance, immune evasion, and metastasis. Appar-
ent morphological differences enabled us to identify
non-stem cells such as basophils and megakaryocytes in
CML. Basophil-derived CCL3 favors LSC-mediated
hematopoiesis by suppressing normal hematopoiesis
while megakaryocyte-derived TGF-β1 maintains the
stemness of LSCs. Thus, leukemia non-stem cells have
indispensable roles in the proliferation and maintenance
of LSCs in CML. A similar observation was observed on
glioblastoma, a representative solid cancer, which arises
from CSCs [9, 10]. Bastola and colleagues demonstrated
that CSCs were enriched at tumor edge compared to
tumor core sites of GBM tissues and that the cells at
core sites released soluble CD109 to induce CSCs at
tumor edge to proliferate and to display radioresistance
[171]. Thus, even in solid cancer, cancer non-stem cells
may contribute to cancer development and progression
as in the case of CML. However, more elaborate
methods are required to be developed to discriminate
precisely cancer non-stem cells from CSCs, for extensive
clarification on the roles of cancer non-stem cells in can-
cer development and progression.
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