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Abstract

Background: Fluorescence In Situ Hybridization (FISH) played an essential role to locate the ribosomal RNA genes
on the chromosomes that offered a new tool to study the chromosome structure and evolution in plant. The 45S
and 5S rRNA genes are independent and localized at one or more loci per the chromosome complement, their
positions along chromosomes offer useful markers for chromosome discriminations. In the current study FISH has
been performed to locate 45S and 5S rRNA genes on the chromosomes of nine Lathyrus species belong to five
different sections, all have chromosome number 2n=14, Lathyrus gorgoni Parl, Lathyrus hirsutus L., Lathyrus
amphicarpos L., Lathyrus odoratus L., Lathyrus sphaericus Retz, Lathyrus incospicuus L, Lathyrus paranensis Burkart,
Lathyrus nissolia L., and Lathyrus articulates L.

Results: The revealed loci of 45S and 5S rDNA by FISH on metaphase chromosomes of the examined species were
as follow: all of the studied species have one 45S rDNA locus and one 5S rDNA locus except L. odoratus L., L.
amphicarpos L. and L. sphaericus Retz L. have two loci of 5S rDNA. Three out of the nine examined species have the
loci of 45S and 5S rRNA genes on the opposite arms of the same chromosome (L. nissolia L., L. amphicarpos L., and
L. incospicuus L.), while L. hirsutus L. has both loci on the same chromosome arm. The other five species showed
the loci of the two types of rDNA on different chromosomes.

Conclusion: The detected 5S and 45S rDNA loci in Lathyrus could be used as chromosomal markers to discriminate
the chromosome pairs of the examined species. FISH could discriminate only one chromosome pair out of the
seven pairs in three species, in L. hirsutus L., L. nissolia L. and L. incospicuus L., and two chromosome pairs in five
species, in L. paranensis Burkart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L. articulatus L., while it could
discriminate three chromosome pairs in L. sphaericus Retz. these results could contribute into the physical genome
mapping of Lathyrus species and the evolution of rDNA patterns by FISH in the coming studies in future.

Keywords: Lathyrus, rRNA genes, FISH

Background
Genus Lathyrus L. is one of the many genera of the fam-
ily Leguminosae, genus Lathyrus includes as many as
187 species and sup-species, most of them are annual
species and a few are perennial species [1], According to
[2], 13 intrageneric sections have been recognized in the
genus Lathyrus out of them section Lathyrus, which
comprises about 30 species. Lathyrus species dispersed
all over temperate regions of the northern hemisphere

and spreads into tropical East Africa and South America.
The main center of genus Lathyrus diversity is in the
Mediterranean and Irano-Turanian regions, there are
fewer centers in North and South America [2]. Members
of the Lathyrus genus are used in agriculture, some as
fodder crop (L. hirsutus and L. palustris), and human
nutrition (L. sativus), some are grown as ornamentals,
for instance, L. odoratus [3, 4]. Grass pea (L. sativus L.)
is the most investigated Lathyrus species due to its im-
portance as human consumption plant, it has survived
and spread over three continents and considered one of
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the most resistant plant species to environmental stress
and climate changes [5–7].
Cytologically the basic chromosome number in genus

Lathyrus is x = 7, and most of the species are diploid, or al-
lopolyploids and a few are natural autopolyploids [8–11].
Despite the stability in the chromosome number and simi-
larity in chromosome morphology, considerable variations
in chromosome size which are associated with a fourfold
variation in 2C nuclear DNA amount (6.9–29.2 pg/2C)
have played an important role in the evolution of Lathyrus
species [12–14].
Fluorescence In Situ Hybridization (FISH) has made a

revolution in the cytogenetic because it could explain in
more detail many questions related to karyotype diver-
sity, organization and evolution of not only individual
chromosomes but also entire genomes [15–22]. Many
investigations have used FISH against various taxa to
distinguish specific chromosomes, or to identify individ-
ual genome in the allopolyploidy species [23–28]. In
plants, FISH has been used to localize a single copy gene
on its position on a specific chromosome [29–31], by
using bacterial artificial chromosome clones (BACs)
clones was useful to paint specific chromosome [32–35],
to reveal chromosomal inversion [36], or a translocation
between the chromosomes of the different genomes in
the allopolyploid hybrids [37], it was useful in designing
species-specific DNA sequences (probes) to be tested on
the related species, arising in comparative cytogenetic
mapping among these species [38–41].
FISH investigations using rDNA sequences as probes

remain the most common, probably because the se-
quences are highly conserved and occur as tandemly ar-
ranged repetitive copies that vary greatly in their
number among the species. Two types of rDNA (45S
and 5S rDNA) are present in eukaryotes and physically
they are separated from each other [42–45]. Many cyto-
logical studies have been performed on Lathyrus species
to compare the karyotype of different species [10, 11,
46–48], or to find out the chromosome banding patterns
[49–52], at the cytogenetical level FISH was very useful
to localize 45S and 5S rRNA genes on different Lathyrus
species [51, 53–58]. The main target of this investigation
is to locate 45S and 5S rDNA on nine Lathyrus species
belong to five sections by FISH.

Methods
Plant material
All of the examined species have somatic chromosome
number of 2n=14 chromosomes and belong to five sec-
tions. L. gorgoni Parl (accession no. LAT. 101), L. hirsu-
tus L. (accession no. LAT. 167), L. amphicarpos L.
(accession no. LAT. 137), and L. odoratus L. (accession
no. LAT. 35) belong to section Lathyrus, L. sphaericus

Retz (accession no. LAT. 137) and L. incospicuus L. (ac-
cession no. LAT. 164) belong to section Linrearicarpus.
The other three species belong to different sections, L.
paranensis Burkart (accession no. LAT.169) belongs to
section Notolathyrus, while L. nissolia L. (accession no.
LAT.168) belongs to section Nissolia and L. articulatus
L. (accession no. LAT. 117) belongs to section Clyme-
num (Table 1). The nine Lathyrus species were obtained
from the germplasm collection of the Institute of Plant
Genetics and Crop Plant Research (IPK), Gatersleben,
Germany.

Chromosome preparation:
Chromosome preparations from root tips and FISH
were done according to [59] with minor modifica-
tions. Seeds were sown on two layers of moistened
filter paper in a Petri dish and kept in the dark at
25°C for two days. The young germinated root tips
were cut and treated with 0.02% aqueous 8-
hydroxyquinoline for 3 h at 15°C and then washed
several times with sterile water before fixation in
freshly prepared Chloroform- acetic acid - ethanol (6:
3:1) then in acetic acid - ethanol (1:3) and stored in
ethanol 70%.The roots were washed in distilled water
two times / 5 min and in citrate buffer (10 mM Na
Citrate, pH 4.8) for 5 min, then softened in an en-
zyme mix [2% cellulase, and 1% pectinase (Sigma)]
dissolved in the citrate buffer in an incubator at 37°C
for 2 h. The root tips were washed again in citrate
buffer and squashed on the slides in a drop of 45%
acetic acid. The preparations were staged with a
phase contrast microscope to select the slides with
good separated chromosomes for further FISH experi-
ment, then frozen on dry ice, washed with the fix-
ation buffer and air-dried after removal of coverslips.

Table 1 The sections of the studied species and the
chromosome no. and the arm which display 5S rDNA or 45S
rDNA

Species Section rDNA loci on chromosomes

5S rDNA 45S rDNA

L. paranensis Burkart Notolathyrus 3p 4q

L. nissolia L. Nissolia 1p 1q

L. odoratus L. Lathyrus 3p** 4q

L. hirsutus L. Lathyrus 3p 3p

L. amphicarpos L. Lathyrus 1p + 2p 1q

L. gorgoni Parl. Lathyrus 5q 3q

L. articulatus L. Clymenum 1p 4q

L. sphaericus Retz Linrearicarpus 2p + 3p 4q

L. incospicuus L. Linrearicarpus 1p 1q

p Short arm q Long arm ** Two loci on the same chromosome arm
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Fluorescence In Situ Hybridization:
The A. thaliana BAC clone T15P10 (AF167571) bear-
ing the 45S rDNA sequence was labelled with digoxi-
genin by nick translation, and the 5S rDNA probe
was amplified from genomic DNA of A. thaliana and
labelled with biotin by PCR with primers specific for
the coding region [60]. The biotinylated 5S rDNA
was detected by avidin~Texas Red (Vector Laborator-
ies) and amplified by biotinylated goat anti-avidin
(Vector Laboratories) and avidin~Texas Red.
Digoxigenin-labelled probes were detected by mouse
anti-digoxigenin (Jackson ImmunoResearch Laborator-
ies) and goat anti-mouse antibodies conjugated with
Alexa 488 (Molecular Probes). The chromosomes
were counterstained with DAPI (2 μg/ml). The images
were captured with a Zeiss Axioplan 2 epifluorescence
microscope equipped with a Spot 2e CCD camera.
Images were pseudo-coloured and merged using
Adobe Photoshop CS software (Adobe). The karyo-
types of the studied species have been done manually

from the images which have been taken by the epi-
fluorescence microscope. The available chromosome
images were magnified in Adobe Photoshop CS soft-
ware (Adobe) to enlarge the image to the size in
which the difference in chromosome size could be
identified, then each chromosome was copied and
pasted separately and arranging the number of these
chromosomes according to their decreasing in the
size, taking in account the homologous chromosomes
which bear the 45S and 5S rRNA genes.

Results
FISH has been performed to locate 45S and 5S rRNA
genes on the chromosomes of nine Lathyrus species all
have 2n=14, and belong to five sections.
The loci of 45S (in green) and 5S rDNA (in red)

probes as revealed by double-target FISH on meta-
phase chromosomes preparations of the nine exam-
ined species have been shown in Fig. 1, and their
karyotypes are shown in Fig. 2, and Table 1

Fig. 1 Mitotic metaphase chromosomes of nine Lathyrus species after FISH with rDNA probes, 45S rDNA probe was detected by FITC (green
signals), and 5S rDNA probe by Texas red (red signals). The chromosomes were counterstained with DAPI. Bar = 5μ. a) L. paranensis Burkart b) L.
nissolia L. c) L. odoratus L. d) L. hirsutus L. e) L. amphicarpos L. f) L. gorgoni Parl. g) L. articulatus L. h) L. sphaericus Retz i) L. incospicuus L.
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summarizes the chromosome number and arm which
display the 5S and 45S rDNA loci.
The detected 45S and 5S rRNA gene loci using

double-FISH experiment on the metaphase chromo-
somes of each of studied species as follows:
L. paranensis Burkart (Fig. 1a) belongs to section

Notolathyrus, showed one interstitial 5S rRNA gene locus
on the short arm of the chromosome no. 3 and one 45S
rRNA gene locus on the long arm of chromosome no. 4.
L. nissolia L. (Fig. 1b) belongs to section Nissolia,

exhibited one interstitial locus of 5S rRNA and one
45S rRNA gene locus on the opposite arms of
chromosome no. 1.

L. odoratus L. belong to section Lathyrus, has one
stretched interstitial 45S rRNA gene site on chromo-
some no. 4, which is distinguished with a big satellite,
while two 5Sr RNA gene loci were observed in this
species, one interstitial and one distal 5S rDNA on
the short arm of chromosome pair no. 3 (Fig.1c).
L. hirsutus L. belongs to section Lathyrus too, ex-

hibited a single terminal 45S rDNA site, and one
proximal 5S rDNA site located on the short arm of
chromosome pair no. 3 (Fig.1d).
L. amphicarpos L. the third studied species belongs to

section Lathyrus, it has a big terminal 45Sr RNA gene
locus on the long arm of the largest chromosome and

Fig. 2 The Karyotypes of the examined Lathyrus species with 5S rDNA (in red) and 45S rDNA (in green) Bar = 5μ. a) L. paranensis Burkart b) L.
nissolia L. c) L. odoratus L. d) L. hirsutus L. e) L. amphicarpos L. f) L. gorgoni Parl. g) L. articulatus L. h) L. sphaericus Retz i) L. incospicuus L.
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interstitial 5Sr RNA gene locus on the short arm of the
same chromosome (no. 1), in addition to another distal
5Sr RNA gene locus on the short arm of chromosome
no. 2 (Fig. 1e).
L. gorgoni Parl is the fourth studied species belongs to

section Lathyrus, it was characterized by having one
large stretched interstitial 5S rDNA site on the short
arm of middle-sized chromosome pair (no.5), while the
45S rDNA site was at a distal position on the short arm
of large chromosome pair no. 3 (Fig.1f).
L. articulatus L. belongs to section Clymenum, it also

exhibited one large stretched proximal 45S rDNA site
on the long arm of chromosome pair no. 4, whereas the
5S rDNA site was located on the middle of the short
arm of chromosome no. 1 (Fig. 1g).
L. sphaericus Retz belongs to section Linrearicarpus.

it was characterized by having two proximal 5S rRNA
gene loci on the short arm of chromosomes no. 2 and
no. 3, and one big terminal 45Sr RNA gene locus on the
long arm of chromosome no. 4 (Fig. 1h)
L. incospicuus L. belongs to section Linrearicarpus

too, this species was characterized by having one distal
5S rRNA gene locus on the short arm of longest arm
chromosome (no. 1), and exhibited one large stretched
distal 45S rDNA site on the long arm of the same
chromosome pair as well (Fig. 1i).

Discussion:
Genus Lathyrus includes 187 species and sup-species,
some of which have economic importance as food, fodder,
or ornamental crops. Lathyrus species are distributed in
the regions of the Northern Hemisphere and outspread
into tropical South America East Africa [1, 16]. Most
Lathyrus species are diploid (2n = 14). [2] classified genus
Lathyrus depending on morphological traits into 13 intra-
generic sections. Section Nissolia is monotypic has only
one species L. nissolia. While section Aphaca is ditypic
has two species L. aphaca and L. stenolobus, and section
Lathyrus comprises about 30 species. Despite the stability
in chromosome number, many investigations mentioned a
variation in chromosome features, e.g. size, centromere
position, and the size, number and position of secondary
constrictions [11, 48, 52, 61, 62].
Lathyrus species show uniform chromosome morph-

ology which is reflected in a homogeneous karyotype ar-
rangement [9, 49]. Nevertheless, others have observed
interspecific karyotype variations allowing species identifi-
cations [53, 61]. Such divergences have been also detected
at the infraspecific level, especially in the extensively stud-
ied L. odoratus L. and L. sativus L. [53, 63, 64]. Many cyto-
logical studies have been performed to find out the
chromosome banding patterns and karyotypes and /or
ideograms of some Lathyrus species including L. odoratus,

L. articulatus and L. incospicuus L. [49–52, 56], in previ-
ous investigation, the chromosome measurements, karyo-
type and chromosome banding patterns of six out of the
nine studied species (L. gorgoni Parl, L. hirsutus L., L.
amphicarpos L., L. sphaericus Retz, L. paranensis Burkart,
and L. nissolia L.) have been studied by [52]. At the cyto-
genetical level, FISH was very useful to localize 45S
and 5S rRNA genes on other Lathyrus species as well
[51, 53–58].
Despite of few literatures stated the localization of

rRNA gene loci by FISH in three of the examined spe-
cies (L. odoratus L, L. paranensis Burkart and L. hirsutus
L.), no previous FISH investigations have been found on
the other six species. In L. odoratus, significate differ-
ences in its karyotype have been reported often to differ
in the position and number of secondary constrictions,
in the current study it was observed that L. odoratus (ac-
cession no. LAT. 35 ) has only one stretched interstitial
45S rRNA gene site on chromosome no. 4, which is dis-
tinguished with a big satellite. In the study of [63] they
described cultivars with up to eight secondary constric-
tions, whereas [64] reported some with none at all. In
the study of [53], silver staining (binds to the NOR, the
nucleoli, and sometimes shows a tendency to bind
chromosome centromere in some taxa, and dependent
on the transcription rRNA genes) and in situ
hybridization (independent of transcription and may also
detect non-functional rDNA sites) were used to identify
the nucleolar organizer regions (NORs) among six
Lathyrus species, they noticed that L. odoratus and L.
hirsutus were very similar with a large and a small sub-
metacentric pair and five pairs of acrocentrics, and in
both species the largest of the acrocentrics had a sec-
ondary constriction very close to the telomere of the
short arm, in the same investigation they mentioned that
L. hirsutus had a single pair of silver positive terminal
spots. In L. odoratus, there was staining at or near the
centromere in addition to staining at the secondary con-
strictions, but it was clear that the cells of L. odoratus
have two pairs of terminal silver positive regions at the
ends of two of the largest acrocentric pairs, and in the
same study, the rDNA loci represented by FISH reflected
the same number of signals in these two species.
The current study is in agreement with the result of

[53] only with regard to L. hirsutus L., where it exhibited
a single terminal 45S rDNA locus on the short arm of
chromosome pair no. 3 and one proximal 5S rDNA site
located in the middle of the same arm in this study, but
with regard to L. odoratus L. disagrees. [46] used Silver
staining as well to recognize the nucleolar organizer re-
gions (NORs) in L. odoratus and they mentioned that
there were four-terminal NORs on the short arms of
pairs 4 and 5 with active ribosomal genes. However, L.
odoratus L. bears microsatellites in two pairs of
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chromosomes (nos. 3 and 5) via the karyotype analysis
by [11, 57] studied 14 species of Lathyrus (included L.
odoratus L. and L. paranensis Burkart) by double FISH
to determine the 45S and the 5S rDNA loci in addition
to the CMA and DAPI banding patterns, they analyzed
too the karyotypes in relation to geographic and climatic
changes. In their investigation, they detected two loci of
45S rDNA on the short arm of chromosomes no. 4 and
no. 5 in L. odoratus L., and they stated in L. paranensis
one 5S rDNA locus and one 45S rDNA locus on separ-
ate chromosomes, which in agreement with the obtained
result in the present study with regard to L. paranensis
L., but disagrees with regard to L. odoratus L.
Nuclear DNA content may vary from 6.9–29.2 pg/2C

[12–14] measured the nuclear DNA content (1C) in
many plant genera, among them the genus Lathyrus, ac-
cording to their measurements, there was no correlation
between the genome size and the number or position of
rDNA loci, nevertheless depending on the DNA content
measurements (pg /1C) within section Lathyrus they re-
corded that L. amphicarpos L. and L. gorgoni Parl. were
closely related (4.80, 5.80 pg/1C, respectively), and L.

hirsutus L. (10.00 pg/1C) and L. odoratus L. (7.80 pg/1C)
relatively similar too. In a former study [65] the DNA
contents of different Lathyrus species have been mea-
sured by flow cytometry, among them L. gorgoni Parl
(11.5 pg/2C), L. hirsutus L. (12.7 pg/2C) and L. odoratus
L. (14.3 pg/2C), and the gradually increasing in the gen-
ome size in these three species is in agreement with their
relationships as revealed by FISH in the current
investigation.
The differences in genome size generally in plants and

correspondingly in Lathyrus could be attributed first to
the variations in the chromosome complements size and
to the non-coding elements such as transposable ele-
ments, pseudogenes, and other repetitive sequences
throughout the chromosome structure. The obtained
banding patterns from many investigations supported
the non-randomness of genomic change in Lathyrus as
well, because the species mostly have uniform karyo-
types and their banding patterns with similar quantity
and base composition [11, 50]. Therefore, it is better to
focus on the role of rDNA as repetitive sequences, rather
than as coding gene loci and number [66] stated a

Fig. 3 Dendrogram of the studied Lathyrus species based on the number and loci of 5S and 45S rDNA
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slightly positive correlation between genome size and
rDNA copy number in a restricted number of the
eukaryotic test groups, and in some Lathyrus species by
[51]. On the other hand [67] claimed against the exist-
ence of a precise relationship between the two parame-
ters. The investigations of [68, 69] within the same
taxonomic groups were also unsuccessful to reach this
consensus, which in agreement with the obtained result
of this study. The investigations of [70–74] informed
that there is no correlation between rDNA copy number
and genome size, and this correlation still a mystery be-
cause both characters are dynamic and are subjected for
some changing during short periods of time. The
chromosomal numbers, locations and structure of the 5S
and 45S ribosomal DNAs (rDNA) in plants are now-
adays available online [74, 75].
FISH results of the investigated species in this study

were summarized in Table 1, and Fig. 3. shows the den-
drogram (UPGMA, suing Jaccard’s coefficient) which re-
flects the relationships among the studied species by
Past program (Paleontological statistics software package
for education and data analysis, [76]), which showed that
the conventional plant taxonomy at the section level in
the studied Lathyrus species is partially reflected by the
number and loci of both rRNA genes. This is in agree-
ment with the study of [77] based on amplified fragment
length polymorphism (AFLP), where they found that L.
gorgoni and L. hirsutus (section Lathyrus) grouped in
same cluster, whereas L. articulatus (section Clymenum)
was related to L. inconspicuous (section Linearicarpus),
while L. inconspicuous and L. sphaericus (section Linear-
icarpus) were placed on distinct branches, and the re-
sults of [78] based on the internal transcribed spacer
plus 5.8S-coding region of nuclear ribosomal DNA and
cpDNA sequence data supported this. These relation-
ships were partially reflected by the investigation of [79],
who studied the relationships of different sections of
genus Lathyrus depending on the cpDNA restriction
site, and their obtained phylogenetic suggestions were
used to test some species of genus Lathyrus, including L.
hirsutus L. and L. odoratus L. which have been grouped
under the same clade, while L. gorgoni Parl and L.
amphicarpos L., under another clade, and L. nissolia L
with L. sphaericus Retz in separate clade, whereas L.
paranensis Burkart was found to be distantly related.
Double-target FISH by utilizing 5S and 45S rDNA loci as

probes in the present study was helpful to discriminate the
chromosomes of each of the nine studied species, which
possibly could be used as chromosome markers. FISH
could discriminate only one chromosome pair out of the
seven pairs in three species, in L. hirsutus L., L. nissolia L.
and L. incospicuus, and two chromosome pairs in five spe-
cies, in L. paranensis Burkart, L. odoratus L., L. amphicar-
pos L., L. gorgoni Parl. and L. articulatus L., while it could

discriminate three chromosome pairs in L. sphaericus Retz.
these results could contribute into the physical genome
mapping of Lathyrus species and the evolution of rDNA
patterns by FISH in the coming studies in future.

Conclusion:
Physical mapping of 5S and 45S rDNA loci by FISH on the
chromosomes of the nine Lathyrus species could be used as
chromosomal markers to discriminate the chromosome
pairs of each of the examined species. FISH could discrimin-
ate only one chromosome pair out of the seven pairs in three
species, in L. hirsutus L., L. nissolia L. and L. incospicuus, and
two chromosome pairs in five species, in L. paranensis Bur-
kart, L. odoratus L., L. amphicarpos L., L. gorgoni Parl. and L.
articulatus L., while it could discriminate three chromosome
pairs in L. sphaericus Retz. The conventional taxonomy at
the section level in the studied Lathyrus species could not be
proved by the number or loci of rRNA genes.
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