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Abstract

Background: The discovery and development of anticancer still remain a challenge especially regarding the
problem of cancer cell selectivity. Matrix metalloproteinase (MMP) was broadly studied as one of the protein targets
to stop cancer angiogenesis as well as its cell migration.

Main text: The MMP degrades extracellular matrix (ECM) such as collagen and gelatin which are important to
control the cell migration from one to other sites. In cancer, this cell migration is regarded with metastasis, which is
essential for the formation of new blood vessels called angiogenesis. The most common target in MMP, i.e. the
catalytic site, is currently reported as being the non-selective target for inhibitor compounds that inhibit all MMPs
but is associated with adverse side effects. Hemopexin, especially in MMP9 (PEX9) was found to be different from
other domains in the MMP family which could potentially be the next target for anticancer due to the availability of
its crystal structure in the Protein Data Bank (PDB).

Conclusion: The PEX9 crystal structure was resolved as a homodimer connected by a hydrophobic area between
two blades along the β-propeller which its structure and function for computational drug modelling can be
studied.
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Background
Cancer is the second cause of major health problems
worldwide which significantly increases the incidence along
with the growth and ageing of the population. And now,
the burden has shifted to those who live in developing
countries, as reported in 2012 that approximately 57% of all
cases of cancer in the world and 65% of all deaths caused
by cancer occurred in developing countries [1]. In 2012,
cancer killed 8.2 million people all over the world, in which,
particularly, lung cancer had the most incidences amongst
others with 1.59 million deaths [2]. In the USA, the mortal-
ity caused by cancer occurred prevalently in the lungs and

bronchi (158,000 deaths), whereas the mortality caused by
breast cancer is not so far behind (58,670 deaths) [3]. In
general, cancer occurs in 182 people out of 100,000 popula-
tion, in which this number is higher in males than females.
For both of them, the most common cases were lung can-
cer (16.8% in male and 8.8% in female) as well as colorectal
cancer (9.2% in both genders). In particular, males suffered
from prostate cancer (15% of all cancers in men), whereas
females had a high incidence of breast cancer (25.1%) as re-
ported [2]. As such, it was reported in 2015 that there were
347,792 people in Indonesia suffering from cancer. The
most burdened provinces were Central Java with a total of
68,638 people diagnosed with cancer, followed by East Java
with 61,230 people diagnosed with cancer. The most com-
mon cancer types found in these provinces were cervical
and breast cancers [4].
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One of the characteristics of cancer is the process of
angiogenesis, which proceeds as follows: tumours that
have > 2 mm in diameter need more oxygen and nutri-
tion to rapidly grow up. Cells located in the very centre
of the tumour will receive less oxygen than the cells on
the outer surface. Therefore, hypoxia will induce the
tumour cells to carry out angiogenesis, which is an ex-
tension of blood vasculature to supply the tumour with
more oxygen. In angiogenesis, the endothelial cells of an
existing blood vasculature will disconnect and rearrange
to form new vasculature, which is in contrast to vasculo-
genesis wherein new endothelial cells are developed
from stem cells [5].
Several studies have analysed the different roles of the

many biological signalling molecules (factors) involved in
the process of growth and expansion of cancer cells. One of
these factors is a family of enzymes called the matrix metal-
loproteinases (shortened as MMPs) [6]. Humans have more
than 20 types of MMPs, which are generally divided into 5
groups based on their substrate specificity, i.e. the compo-
nents of the extracellular matrix (ECM) [7, 8]. The groups
are the gelatinases, collagenases, matrilysins, stromelysins
and membrane-type MMPs (MT-MMPs). Structurally,
MMPs are zinc-dependent endopeptidases classified as pro-
tease enzymes [9]. The main function of these enzymes is
to degrade the ECM, which is involved in various physio-
logical processes such as wound healing, inflammation,
angiogenesis, vasculogenesis and metastasis [10–13].
The enzymatic activity of MMPs is due to their cata-

lytic site, which employs zinc ions coordinated by a his-
tidine triad and is surrounded by other essential amino
acid residues such as glutamic acid and alanine [14].
One type of MMP which is highly expressed during
breast cancer is MMP9, which makes it an interesting
biological target to control the growth of breast cancer
cells. Instead of designing drugs that target the catalytic
domain, which has already been done several times and
resulted in the non-selective targeting of all MMPs [15],
the focus should instead be on another part of the MMP
structure. The hemopexin domain is the C-terminal do-
main of MMPs, and it can potentially be the next target
for compounds that selectively inhibit different MMPs
due to it having different structures and functionalities
for each MMP [16]. This is in contrast to the structure
of the catalytic domain which is virtually similar
amongst all MMPs. An experiment was carried out in
which the catalytic domain of MMP9 was mutated and
the histidine triad (401, 405 and 411) has been replaced
by alanine. The result was that the mutated MMP9 was
still sensitive to the ECM substrate against its inhibitor
[17]. Therefore, targeting the MMP9 in the catalytic site
could be less favourable in the future.
New strategies for the selective targeting of MMPs

have already been reviewed by other authors, in which

they discussed about the exosite of the catalytic domain
in MMP13, the hemopexin domain in MMP14 and the
collagen-binding domain in MMP2 and MMP9 [18].
However, in this review, we will discuss the molecular
mechanism of the hemopexin site in MMP9 as the po-
tential protein target and the computational drug design
of an MMP9 hemopexin inhibitor.

Matrix metalloproteinases
All classes of MMPs have similarities in their structures
which consist of a pro-peptide region, a catalytic domain
and many MMPs contain a hemopexin domain, though
not all of them do. The pro-peptide region is normally
composed of 80 amino acids, whereas the catalytic do-
main employs approximately 170 amino acid residues
with a typical structure in almost all MMPs [19]. On the
other hand, the hemopexin domain contains 200 amino
acid residues in almost all MMPs except MMP7,
MMP23 and MMP26 [20]. As mentioned before, MMPs
are divided into classes based on each MMP’s substrate
specificity.
The first class of MMPs is the collagenases, which

have a role in the degradation of collagen types I, II and
III. The MMP types which belong to this class are
MMP1, MMP8, MMP13 and MMP18. The next class of
MMPs is the stromelysins, which only contain MMP3
and MMP10, whereas the class of the matrilysins only
has MMP7 and MMP26. In addition, matrilysins have
functions to regulate both tumour necrosis factor α
(TNFα) and E-cadherin. The class that contains the
most members is the MT-MMPs which include
MMP14, MMP15, MMP16, MMP17, MMP24 and
MMP25 [21].
Of particular interests are the class of MMPs, known

as gelatinases, which consists of MMP2 (also termed as
gelatinase A) and MMP9 (termed as gelatinase B). The
structure of MMP9 is composed of a NH2- pro-domain
having three fibronectin (Fi) repetitions, which is im-
portant for collagen or gelatine binding. There are also
two zinc ions located at the catalytic domain interacting
with cysteine from the pro-peptide domain. The catalytic
domain is linked by the O-glycoside domain, and it ends
with the hemopexin domain next to it [22].
The structure of the hemopexin domain is deco-

rated by four blades of beta-propellers. This facili-
tates the interaction between MMP9 and other
molecules such as a substrate, cell receptors and
tissue inhibitors [23]. Interestingly, this hemopexin
domain could also act as an antagonist for the activ-
ity of the MMP9 itself, which will later be explained
in more depth [17]. The natural inhibitors of MMPs
are macromolecules called tissue inhibitors of metal-
loproteinases (TIMPS), where TIMP1, TIMP2 and
TIMP3 serve as natural MMP9 inhibitors. TIMP1
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has a high affinity towards MMP9 and inhibits this
enzyme via interaction through the N-terminal of
the catalytic domain. In general, all activities of
MMPs could be inhibited by either TIMP1 or
TIMP2 [24]. Before MMPs become active enzymes,
they are inactive pro-enzymes. This inactivation is
caused by the aforementioned interaction between
the zinc ion and the cysteine residue, and this
phenomenon is called the cysteine switch [20]. The
general structure of MMPs is presented in Fig. 1.

MMP9 in breast cancer
It has been reported that MMP9 was expressed in a high
concentration during cancers, in which one of them was
breast cancer. There are various breast cancer types includ-
ing luminal A, luminal B, human epidermal growth factor
receptor 2 (Her-2)-positive, triple-negative (oestrogen re-
ceptor, progesterone and Her-2-negative) [25] and claudin-
low. The highest expression of MMP9 was observed during
the triple-negative type. Two marketed drugs are available
such as tamoxifen and trastuzumab serving as luminal A,
luminal B and Her-2-positive breast cancer treatments. In
contrast, tamoxifen was reported to induce the expressions
of MMP2 and MMP13 in fibroblast at dose 2mg/100 g
food for 5 weeks in mice [26]. However, there is currently
no drug designed to treat breast cancer of the triple-nega-
tive type [14, 27]. The structures of tamoxifen (1) and tras-
tuzumab (2) are presented in Fig. 2.
When a biopsy of a tumour is obtained and observed

under the microscope, the cancer cells are classified into
‘grades’ according to how well-differentiated they are
compared to normal cells. The grades indicate how fast
they are dividing. Grade 1 represents a cell that is well-
differentiated and similar to healthy cells that divide
slowly, while grade 3 indicates poor differentiation and
the cells divide quickly. Several studies have confirmed
that more MMP9 is expressed at grades 2 and 3 than
grade 1 [28–31].
In addition, the progression of breast cancer is classi-

fied into ‘stages’ using the TNM system which repre-
sents the size of the tumour (T), how many lymph nodes
have been infected (N) and whether or not the cancer
has metastasised (M). The stages range from stage 0

which indicates that the tumour is still benign, while in
stage 4, cancer has already spread over to the organs
other than the breast. Stankovic et al. have concluded
from their research that the expression of pro-MMP9,
and thus MMP9, positively correlates with the progres-
sion of the stage of breast cancer [32].
MMP9 can also interact with other biomolecules which

have various roles in the progression of cancer. One of
them is vascular endothelial growth factor (VEGF) which
is an important factor during angiogenesis [33]. Cancer
cells produce large amounts of VEGF, but stromal cells in
close proximity to the cancer cells can also produce it
[34]. When it is secreted, VEGF is bound to the ECM and
thus remains inactive. But under hypoxia, the expression
of MMP9 is increased which then degrades the ECM;
therefore, VEGF can bind to its receptor and trigger
angiogenesis. The types of VEGF are VEGF-A, VEGF-B,
VEGF-C and VEGF-D which can bind to three types of re-
ceptors, i.e. VEGFR-1, VEGFR-2 and VEGFR-3. Amongst
them, VEGF-A is one of the most expressed growth fac-
tors, which strongly binds to VEGFR-1 rather than
VEGFR-2. However, angiogenesis is mainly triggered by
the interaction between VEGF-A and VEGFR-2, whereas
VEGFR-1 has an important role in regulating the inter-
action and activation of VEGFR-2 [35].
Another growth factor that has been identified to

increase the tumour cell proliferation is the insulin-
like growth factor 1 (IGF-1). During the initial
phase, the IGF-1 is deactivated by insulin-like
growth factor-binding protein 1 (IGFBP-1) by form-
ing a complex structure. MMP9 can degrade this
complex to release IGF-1 for tumour cell prolifera-
tion [36]. In addition, there is also a chemokine
ligand called CXCL12, and its receptor CXCR4,
which contributes to cancer metastasis. In people
without cancer, the cells of the breast express small
amounts of CXCR4, whereas during breast cancer,
CXCR4 is expressed in a high concentration.
CXCL12 or stromal cell-derived factor 1 (SDF-1) is
secreted by a few organs such as the lungs, liver and
lymph node. This chemokine serves as a chemoat-
tractive agent for cells expressing CXCR4 to metas-
tasise towards the organs that secrete CXCL12 [37].

Fig. 1 The general structural domain of MMP9 consists of a pro-peptide domain (red tube), catalytic domain (turquoise surface) and three
fibronectins (Fi)
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It is intriguing to note that while a high expression of
MMP9 can activate angiogenesis in cancer, paradoxically, it
was also reported that MMP9 also has an antagonistic ef-
fect in angiogenesis due to the observation that endostatin,
tumstatin and angiostatin (which are the body’s natural
angiogenesis inhibitors) were also activated by MMP9 [38].
Endostatin and angiostatin can inhibit the proliferation of
endothelial cells. Endostatin is activated via proteolysis of
collagen XVII, whereas angiostatin is derived from plas-
minogen degradation by MMP9. Tumstatin is derived from
the degradation of collagen IV, which is able to induce
apoptosis of endothelial cells [39]. Another biological
macromolecule that blocks tumour development is throm-
bospondin 1 (TSP-1). It acts by directly inhibiting MMP9,
and it has been shown that the levels of MMP9 are reduced
in transgenic mice that overexpress TSP-1 [40].
To further complicate the situation, we know of the ex-

istence of yet another biological protein involved in car-
cinogenesis called transforming growth factor β (TGF-β).
It has a pleiotropic character, meaning that it can both act
as a promoter and inhibitor of cancer. During the early

stages of cancer, it acts as a tumour suppressor by arrest-
ing cell development and inducing apoptosis. However,
during the late stages of cancer, cells become immune to
its tumour-suppressing effects and it acts as a tumour pro-
moter. Transforming growth factor β (TGF-β) is secreted
as a protein bound to TGF-β-binding protein (TGF-β BP)
which is inactive. MMP9 activates TGF-β by releasing it
from the binding protein [41–44].

Hemopexin (PEX)
The hemopexin-binding site in MMP9 (abbreviated as
PEX9) has various functions. One important function
is to enable MMP9 to bind to gelatine; hence, it is
responsible for the substrate specificity of the enzyme
[45]. PEX9 also seems to have a role in cell migra-
tion. Mantuano et al. proved in an experiment that
when PEX9 was inhibited, the migration of Schwann
cells (a type of nerve cell) was also inhibited. The mi-
gration of Schwann cells is caused by a cell signalling
pathway that is activated when MMP9 binds to lipo-
protein receptor-related protein (LRP-1) [46].

Fig. 2 The structure of tamoxifen (an oestrogen receptor antagonist = 1), trastuzumab (a Her-2 antagonist = 2), batimastat (3), marimastat (4)
and doxycyclin hyclate (5)
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The mechanism of Schwann cell migration is as follows:
when the nervous system is injured, Schwann cells overex-
press LRP-1 which interacts with MMP9 to activate extra-
cellular signal-regulated kinase (ERK1/2) and Akt, which
leads to cell migration. When the PEX9 domain was inhib-
ited using antibodies, cell migration was blocked [47, 48].
The mechanism of Schwann cell migration blockage related
to PEX9 inhibition is illustrated in Fig. 3.
Another study showed that MMP9 promotes the pro-

gression of cancer by interacting simultaneously with
α4β1 integrin and CD44v at the cell surface. This bind-
ing induces Lyn activation, STAT3 phosphorylation and
upregulation of MCL-1 and results in cell migration
while increasing cell survival [49, 50]. In addition, the re-
searchers also discovered a 17-residue sequence located
in blade 4 of the PEX9 that binds to α4β1 integrin,
which can be a potential target for the inhibition of cell
migration for patients with chronic lymphocytic leukae-
mia (CLL) [51]. Furthermore, they found synthetic

peptides which can disrupt the interaction between
PEX9 and CD44 and, as a consequence, also block adhe-
sion and migration of CLL cells [52].
Returning to the topic of breast cancer, Dufour et

al. devised an experiment which used MCF-7 cells
that were transfected with certain cDNA to prove
that the inhibition of PEX9 blocks cell migration in
breast cancer. One group of cells was transfected with
DNA which made them overexpress pro-MMP9 and
TIMP-1, while the other group overexpressed pro-
MMP9 and TIMP-2. Cell migration was reduced in
the group that expressed TIMP-1, while the other
group did not do so. Since it is known that TIMP-1
interacts with PEX9, the conclusion was that the in-
hibition of PEX9 also retards cell migration [53].
As mentioned earlier, PEX9 may also have activity to-

wards the MMP9 enzyme as an inhibitor. It was found
that PEX9 has the capability to strongly bind to gelatin,
thus preventing the MMP9 enzyme from binding to

Fig. 3 The mechanism of Schwann cell migration blockage related to PEX9 inhibition. a The homodimerisation of MMP9 facilitated by
hemopexin domain; b the binding of the homodimer to the LRP-1 which transduces the signal to ERK1/2 leading to the cell migration;
c blocking of homodimerisation by small molecule which binds to hemopexin domain, as well as the blocking of the degradation of the ECM by
MMP9; d the binding of VEGF that has been released from the ECM by MMP9 to VEGFR which activates angiogenesis. Adapted from Cain [48]
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gelatin which therefore reduced its activity in the con-
text of tumour invasion and metastasis in colorectal car-
cinoma [54]. The incorporation of in vitro and in vivo
studies by Ezhilarasan et al. showed that enforcing the
expression of PEX9 interestingly blocks the activity of
MMP9 by decreasing the expression of VEGF and
VEGFR2 in human mammary epithelial cells (HMECs).
Besides that, it also induced apoptosis via the activation
of caspases, as well as inducing the cleavage of poly
(ADP-ribose) polymerase (PARP) which also plays a role
in apoptosis [55].
So far, the evidence seems to indicate that the in-

hibition of PEX9 can indeed inhibit the progression
of certain aspects of cancer. However, the main issue
is whether a selective PEX9 inhibitor can be de-
signed. A study had been conducted to compare the
structure of MMP9 from 12 different vertebrates to
analyse their structural similarities based on the nat-
ural selection hypothesis. It showed that amino acids
in the middle region were homologous, while the
amino acids in the C-terminal region (particularly in
exon 13) showed the least similarities. This exon is
located in the hemopexin domain, which means that
it may be feasible to create a drug that can select-
ively bind to this site [56]. The similarity of amino
acid sequences in the hemopexin domain amongst
all types of MMPs was only 25–33%; thus, it has
been concluded that this allosteric site can control
the function and specificity of MMPs due to their
molecular nature and modular domain organisation,
as reviewed [57, 58].
Structurally, the complete MMP9 enzyme is interest-

ing because it contains a 30-A-long O-glycosylated (OG)
domain which links the enzyme with its hemopexin do-
main. This OG domain takes on a flexible conformation
which facilitates independent movements of the terminal
domains [59]. Almost all the MMPs have linker do-
mains, but MMP9 has the longest linker in the form of
an OG domain. This domain contains many glycine and
proline residues, and despite the domain being heavily
glycosylated, its length allows it to flex, fold and form
compact conformations [60, 61].
It is proposed that the activity of the catalytic site of

MMP9 could be induced by long-range conformational
transitions, wherein the activator proteins or ligand is
bound to an allosteric area [62–64]. Therefore, PEX9 as
the domain connected by the linker (OG domain) to the
catalytic domain is a possible device to be exploited as
an allosteric controller of MMP9 activity. Since it has
been shown that the formation of the PEX9 dimer leads
to a biological activity, inhibiting the formation of the
said dimer could be the first step in inhibiting the activ-
ity [65, 66]. As another example, the allosteric function
of PEX9 can be seen in the interaction between MMP9

and CD44. The interaction may facilitate the binding of
the enzyme and the substrate, which increases the prob-
ability of proteolysis [23].
Although, it has been confirmed that the formation of

homodimers of PEX9 is what leads to biological activity
[67, 68]. Later reports showed that when MMP9 was still in
its inactive pro-enzyme form, it was bound to TIMP-1 and
forms a circular homotrimer. This was confirmed by elec-
trophoresis, atomic force microscopy and transmission
electron microscopy [69]. It was remarked that the pro-
MMP9 trimer demonstrated a higher affinity towards
TIMP-1 than its monomer with a 50-fold difference in
magnitude.
Cha et al. [70] have crystallised a single PEX9 domain,

providing the model for structure-based drug design.
This crystal consists of four-bladed β-propeller struc-
tures and four antiparallel β-strands for each blade. A
peptide loop connected the blades with each other
within those four antiparallel β-strands. A disulfide bond
between Cys516 and Cys704 connected them to main-
tain the integrity of the structure. A highly conserved di-
sulfide bond was present amongst all previous PEX
domains as shown in both monomeric and dimeric
states. It is to be noted that the homodimerisation of
PEX9 is reduction-sensitive, which was understood at
that time to mean that dimerisation was linked by disul-
fide bonds. However, later investigations showed that
the link between the monomers did not belong to the di-
sulfide bond variety, but rather a hydrophobic inter-
action between blades 4 for each sub-unit. Despite this,
there is an important disulfide bond between blade 1
and blade 4 (the aforementioned bond between Cys516
and Cys70) that functions to maintain the structure of
the β-propellers for each individual monomer. This di-
sulfide bond is easily cleaved by reducing agents, leading
to dimer dissociation and explaining the sensitivity of
the pro-MMP9 dimer.
The crystallised PEX9 structure has no inhibitor

bound within any pocket; however, there are two sulfate
ions bound at blades 1 and 3. The sulfate was bound to
this site with a strong interaction to the Arg105 residue
measured to be 3.03 Å long via electrostatic interactions.
Considering that there are no other PEX9 holoproteins,
the binding site of this sulfate ion could be the starting
point to predict inhibitor-PEX9 interactions using a
structure-based computational design.
Before PEX9 had attracted any attention as the next

target in the MMP9 inhibition, PEX1 was the first crys-
tallised C-hemopexin domain in full length along with
its catalytic domain (PDB 1FBL). These 2 domains are
connected by 17 amino acids which might be flexible
and free of secondary structure. As is with PEX9, PEX1
also contains 4 units of 4 antiparallel β-sheets which are
stabilised by calcium on its fourfold axis, in which the
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blades are scarcely twisted [71]. Two PEX2 monomers
were crystallised in the C-hemopexin domain only,
which showed a homologous structure with the earlier
PEX1. They showed an additional sodium, calcium and
chloride ion bound to the protein by forming a channel-
like opening (PDB 1GEN) [72]. In another PEX2 crystal
(PDB 1RTG), 2 calcium and 1 chloride ions were found
around the pseudo-fourfold axis [73]. When PEX13 was
crystallised, it also revealed a similar pseudo-fourfold
symmetry assigning 2 calcium, 2 chloride and additional
sulfate ions in the central tunnel tube [74]. The dimer
structure of PEX9 and the superposition of PEX1, PEX2
and PEX13 are illustrated in Fig. 4.
PEX14 is the latest hemopexin domain crystallised from

the full protein MT1-MMP (also named as MMP14). This
domain also shows homodimerisation in which blade 2 and
blade 3 of chain A interact hydrophobically with blade 3
and 2 of chain B. The interruption of this homodimerisa-
tion such as amino acid mutagenesis affects the functional-
ity of MT1-MMP in pro-MMP2 activation as well as
collagen degradation. In contrast, the non-dependent dimer
functions including gelatin film degradation and cell migra-
tion are not affected [75].

MMP9 inhibitors
Because it is known that MMPs are involved in many
pathological processes, it was a matter of time before the
first MMP inhibitors were developed. One of the mem-
bers of the first generation of MMP inhibitors was bati-
mastat (3) reported not to lead the expression of MMP9

and MMP2 at a dose of 30 mg/kg in lung tumour cells
of mice [76], but the third phase of its clinical study re-
vealed poor solubility as well as oral bioavailability, lead-
ing to its failure to be an anticancer agent. Marimastat
(4) is an analogue of batimastat able to stop the expres-
sion of MMP2 and MMP9 in cerebral cortex cell of mice
at a dose of 2 μM [77], developed for better oral bioavail-
ability. However, this compound was found to be toxic
during clinical phase [78]. The molecular structures of
batimastat and marimastat (see Fig. 2) resemble peptides
(peptidomimetic) and contain a hydroxamic acid group,
which interacts directly with the zinc ion in the catalytic
site of the MMP. Thus, they act as reversible competitive
inhibitors towards the MMPs [5, 79, 80].
The next generation of MMP inhibitors was still

designed to target the metalloenzyme at the catalytic
site [81, 82]; therefore, the coming issue would be
either drug resistance due to the non-selective bind-
ing mode of inhibitors towards the catalytic site or
the adverse side effects such as musculoskeletal
defects. The hemopexin domain in MMP9 has a dif-
ferent structure compared to the other MMPs, which
means that this domain could be the next interesting
target in the discovery of MMP9-selective inhibitors
to treat cancer diseases [83]. Unfortunately, the only
MMP9 inhibitor so far that has been approved for
use by the US Food and Drug Administration is
doxycycline hyclate (Periostat® = 5). Moreover, this
inhibitor strongly reduces the expression of MMP1,
MMP9 and MMP12 at 416 μM, which is only

Fig. 4 The 3D structure of hemopexin domains. a The dimer PEX9 showing hydrophobic interactions at blade 4 interface with sulfate ions bound
at the blade 1 and blade 3. b The superposition of PEX1 (cyan ribbon), PEX2 (red ribbon) and PEX13 (magenta ribbon)
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suitable for collagenases (not MMP9 since it is a
gelatinase) [84], and the drug itself is indicated to
treat periodontitis and not as anticancer [79].
AZD1236 is a possible next-generation MMP9 in-
hibitor. It underwent a clinical phase 2 study in the
treatment of chronic obstructive pulmonary disease
(COPD). This inhibitor was selective for MMP9 and
MMP12 with a good safety index. However, more
studies are necessary to be carried out for further
developments [85]. The structures of some MMP in-
hibitors are presented in Fig. 2.
Kalva et al. utilised computational drug modelling to

identify the pharmacophore model, which could be used as
a query search for drugs that specifically target MMP9. The
crystal structure being used was 1GKC, a complex of
MMP9 with an inhibitor bearing a hydroxamate functional
group. The structure-based pharmacophore modelling was
incorporated with molecular docking studies, which re-
vealed two aromatic rings and three hydrogen bond accep-
tors as the features of an MMP9 inhibitor, although this is
for the catalytic domain and not for binding to PEX9. One
of the natural product compounds being fit into the
pharmacophore model was hinokiflavone which was
followed by an in vitro study (IC50 = 43.08 μM) leading to
the idea of using it as a lead compound needing optimisa-
tion for the development of a novel MMP9 inhibitor [86].
The pharmacophore model generated by Kalva was re-
drawn in Fig. 5.
Focusing again on the PEX9 domain, a phage display

peptide library with pro-MMP9 or a recombinant
version was utilised to construct the potential PEX9 in-
hibitor. Uniquely, the peptide generated could not com-
pete with TIMP-1 as the natural inhibitor; therefore, the
peptide does not directly affect the proteolytic activity of

MMP9. Furthermore, the prevention of pro-MMP9 acti-
vation followed by blocking of cell migration as well as
in vivo tumour cell growth indicates the selectivity of
PEX9 to be used as the target [87].

Computational drug modelling targeting
hemopexin of MMP9
Drug modelling aided by computers has been commonly
used to rationalise the constructed model before a drug is
chemically synthesised and biologically tested [88]. The ad-
vances of computer technology, complemented with robust
data from bioinformatics and chemo-informatics, are ex-
tremely helpful in doing tasks involving drug design and
discovery in respect to reducing the cost and increasing the
speed of the investigation [89]. There are several software
available that facilitate structure-based drug design (when
the crystal structure of the protein is available) [90] and lig-
and-based drug design (when only the ligand with its bio-
logical activity is available) [91]. The software could be free,
e.g. AutoDock [92], PLANTS [93] and ArgusLab [94], or
bought under a purchased licence such as GOLD [95],
Glide [96] and Flexx [97]. The bioinformatics data such as
the protein crystal structure, either in apo-form or holo-
form, is freely downloadable from protein databases such as
the Protein Data Bank, commonly abbreviated as PDB
(accessible at www.rscb.org). The ligands could also be
freely downloaded from chemical databases such as ZINC
[98], Natural Product Discovery (NADI) [99] and National
Cancer Institute (NCI) [100]. Alternatively, if the ligand is a
new chemical entity, its molecular structure could be dir-
ectly drawn based on their chemical structures shown in
published articles. The utilisation of a computer-aided drug
modelling is able to shorten the time of investigations be-
cause the software can screen millions of ligands to be

Fig. 5 The pharmacophore model of hinokiflavone is composed of two aromatic rings (brown) and hydrogen bond acceptors (cyan) at the
measured distances (in angstroms)
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shortlisted as hit compounds by in silico testing. The hits
could be further optimised either in silico or in vitro as the
lead compound; therefore, the potential candidate of a drug
is selected and/or optimised without needing to test all
available compounds in a database.
The only structure of PEX9 available in PDB is 1ITV,

a dimer of PEX9. The dimer is connected by the hydro-
phobic area between each blade 4 along the β-propeller
forming the structure as an assymmetric plane [70]. Two
studies utilised this crystal structure as the model in a
virtual screening of the ZINC database in the effort to
discover MMP9 inhibitors which can selectively bind to
the PEX domain, as explained below.
Dufour et al. [101] have utilised one of the software

available to screen ligands from the ZINC database by
docking those ligands into the MMP9 PEX domain in an
effort to discover a new MMP9 inhibitor that selectively
binds at the PEX9. A hundred ligands had been selected
from ZINC 2007 and five top in silico hits (6–10) which
can be seen in Fig. 6 were selected for further in vitro test-
ing. This was used to investigate their capabilities in inhi-
biting the activity of the PEX9 domain. The binding of five
compounds towards PEX9 was observed upon fluores-
cence assay, revealing the dissociation constant (Kd) for
each compound associated with their binding affinities.
The compounds were then checked for their cytotoxicities
against COS-1 cells to measure the LD50, and it was
followed by cell proliferation determination upon

treatment with the compounds. Finally, the in vivo experi-
ment was carried out to evaluate the MMP9 expression
interference in mice using a tumour xenograft model, i.e.
human MDA-MB-435 cancer cells. The result showed five
compounds (6, 7, 8, 9 and 10) that exhibited COS-1 mi-
gration inhibition; however, only compounds 8 and 10
demonstrated the control cells’ (GFP-transfected) migra-
tion inhibition. An early conclusion was taken that only
compounds 6 and 7 did not cause a notable cytotoxicity
in COS-1 cells; therefore, both compounds blocking the
MMP9-induced cell migration were not because of their
toxicities but in respect to their selectivity towards cancer
cells. Further investigation showed that compound 7 did
not inhibit MMP2 and MT1-MMP cell migration, proving
that the selectivity of the compound was only towards cell
migration caused by MMP9. The binding of compound 7
with PEX9 resulted in a Kd of 2.1 μM, confirming its po-
tential PEX9 inhibitor activity in conjunction with its
binding mode to PEX9 domain prediction upon docking.
Structurally, compound 7 has a six-member heterocycle
ring which provides a planar conformation that fits into
the cavity of PEX9 domain blades, whereas the arylamide
moiety facilitates a more flexible conformation, which
bound to the surface near the cavity. Therefore, this ex-
periment highly correlates with the in vitro study that
compound 7 successfully disrupts the MMP9-induced cell
migration via binding with the PEX domain as an
allosteric inhibitor.

Fig. 6 The five hit compounds active against PEX9, selected from ZINC database by Dufour et al. [101]
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The work of Dufour in searching for PEX9 inhibitors
was continued by Li [102] by using the National Cancer
Institute (NCI) database to virtually screen the next hit
ligands as PEX9 inhibitors. The molecular docking was
carried out with a protocol similar to the one that was
used by Dufour. There were two binding sites used by Li
wherein the sulfate ion was bound to the interface of
four blades (site 1) and at the interface of blade 3 and
blade 4 (site 2). Most of the amino acid residues of
PEX9 involved in the atomic interactions with the hit li-
gands were Ile12, Glu14, Val58, Glu60, Lys65, Ala104,
Arg106, Val152 and Gln154 via hydrogen bonding inter-
actions. The binding assay study revealed the Kd of four
hit compounds (11, 12, 13 and 14) in low micromolar
inhibitions (0.6 μM, 0.8 μM, 0.9 μM and 0.8 μM, respect-
ively). The structure of those four compounds (11–14)
are presented in Fig. 7. From the results, it is most likely
that the steroid backbone is still dominant to construct
the ligand-protein binding.
The latest finding on small molecule inhibitors tar-

geting the PEX9 domain of latent MMP9 was carried

out by [103], demonstrating a prevention of focal ad-
hesion junction formation associating with specific
protein-ligand binding. Computational docking is
used to design the compound series which tightly
dock to the PEX9 binding site. One of the interest-
ing compounds (15) generated from 7 bears a flex-
ible n-propyl chain within quinazolinone as the
heterocyclic planar ring and p-fluoroarylamide ring.
This compound demonstrated Kd 0.32 μM upon pro-
MMP9 tryptophan fluorescence assay defining the
compound affinity for the PEX9 binding domain due
to the disruption of MMP9 homodimerisation to
prevent the association of CD44 and α4β1 integrin
yielding the dissociation of EFGR. The phosphoryl-
ation of SrC and its downstream is then decreased
leading to the blocking of tumour cell growth, mi-
gration and invasion. According to the docking re-
sults, the fluorine atom was found deeply occupying
within the binding pocket which is different from 7.
This 7 shows solvent exposure surrounds difluoro-
methoxyphenol which decreases the free energy of

Fig. 7 The four hit compounds active against PEX9 selected from NCI database (11–14) [98], the derivatives of 7 (15 [98] and 16) and the
docking pose of 16 at PEX9 binding site in a protein surface form (16a) and stick form (16b)
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binding. In addition, the planar quinazolinone was
said to improve the ligand-binding efficiency as well
as the longer flexible propyl chain. In cell migration
assay, 15 demonstrates a very low average migrated
cells per 10× fields compared to MMP2 (homologue)
and MMP14 (non-homologue). These may contribute
to the higher affinity of 15 than others. The struc-
ture of 15 is illustrated in Fig. 7.
In addition to the current discovery of MMP inhibi-

tors focusing on the PEX domain, MT1-MMP
(MMP14) has also been studied alongside with PEX9. A
total of 19 compounds screened from the NCI database
via computational molecular docking against the
PEX14 domain (PDB 3C7X) have been tested in vitro
using fluorescence assay demonstrating remarkable
IC50 values ranging from 1.41 to > 100 μM [104]. In this
study, the ligands’ structures were designed to bind the
PEX14 domain at the interface of four blades of beta-
propellers, and the amino acid residues involved in this
binding were Met328, Arg330, Asp376, Met422 and
Ser470. It was suggested that the ligand intervention at
this centre point could defect the flexibility of homodi-
merisation, thus affecting the MMP14 activity.
However, the hit compounds dominantly bear the sul-
fonamide moiety which is quite similar with most of
the active ligands working on the catalytic site.
Therefore, further study in the selectivity of com-
pounds, which bind to either the catalytic or hemo-
pexin site, should be carefully managed.

Discussion and current research
Research in novel drug discovery for breast cancer by
targeting the hemopexin domain of MMPs in general,
and MMP9 specifically, is still less conducted. To the
best of our knowledge, there are only three publications
reporting compounds inhibiting PEX9 including pyrimi-
dine-arylamide [101, 103] and steroid [102] scaffolds.
This is in contrast with studies targeting MMP9 with the
catalytic domain as the protein target covering diverse
scaffolds such as pyridinone, pyridithiol, biaryl ether sul-
fonamide hydroxamate, aryl sulfone, pyrimidine, aro-
matic carboxylic acid and flavonoid which have been
reviewed in our previous published article [13]. The dis-
tinction of structure amongst the hemopexin domains is
promising a better target for selective inhibition rather
than the catalytic domains, which share highly conserved
amino acid residues in their binding sites. A potential
compound from the ZINC database bearing a pyrimidi-
none scaffold extended by an arylamide moiety con-
nected with a flexible S-alkyl chain was used to identify
the pharmacophore which meets the requirements to be
active as a PEX9 inhibitor. The pyrimidine ring has a
planar character, which fits into the deep and stable
hydrophobic pocket whereas the arylamide was said to

be more flexible in the surface near to the cavity. Due to
the unavailability of PEX9 in complex with its inhibitor,
it is still not confirmed whether the binding site was cor-
rectly predicted by computational docking. In the case
where the protein crystal structure is not in complex
with its inhibitor, homology modelling could be another
strategy to conduct a structure-based drug design. This
could be done if only there is another protein crystal
structure in complex with inhibitor having high similar-
ity in amino acid sequence with the desired protein
structure being available. This homologues crystal could
be used as the template to model the desired 3D protein
structure with the known binding site.
Intriguingly, two functional groups present in the

compound that was identified by Dufour as being active
against PEX9 (compound 7) had not been addressed. A
propyl group attached to the pyrimidine ring and the
OCF2 group at the para position of the arylamide were
not assigned pharmacophores, which can be pointed out
for further design. There exists another method in de-
signing a novel drug called ligand-based drug design,
wherein a series of a ligand’s structure along with the in-
dicators of biological activity such as its IC50 or Ki can
be studied for its quantitative-structure activity relation-
ships (QSAR). For example, by using compound 7 by
Dufour, we can maintain the pivotal functional groups
(the planar ring and flexible arylamide) followed by
modifying the smaller functional groups to test bioisos-
terism. The propyl group could be modified by extend-
ing the normal chain or cyclic chain, whereas the OCF2
could be modified by substituting F with another halo-
gen. The series of those modifications with their respect-
ive bioactivities could be processed as a QSAR model
explaining the correlation whether it gives the com-
pound a higher or lower bioactivity and what type of
pharmacophore contributes to that correlation. The
pharmacophores that are marked as contributing to a
negative value should be reduced or removed, whereas
the positive correlations should be maintained or even
added with the extra ones. The substitution and/or
addition of functional groups should also consider the
3D circumstances such as stereochemistry. Therefore,
the modified functional group can keep being stable and
have the correct conformation associated with their
binding. Finally, we can conclude that from the data
available, PEX9 is the selective target for MMP9 inhib-
ition, which appears to have a significant advantage
compared to other targets, leading to a potentially suc-
cessful discovery in novel anti-breast cancer agents.
Our in-progress research is also generating a series of

compounds bearing the pharmacophore as identified by
Dufour et al. [101] as well as Alford et al. [103] with modifi-
cations as illustrated in Fig. 7. Here, we utilised purine ring
to have heterocyclic planar character instead of pyrimidine
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has been used in the lead compounds. One of the com-
pounds in the series is designed by attaching a strong elec-
tron withdrawing group such as NO2 at the para-position
of the arylamide ring (16). The docking study of this com-
pound into the PEX9 binding pocket shows a low free
energy of binding − 8.43 kcal/mol by interacting with im-
portant amino acid residues surrounding the binding site
such as Glu14, Glu60, Arg106 and Gln154 (16a and 16b).
This binding mode agrees with the study by Li [102] has
been discussed previously. Interestingly, the in vitro inhib-
ition assay of this compound towards MMP9 using fluores-
cence spectroscopy demonstrates IC50 3.20 μM indicating
its potential compound to be developed as furthermore se-
lective MMP9 inhibitor. The structures of 16, 16a and 16b
are illustrated in Fig. 7.

Conclusions
Hemopexin MMP9 is an interesting domain of MMP9
to be targeted in searching for more selective drug for
breast cancer. The current studies show that small mol-
ecule inhibitor selectively inhibits the activity of MMP9
compared to other homologous MMP2 as well as non-
homologous MMP14. The utilisation of computational
drug design is able to develop more effective MMP9 in-
hibitor with a lower cost which could be applied for fur-
ther lead optimisation using either structure-based drug
design or ligand-based drug design.
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