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Abstract

Background The gut microbiota (GM) and their metabolites have garnered significant attention for their roles

in metabolic syndrome (MetS) and associated conditions. MetS, characterized by a cluster of metabolic abnormalities,
significantly increases the risk of cardiovascular disease (CVD), obesity, insulin resistance, and type 2 diabetes mellitus
(T2DM). The dysbiosis of gut microbiota, marked by changes in microbial composition and function, has been impli-
cated in the pathogenesis of MetS.

Main body This review synthesizes recent findings elucidating the influence of GM composition and microbiota-
derived metabolites on MetS pathogenesis and progression. Notably, alterations in GM composition and dysregula-
tion of metabolites such as short-chain fatty acids (SCFAs), trimethylamine N-oxide (TMAO), polyamines, amino acids,
and indole derivatives have been implicated in MetS development. These metabolites play crucial roles in metabolic
processes, and their imbalance can trigger or exacerbate metabolic disturbances associated with MetS. Various thera-
peutic approaches, including dietary interventions, probiotics, prebiotics, and precision medicine targeting specific
metabolites, offer promising strategies for managing MetS. These interventions aim to restore a healthy GM balance
and regulate the production of beneficial metabolites.

Conclusion The complexity of GM interactions and their systemic effects necessitate more standardized research
methodologies. Future investigations focusing on personalized therapeutic interventions and non-invasive diagnostic
tools are warranted to address the complexities of MetS management. Advancing our understanding of the GM-
metabolite-MetS axis will be crucial for developing effective, targeted treatments and improving patient outcomes

in MetS.

Keywords Gut microbiota, Metabolic syndrome, Dysbiosis, Microbiota-derived metabolites, Therapeutic
interventions

Introduction

Metabolic syndrome (MetS) comprises a cluster of
metabolic disorders that significantly increase the
risk of cardiovascular disease (CVD), obesity, insulin
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Pakistan exhibits a prevalence of 28.8%, with note-
worthy regional variations [1, 4]. In contrast, the USA
witnesses an escalating trend in MetS prevalence, par-
ticularly among individuals with lower educational
attainment [9]. Gender disparities are evident, with
higher prevalence observed among females in various
regions such as Pakistan and India [1, 8]. Similarly,
studies in China, Brazil, Finland, Mexico, Iran, and
Zahedan highlight the global burden of MetS [2, 6, 7,
10-12, 15].

Recent research has underscored the intricate inter-
play between gut microbiota (GM), microbiota-derived
metabolites, and host physiology in MetS pathogen-
esis [16]. Understanding these relationships is vital for
developing effective therapeutic strategies for MetS
management. The gut microbiota, comprising trillions
of microorganisms, plays a crucial role in host metabo-
lism by fermenting dietary substrates and producing
various metabolites that can impact systemic health
[17]. Among these metabolites, short-chain fatty acids
(SCFAs), such as acetate, propionate, and butyrate,
have garnered significant attention due to their plei-
otropic effects on metabolic processes, inflamma-
tion, and gut barrier function [18-20]. Alterations in
the composition and function of the gut microbiota,
known as dysbiosis, have been linked to the develop-
ment of MetS, partly through perturbations in SCFA
production and signaling [21-23]. Additionally, tri-
methylamine N-oxide (TMAO), a metabolite derived
from gut microbial metabolism of dietary nutrients
like choline and carnitine, has emerged as a biomarker
and mediator in MetS, influencing various metabolic
pathways and contributing to cardiovascular risk
[24-26].

Furthermore, polyamines, tryptophan and indole
derivatives derived from gut microbial metabolism
exhibit intricate relationships with MetS, affecting pol-
yamine synthesis, amino acid utilization, and signaling
pathways implicated in metabolic regulation [27-29].
Additionally, dysregulated bile acid metabolism plays
a significant role in the development of metabolic syn-
drome [30]. Alterations in gut microbiota composition
and function can perturb the balance of these metab-
olites, contributing to metabolic dysregulation and
MetS pathophysiology [31-33].

This review aims to synthesize recent findings on the
relevance of GM composition and microbiota-derived
metabolites in MetS and seeks to outline clear direc-
tions for future research, suggesting that a deeper
exploration into the causative links between microbi-
ota-derived metabolites and metabolic dysfunctions
could lead to more targeted therapeutic interventions.
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Gut microbiota metabolites in metabolic syndrome
The pivotal role of the gut microbiota (GM) in metabolic
syndrome (MetS) and related disorders has been exten-
sively studied in recent years as highlighted in Table 1.
Gradisteanu et al. examined microbiome patterns in
MetS patients, revealing significant alterations corre-
lated with metabolic abnormalities [16]. Several studies
highlight the crucial role of gut microbiota in the devel-
opment and progression of metabolic syndrome (MetS).
The gut microbiome composition can be influenced by
various factors such as diet, antibiotics, and maternal
microbiota, which in turn affects disease susceptibil-
ity and metabolic health [21-23]. Alterations in the gut
microbial community have been associated with obesity-
related metabolic syndrome, insulin resistance, dyslipi-
demia, and inflammation by gut microbial metabolites
[34-36].

The pathogenetic mechanisms through which these
metabolites contribute to the development of meta-
bolic syndrome (MetS) are multifaceted. Short-chain
fatty acids (SCFAs), such as acetate and butyrate, exert
regulatory effects on glucose and lipid metabolism,
inflammation, and intestinal barrier function, all critical
factors in MetS pathology [18-20, 37-40]. Trimethyl-
amine N-oxide (TMAO) serves as both a biomarker and
a mediator in MetS, exacerbating metabolic dysfunction
by triggering inflammatory responses and oxidative stress
pathways [24—-26, 41-46]. Bile acids, by activating recep-
tors like FXR and GPBARY], influence glucose homeosta-
sis and modulate gut microbial composition and energy
metabolism, contributing significantly to MetS progres-
sion [47-50].

Additionally, polyamines, including spermine, sper-
midine, and putrescine, synthesized by gut microbiota
such as Lactobacillus and Clostridium, are integral to
cellular processes like growth and proliferation. Dys-
regulated levels of polyamines contribute to oxidative
stress and inflammation, impacting gut barrier integ-
rity and immune function, thereby exacerbating insulin
resistance and dyslipidemia observed in metabolic syn-
drome (MetS) [29, 33, 51-54]. Tryptophan derivatives,
such as indole-3-aldehyde (3-IAld) and indole-3-acetic
acid (IAA), produced by bacterial metabolism of dietary
tryptophan, activate pathways like the aryl hydrocarbon
receptor (AhR), influencing immune responses and adi-
pose tissue metabolism. Disrupted tryptophan metab-
olism by gut microbiota may thus promote systemic
inflammation, insulin resistance, and dyslipidemia, piv-
otal aspects of MetS [27, 55-58].

Xavier-Santos et al. highlighted the impact of GM on
metabolic processes and proposed interventions like pro-
biotics and prebiotics for managing MetS [59]. Therapeu-
tic interventions targeting GM and microbiota-derived
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metabolites have shown promise in managing MetS.
These include probiotics, prebiotics, synbiotics, fecal
microbiota transplantation (FMT], dietary interventions,
and precision medicine approaches [37, 39, 60, 61]. For
example, dietary adjustments and supplementation with
specific nutrients have been proposed to modulate GM
composition and metabolite production [62, 63].

Short-chain fatty acids in metabolic syndrome

Short-chain fatty acids (SCFAs), particularly acetate, pro-
pionate, and butyrate, are metabolites produced by gut
microbiota fermentation of dietary fiber. SCFAs play a
vital role in regulating metabolic processes, including
glucose and lipid metabolism, inflammation, and gut bar-
rier integrity [18—20]. Dysregulation of SCFA levels has
been implicated in the pathogenesis of metabolic syn-
drome. Ganesan et al. and Zhang et al. both emphasize
the dysregulation of SCFAs in metabolic disorders [64,
65]. Ganesan et al. found decreased SCFA levels, par-
ticularly acetate and butyrate, in NAFLD patients, while
Zhang et al. observed decreased propionic acid levels in
Cushing’s syndrome patients. These findings suggest a
potential link between SCFAs and metabolic syndrome
severity.

Nogal et al. examined the relationships between cir-
culating acetate levels, gut microbiome composition,
and visceral fat in a large population-based cohort [66].
They found that acetate levels were positively correlated
with gut microbiota diversity and negatively associated
with visceral fat. This study suggests that gut microbiota
composition and SCFA production could influence car-
diometabolic health by modulating visceral fat accumula-
tion. Various dietary components, including fiber, dairy
products, anthocyanins, and betaine, have been studied
for their effects on gut microbiota composition and met-
abolic syndrome.

Impact of dietary intervention on metabolic syndrome
targeting SCFA

Consumption of fiber-rich diets promotes the growth of
beneficial bacteria and SCFA production, thereby attenu-
ating metabolic syndrome risk [39, 67, 68]. Dairy prod-
uct consumption, particularly low-fat options, has been
associated with beneficial alterations in plasma metabo-
lome profiles and mitigation of metabolic syndrome
[34]. Additionally, dietary supplements like betaine have
shown promise in improving gut microbiota dysbiosis
and metabolic syndrome parameters via the gut microbi-
ota-derived miR-378a/YY1 regulatory axis [69].

Li et al. explored the effects of different types of dietary
fiber (DF) on the growth and development of Magang
geese [70]. They observed that low-, medium-, and high-
viscosity DFs reduced lipid levels in geese by promoting
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the production of SCFAs and activating the AMPK
pathway-related genes. This study emphasizes the ben-
eficial effects of DFs on lipid metabolism through SCFA
production, providing insights into dietary interventions
for metabolic syndrome. He et al. and Maurer et al. inves-
tigated dietary interventions with mulberry leaf extract
(MLE) and citrus extract, respectively [71, 72]. Both stud-
ies found that these extracts positively influenced SCFA
production, contributing to improved metabolic profiles
in MetS subjects. He et al. demonstrated that MLE mod-
ulated SCFA production through the AMPK signaling
pathway, while Maurer et al. observed increased butyrate
production with citrus extract supplementation.

Wang et al. and Li et al. focused on the effects of die-
tary interventions on SCFA production by gut microbiota
modulation [73, 74]. Wang et al. found that Lactobacillus
administration increased SCFA production, particularly
acetic acid, contributing to improved metabolic parame-
ters. Li et al. demonstrated that dietary butyrate reduced
weight gain and improved insulin resistance in mice,
with the effects mediated by gut microbiota, particularly
Lachnospiraceae bacterium 28—4.

Trimethylamine N-oxide (TMAO) in metabolic syndrome
(MetS)

Emerging research suggests that gut microbiome-
derived metabolites, particularly trimethylamine N-oxide
(TMAOQO), may play a pivotal role in the pathogenesis of
MetS and its associated complications. Several studies
investigate the relationship between TMAO and meta-
bolic syndrome (MetS), emphasizing its potential as a
biomarker and its role in the pathogenesis of MetS. Kuo
et al. found a positive association between serum TMAQO
levels and MetS in patients with coronary artery disease
(CAD) [24]. Similarly, Mirzababaei et al. reported a sig-
nificant correlation between elevated TMAO levels and
MetS, indicating its potential as a predictive marker for
MetS [25]. Moreover, Sun et al. highlighted the associa-
tion between TMAO levels and the severity of psoriasis,
suggesting its role as an indicator of disease severity in
psoriatic patients with MetS [26].

Metabolomics studies reveal a distinctive urinary
metabolite signature associated with metabolic syn-
drome progression. Bruzzone et al. identified TMAO and
sixteen other metabolites that evolve with MetS progres-
sion, providing insights into the molecular basis of the
syndrome and offering potential biomarkers for early
detection and monitoring [60]. Nurwanti and Bai found
that both TMAO and BMI were independently associ-
ated with an increased risk of metabolic syndrome [44].
TMAO exhibited a higher odds ratio for metabolic syn-
drome compared to BMI, suggesting its potential as a
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more sensitive biomarker for metabolic syndrome risk in
middle-aged and elderly adults.

While TMAO is associated with MetS, its role in ath-
erosclerotic cardiovascular disease (ASCVD) remains
under discussion. Ringel et al. found no independent
association between TMAO plasma levels and stable
ASCVD but identified associations with obesity and dia-
betes mellitus (DM), indicating a potential functional
role in metabolic syndrome [45]. Additionally, Hoyles
et al. demonstrated the direct interaction of microbiome-
associated methylamines, including TMAO, with the
blood-brain barrier (BBB), influencing cerebrovascular
and cognitive function [75]. This highlights the intricate
relationship between gut microbiota-derived metabolites
and brain health, with implications for neurological dis-
orders associated with metabolic syndrome.

Effects of dietary intervention on TMAO levels
The gut microbiota plays a crucial role in metabolic syn-
drome, influencing TMAO production and other meta-
bolic pathways. Gao et al. demonstrated that L-carnitine
supplementation modulated gut microbiota composi-
tion and attenuated high-fat diet-induced metabolic syn-
drome in mice, providing evidence for the therapeutic
potential of L-carnitine in metabolic syndrome [76].
Thomas et al. compared the effects of egg intake and
choline supplementation on TMAO formation and gut
microbiota in MetS individuals, observing an increase
in plasma carotenoids with no significant effect on
TMAO levels but noting correlations between micro-
biota diversity and metabolic parameters [61]. Addition-
ally, Franck et al. investigated the effects of red raspberry
consumption on metabolic parameters and trimethyl-
amine N-oxide (TMAO) levels [77]. Despite changes in
gene expression and metabolomic profiles, raspberry
supplementation did not lead to significant metabolic
improvements, emphasizing the complexity of dietary
interventions. Collectively, these studies underscore the
role of dietary interventions and gut microbiota modu-
lation in influencing MetS and associated complications,
with TMAO emerging as a potential mediator whose
precise mechanisms warrant further investigation for
developing targeted therapeutic strategies.

Role of bile acids in metabolic syndrome

Bile acids, synthesized from cholesterol in the liver,
undergo further modification by the gut microbiota,
leading to the generation of a diverse pool of bile acid
species. Dysregulated bile acid metabolism has been
implicated in the pathogenesis of metabolic syndrome.
Children with MetS exhibit elevated levels of total, sec-
ondary, and 12a-hydroxylated bile acids, along with
deoxycholic acid, which correlates with dyslipidemia and
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insulin resistance markers [30]. Moreover, dysregulated
bile acid profiles negatively correlate with gut bacterial
diversity, potentially contributing to gut microbial dys-
biosis in MetS [30].

Studies have elucidated the role of bile acid-activated
receptors (BARs), such as the farnesoid-x-receptor (FXR)
and G protein Bile Acid Receptor (GPBARI), in meta-
bolic regulation. Activation of these receptors modulates
inflammatory responses and metabolic pathways, sug-
gesting therapeutic potential in addressing metabolic dis-
orders [78].

Interventions on bile acids for treating metabolic syndrome

Various interventions targeting bile acid metabolism have
shown promise in ameliorating metabolic syndrome. For
instance, dietary supplementation with xanthohumol
derivatives leads to improvements in obesity and MetS
parameters, partly mediated by alterations in gut micro-
biota composition and bile acid metabolism [79]. Simi-
larly, caffeine treatment improves metabolic syndrome
in high-fat diet-induced obese mice by alleviating insulin
resistance and serum lipid disorders [80]. The underlying
mechanisms involve alterations in gut microbiota com-
position and bile acid metabolism. Additionally, synbiotic
interventions, combining beneficial bacteria like Akker-
mansia muciniphila with antioxidants, demonstrate effi-
cacy in modulating gut microbiota and bile acid profiles,
thereby attenuating obesity and NAFLD progression [81].

Polyamines in metabolic syndrome

Polyamines, such as putrescine, spermidine, and sper-
mine, are organic compounds that occur naturally in
many foods and are also synthesized within the human
body. Although not directly produced by the gut microbi-
ota, these compounds are influenced by microbial activi-
ties within the gut. For instance, a study demonstrated
that polyamines like putrescine, derived from the gut
microbiota, help promote colonic epithelial proliferation
and regulate macrophage differentiation [53]. This sug-
gests a vital role for microbial polyamines in maintaining
mucosal homeostasis. Similarly, Ma et al. found that sper-
midine supplementation led to weight loss and improved
insulin resistance in diet-induced obese mice, with these
effects linked to enhanced intestinal barrier function and
significant changes in the gut microbiota composition,
including an increase in the SCFA-producing bacterium
Lachnospiraceae NK4A136 group [51].

Further exploring the impact of gut microbiota on
polyamine metabolism, Sheng et al. investigated men
with metabolic syndrome and discovered alterations in
gut microbial species, coupled with increased polyam-
ine metabolism pathways. This activity was associated
with elevated levels of gamma-glutamyl transpeptidase
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(GGT), a marker often linked with metabolic dysfunc-
tion. By modulating glutathione levels and maintaining
cellular oxidative balance, GGT indirectly supports the
enzymatic processes involved in polyamine synthesis
and degradation in the gut [33]. Additionally, Tari Selcuk
et al. conducted a study that found correlations between
dietary polyamine intake and various metabolic risk
parameters in postmenopausal women [54]. The intake
of spermidine was found to be positively associated with
increased waist circumference, systolic and diastolic
blood pressure, body mass index (BMI), and waist-to-
height ratio (WHtR). In contrast, the intake of spermine
was negatively associated with waist circumference, sys-
tolic blood pressure, BMI, and WHItR, underscoring
the significant impact of dietary sources of polyamines.
These findings collectively highlight the complex inter-
play between dietary polyamines, gut microbiota, and
the host’s metabolic health, emphasizing the indirect but
profound influence that gut microbiota have on polyam-
ine levels and their broader systemic effects.

Effect of bariatric surgery on polyamine levels and metabolic
syndrome improvement
Ocana-Wilhelmi et al. investigated the impact of bariat-
ric surgery on serum polyamine levels in morbidly obese
patients with metabolic syndrome [29]. They observed a
significant increase in polyamine metabolites after sur-
gery, particularly putrescine and acetyl derivatives of
spermidine and spermine. Moreover, changes in putres-
cine and acetyl putrescine levels were associated with the
resolution of metabolic syndrome post-surgery.
Understanding the complex mechanisms involving pol-
yamines and gut microbiota could pave the way for novel
interventions targeting metabolic disorders. However,
further research is warranted to elucidate underlying
mechanisms and optimize therapeutic strategies.

Impact of dietary intervention on metabolic syndrome
targeting polyamines

Dietary intake of polyamines, which are abundant in
foods such as soy, legumes, and mushrooms, has been
shown to enhance gut microbiota composition and
function. A study by Vasquez et al. suggests that dietary
intervention can modulate the gut microbiome and
subsequently influence polyamine levels, which could
improve gut health and reduce inflammation [82]. Simi-
larly, Xiao et al. demonstrated that dietary fibers and
polyamines could enrich short-chain fatty acid (SCFA)-
producing bacteria and genes involved in tryptophan
metabolism, further supporting the notion that diet sig-
nificantly affects gut microbiota and metabolite produc-
tion [83].
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Tryptophan and indole derivatives in metabolic syndrome
Indole and its derivatives are metabolites produced by the
gut microbiota from the amino acid tryptophan. Trypto-
phan metabolism produces several bioactive compounds,
including indole-3-aldehyde (3-IAId), indole-3-acetic
acid, indole-3-aldehyde (IAA), indole-3-lactic acid, and
indole-3-propionic acid (IPA), which have shown signifi-
cant cardiometabolic effects. Several studies underscore
the therapeutic potential of indole derivatives.

The interplay between tryptophan metabolism and car-
diovascular disease (CVD) is notable. Melhem and Taleb
discussed the intricate relationship between tryptophan
metabolites, particularly kynurenine pathway interme-
diates, and CVD pathogenesis, suggesting avenues for
tailored therapeutic interventions [84]. Furthermore,
indole derivatives, particularly those from gut microbi-
ota metabolism, play crucial signaling roles. Shatova and
Shestopalov elucidated the signaling functions of indole
derivatives, emphasizing their role in gut-microbiota
crosstalk and metabolic syndrome [85]. Su et al. high-
lighted the immunomodulatory effects of gut microbiota-
derived tryptophan metabolites, offering insights into
potential immunotherapeutic strategies [86].

Indole derivatives, such as Indole-3-aldehyde (3-IAId)
and indole-3-propionic acid (IPA), play significant roles
in the context of metabolic syndrome, particularly in
relation to metabolic dysfunction-associated steatotic
liver disease (MASLD). Studies have indicated a close
relationship between MASLD and gut microbiota-
derived metabolites, including indole derivatives. A study
by Min et al. demonstrated that patients with hepatic ste-
atosis exhibited decreased levels of IPA and indole-3-ace-
tic acid (IAA) in their feces compared to healthy controls
[57]. This finding is significant as it indicates a potential
link between indole derivatives and the development of
hepatic steatosis.

Moreover, research has shown that the administra-
tion of IPA and IAA can ameliorate hepatic steatosis and
inflammation in animal models of MASLD induced by a
Western diet (WD). This effect is achieved through the
suppression of the NF-kB signaling pathway, which is
associated with a reduction in endotoxin levels and the
inactivation of macrophages [57]. Specifically, Bifidobac-
terium bifidum, a gut bacterium, metabolizes tryptophan
to produce IAA, which effectively prevents hepatic stea-
tosis and inflammation. Also, Alam et al. investigated the
efficacy of Lysimachia candida Lindl. extract in mitigating
metabolic syndrome phenotypes in rats, highlighting its
ability to restore metabolic pathways crucial for glucose
homeostasis and insulin sensitivity [27]. This suggests a
potential therapeutic role for indole derivatives derived
from the gut microbiota in the treatment of MASLD.
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Effects of dietary intervention on tryptophan and indole
derivatives

Dietary tryptophan, found in foods like turkey, eggs, and
cheese, can be modulated through specific dietary inter-
ventions. Selective nourishment of gut microbiota with
amino acids, including tryptophan, could serve as a novel
prebiotic approach to improve gut health [87]. Dietary
interventions with specific lipids, such as phosphatidyl-
choline and sphingomyelin, can modulate endogenous
tryptophan metabolism and gut microbiota composi-
tion, with phosphatidylcholine showing more promise in
reducing colitis symptoms and inflammation in preclini-
cal models [88].

A polyphenol-rich diet can influence GM and enhance
the production of bioactive metabolites, specifically
indole derivatives from dietary tryptophan, which are
linked to maintaining intestinal barrier integrity. In a
randomized controlled trial with older adults, a polyphe-
nol-rich diet significantly increased serum levels of IPA
in participants with normal renal function, but not in
those with impaired RF. The study found that IPA vari-
ations were associated with changes in C-reactive pro-
tein and shifts in GM composition, particularly within
the Clostridiales and Enterobacteriales orders [89]. These
results suggest that a polyphenol-rich diet may be ben-
eficial for older adults with normal renal function, high-
lighting the importance of considering renal function
when defining dietary interventions aimed at improving
gut health and metabolic outcomes.

Dietary interventions and gut microbiota in metabolic
syndrome

Wang et al. and Zeng et al. explore dietary interven-
tions and their effects on metabolism and gut micro-
biota. Wang et al. focus on kelp-resistant starch (KRS)
and its impact on intestinal morphology and function,
highlighting changes in amino acid metabolism among
other pathways [90, 91]. Zeng et al. investigate a citrus
polymethoxyflavone-rich extract (PMFE) and its ability
to alleviate metabolic syndrome through modulation of
gut microbiota and regulation of branched-chain amino
acid (BCAA) metabolism. Both studies underscore the
intricate relationship between dietary interventions, gut
microbiota, and metabolic pathways. Li and Song utilized
Mendelian randomization to investigate the causal rela-
tionship between antioxidants, minerals, and vitamins
with MetS traits [92]. They found associations between
specific vitamins and minerals with components of MetS,
providing insights into potential causal relationships.

Association between vitamins and metabolic syndrome
Several studies have investigated the association between
various vitamins and metabolic syndrome (MetS) as
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highlighted in Table 2. Nguyen et al. found that lower
intakes of vitamins B1, B2, B3, C, and A were associated
with MetS, while higher serum levels of heavy metals (Pb,
Hg, Cd), vitamin A, E, and hs-CRP were observed in sub-
jects with MetS [101]. Pei et al. explored water-soluble
vitamins (VC, VB9, VB12) and found negative associa-
tions with MetS, with higher quartiles of VC associated
with lower MetS risk [103]. Nguyen and Kim found that
vitamin B2 intake and high curry consumption were
associated with reduced MetS risk in postmenopausal
women [102].

Zhang et al. investigated the effects of diet-induced
gut microbiota dysbiosis on spermatogenesis in a MetS
sheep model. They found a notable reduction in bile
acid levels, affecting vitamin A absorption, which con-
tributed to abnormal spermatogenesis [105]. This study
highlights the intricate relationship between gut micro-
biota, vitamin absorption, and MetS-related outcomes.
Boughanem et al. explored the modulation of gut micro-
biota and serum vitamin D levels by a Mediterranean diet
(MedDiet) intervention in obese patients with MetS [97].
They observed differences in gut microbiota composi-
tion and functionality between groups with optimal and
low vitamin D levels. The study suggests a potential link
between gut microbiota, vitamin D status, and metabolic
pathways, emphasizing the role of dietary interventions
in managing MetS. Zhang et al. investigated the effects
of vitamin D supplementation on high-fat diet-induced
NAFLD in rats [100]. They found that vitamin D treat-
ment improved NAFLD by modulating gut microbi-
ota composition and metabolites. This study suggests
a potential therapeutic role for vitamin D in NAFLD
through gut microbiota regulation.

Zhu et al. conducted a prospective study in a US cohort
and found inverse associations between folate, vita-
min B6, and vitamin B12 intakes or serum concentra-
tions with incident MetS [96]. This study underscores
the importance of B vitamin status in MetS risk reduc-
tion. Soto-Martin et al. investigated the growth require-
ments of butyrate-producing gut bacteria, emphasizing
their dependence on dietary vitamins [106]. The study
highlights the role of vitamins, particularly thiamine
and folate, in supporting the growth and function of
beneficial gut bacteria associated with metabolic health.
Villatoro-Santos et al. explored the associations between
vitamins B6, B12, and folate with MetS prevalence in
Mesoamerican children and adults [107]. Their findings
suggest differential associations between vitamins and
MetS across age groups.

HighliKim and Kang found a dose-dependent asso-
ciation between high serum retinol (vitamin A) and
a-tocopherol (vitamin E) levels with increased MetS
risk among Korean adults [95]. Barzegar-Amini et al
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reported lower serum vitamin E levels in individuals
with MetS, suggesting an inverse association between
vitamin E status and MetS presence [94]. Overall, these
studies demonstrate the complex and varied relationships
between vitamin intake, serum levels, gut microbiota,
and metabolic syndrome (MetS).

Role of dietary supplements

Interventions targeting the gut microbiota and circulat-
ing metabolites offer promising avenues for metabolic
syndrome management. Gholami et al. investigated
the association between dietary supplement intake and
MetS, while initial findings indicated significant differ-
ences in supplement consumption among those with
MetS, the relationship was not significant after adjusting
for covariates in the multivariate regression model [108].
Cano-Ibanez et al. found that despite being overweight,
participants with MetS exhibited suboptimal nutrient
intake, particularly among men, with nutrient density
positively associated with female sex, higher education,
better Mediterranean diet adherence, non-smoking, and
active lifestyles [109]. Qiu et al. and Zhang et al. dem-
onstrated the therapeutic potential of traditional Chi-
nese herbal medicine and prebiotic supplementation in
ameliorating metabolic disorders [110, 111]. Addition-
ally, Alhamoud et al. highlighted the anti-obesity effects
of 6-gingerol through microbiota modulation and lipid
metabolism alterations [112].

These studies collectively underscore the complex
interplay between dietary nutrients, serum vitamin lev-
els, and metabolic health outcomes like MetS and obe-
sity. While some nutrients demonstrate protective effects
against MetS, others may increase risk factors. Under-
standing these associations can inform dietary recom-
mendations and intervention strategies for improving
metabolic health.

Metformin’s role in gut health and metabolic syndrome
management

Metformin plays a pivotal role in managing metabolic
syndrome, demonstrating its crucial importance in
improving not only glucose metabolism but also broader
aspects of metabolic health. Metformin positively
impacts gut microbiota, enhancing its therapeutic effects
in treating metabolic syndrome (MetS). It promotes
the growth of short-chain fatty acid (SCFA) producing
bacteria, including Blautia, Bacteroides, Butyricoccus,
Bifidobacterium, Prevotella, Megasphaera, and Butyrivi-
brio, leading to increased fecal concentrations of lactate
and succinate [113, 114]. Metformin also boosts mucin-
degrading bacteria like Akkermansia muciniphila, which
improves glucose metabolism by regulating gut permea-
bility, reducing lipopolysaccharides (LPS), and enhancing
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postprandial insulin secretion through GLP-1 interac-
tions [114, 115].

Further studies highlight metformin’s influence on
the gut microbiome and its role in improving metabolic
health. Metformin administration impacts metabolic
syndrome by modulating the gut microbiota, leading
to changes in microbial communities such as Prevotel-
laceae, Rikenellaceae, and Clostridiales, which may influ-
ence glucose metabolism, lipid profiles, and overall gut
health, helping to distinguish MetS from type 2 diabetes
mellitus (T2DM) and highlighting the unique microbi-
ome signatures associated with each condition [116]. In
accordance with the findings of Lee et al., metformin reg-
ulates metabolic syndrome by modulating the gut micro-
biome, which enhances glucose metabolism, increases
short-chain fatty acids, strengthens intestinal permeabil-
ity against lipopolysaccharides, modulates the immune
response, and interacts with bile acids [117].

Additionally, metformin may offer cardiovascular
benefits by reducing trimethylamine N-oxide (TMAO)
concentrations and its precursor metabolites, which are
linked to cardiovascular diseases [118]. Overall, met-
formin enhances gut and cardiovascular health by modu-
lating the gut microbiota, increasing beneficial bacterial
species, and reducing harmful metabolites. Furthermore,
Ahmadi et al. provide evidence that metformin reduces
aging-related microbiome dysbiosis and improves cogni-
tive function by modulating the gut microbiome/goblet
cell/mucin axis [119]. This multifaceted influence under-
scores metformin’s potential beyond glucose regulation,
suggesting it can also play a significant role in overall
metabolic health, inflammation reduction, and the main-
tenance of gut integrity. These findings highlight the
importance of understanding the gut microbiome’s role
in therapeutic interventions and open avenues for future
research on metformin’s broader health benefits.

Therapeutic potential of probiotics, prebiotics,

and synbiotics in metabolic syndrome and associated
metabolic disorders

The complex interplay between the composition of
gut microbiota, the metabolites they produce, and the
body’s physiological processes significantly influences
the development of metabolic syndrome (MetS). Among
the array of therapeutic strategies, probiotics, prebiotics,
and synbiotics have emerged as promising interventions
for modulating gut microbiota and improving metabolic
health.

Probiotics, live microorganisms with health benefits
when consumed adequately, play a pivotal role in manag-
ing MetS. They foster the growth of beneficial bacteria to
restore microbial balance. This restoration of microbial
balance has been linked to reductions in obesity-related
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MetS, insulin resistance, dyslipidemia, and inflammation.
Notably, probiotics exert their effects by influencing vari-
ous metabolic pathways beyond SCFA production. They
modulate bile acid composition, polyamine metabolism,
amino acid metabolism, and indole derivative produc-
tion, thereby impacting metabolic function [53, 120, 121].

Recent studies have expanded on these findings,
exploring the potential of fecal microbiota transplanta-
tion (FMT) as an innovative approach to treating meta-
bolic syndrome and associated metabolic disorders. For
instance, a randomized controlled trial demonstrated
that FMT combined with low-fermentable fiber sup-
plementation significantly improved insulin sensitivity
in patients with severe obesity and metabolic syndrome
[122]. Similarly, another study found that FMT capsules
derived from lean donors led to sustained changes in the
gut microbiome of obese patients, although it did not
result in significant weight loss [123]. Moreover, in ado-
lescents with obesity, FMT did not affect BMI but showed
promising reductions in abdominal adiposity [124]. Fur-
ther emphasizing the potential of FMT, a trial in obese
subjects with type 2 diabetes demonstrated enhanced
microbiota engraftment and improved metabolic param-
eters following repeated FMT treatments [125].

Prebiotics, non-digestible fibers that selectively nour-
ish beneficial gut bacteria, offer another avenue for MetS
management. By serving as substrates for SCFA produc-
tion, prebiotics regulate glucose and lipid metabolism
while modulating gut microbiota composition [19]. Die-
tary interventions enriched with prebiotics have dem-
onstrated efficacy in improving metabolic parameters
associated with MetS [37]. Furthermore, prebiotics con-
tribute to metabolic health by promoting bile acid home-
ostasis, polyamine balance, amino acid metabolism, and
indole production through their influence on gut micro-
biota [51, 58, 126, 127].

Synbiotics, which combine probiotics and prebiotics,
offer an integrated approach to enhancing gut micro-
biota and metabolic health. By providing a conducive
environment for probiotic proliferation, prebiotics aug-
ment the efficacy of probiotic supplementation in MetS
management [39]. This synergistic effect addresses dys-
biosis-induced metabolic dysfunction comprehensively.
For instance, research by Ouyang et al. underscores the
therapeutic potential of synbiotics in alleviating small
intestinal bacterial overgrowth and improving lipid
metabolism, particularly in pregnant women with sub-
clinical hypothyroidism [128].

Probiotics, prebiotics, and synbiotics represent prom-
ising strategies for managing MetS by modulating gut
microbiota composition and influencing various meta-
bolic pathways. Their multifaceted effects underscore
their potential as holistic approaches to metabolic health.
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Conclusion and future directions

In conclusion, the gut microbiota and microbiota-derived
metabolites represent key players in the pathogenesis of
metabolic syndrome and associated disorders. Under-
standing the complex interplay between GM composi-
tion, microbial metabolites, and host physiology holds
promise for the development of personalized therapeutic
interventions and non-invasive diagnostic tools for meta-
bolic disorders. However, addressing challenges such as
methodological heterogeneity and the need for transla-
tional research is essential for advancing our understand-
ing and clinical management of MetS.

Probiotics, prebiotics, and synbiotics represent promis-
ing therapeutic approaches for managing metabolic syn-
drome by modulating gut microbiota composition and
microbial metabolite production. These interventions
target the underlying dysbiosis and metabolic dysfunc-
tion associated with MetS, offering potential avenues
for personalized therapy. Future research should focus
on elucidating the mechanistic links between gut micro-
biota, metabolites, and MetS pathogenesis to optimize
therapeutic strategies and develop non-invasive diagnos-
tic tools.

Future research efforts should focus on elucidating the
specific mechanisms by which gut microbiota and micro-
biota-derived metabolites influence MetS development
and progression. Additionally, well-designed, controlled
trials are needed to evaluate the efficacy of therapeutic
interventions targeting GM composition and metabo-
lite profiles in MetS management. Translational research
aiming to leverage stool metabolites for non-invasive
diagnostics and personalized therapeutic interventions
represents a promising avenue for future investigation.
Moreover, integrating omics technologies and systems
biology approaches may provide deeper insights into the
complex interplay between diet, microbiome, and cardio-
metabolic diseases, paving the way for precision medi-
cine in MetS management.
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