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Abstract 

Background  Infections caused by multidrug resistant bacterial pathogens have been recognized as major global 
healthcare threat to medicinal, agricultural and pharmaceutical industries by World Health Organization. In this regard, 
the present study was aimed to isolate endophytes from medicinal plant Polygonatum sibiricum (P. sibiricum) and to 
investigate their antibacterial efficacy, radical scavenging ability and chemical fingerprinting using Gas Chromatogra-
phy–Mass Spectrum (GC–MS) analysis.

Results  Two endophytic fungi Talaromyces assiutensis HJ.14 (T. assiutensis) and Fusarium oxysporum HJ.15 (F. oxyspo-
rum) were isolated and identified from the rhizomes of P. sibiricum. Among the extracts screened, ethyl acetate extract 
of F. oxysporum HJ.15 showed maximum antibacterial activity with the zones of inhibition ranging from 10.98 ± 0.19 
to 15.66 ± 1.49 mm and the MIC values ranging from 0.24 to 1.88 µg/mL against the tested bacterial pathogens. In 
addition, it showed significant antioxidant activity with EC50 values of 6.21–17.97 µg/mL. Further, GC–MS analysis 
revealed the presence of propanoic acid ethyl ester, hexadecanoic acid methyl ester, hexadecanoic acid ethyl ester, 
9-Octadecenoic acid (Z)-methyl ester, 1-Octanol, 2-Undecenal, butanoic acid, 3-hydroxy- and hexanoic acid were the 
most abundant compounds in the active crude extract which was responsible for the significant antibacterial and 
antioxidant properties.

Conclusions  In summary, our results clearly suggest that the F. oxysporum HJ.15 will be a promising starting point for 
the isolation of active antibacterial compounds with antioxidant properties.
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1 � Background
Globally, severe infections caused by drug-resistant bac-
terial pathogens are the biggest healthcare threats to 
medical and pharmaceutical industries. According to 
global health report around 700,000 people die of infec-
tions that are caused by antibiotic-resistant bacteria in 
2020 [1]. Therefore, maintenance of a healthy antioxi-
dant status is essential for cellular homeostasis. Oxida-
tive stress (OxS) is defined as the condition under which 
the generation of reactive oxygen species (ROS) exceeds 
the capacity of antioxidants to detoxify which is related 
to the pathogenesis of several chronic diseases including 
types 1 and 2 diabetes, cancer, heart disease, schizophre-
nia, parkinson’s disease and alzheimer’s disease [2, 3].

Fortunately, endophytic fungi provide a huge potential 
as a unique resource for the development of novel anti-
biotics which live in plant tissues at some or all stages of 
their life cycle and involve in protecting the host against 
pathogens [4]. Modern studies have shown that endo-
phytic fungi from medicinal plants can produce second-
ary metabolites that are the same or similar to the host 
and are proved to possess antibacterial [5, 6], antioxidant 
[7], antitumor [8] activities (Table 1) [4, 9–14].

The edible rhizome of Polygonatum sibiricum (P. sibiri-
cum) is an important medicinal plant used in strength-
ening the muscle and bone marrow in China [15]. The 
main active components of P. sibiricum are polysaccha-
rides [16], flavonoids [17], steroidal-saponins and poly-
phenols [18] that are scientifically proved to possess 
various biological activities. Therefore, symbionts from 
medicinal plant are known to be an important resource 
of innumerable classes of bioactive compounds including 
anticancer drug, antibacterials and antioxidants [19–21]. 
More recently, Song et al. [22] and Wang et al. [23] have 
reported that endophytic fungi isolated from P. sibiri-
cum were found to possess various biological activities. 
Hence, we aimed to isolate and identify endophytic fungi 
associated with the rhizome of medicinal plant P. sibiri-
cum and to evaluate their antibacterial and antioxidant 
properties. In addition, the active components of the 

extract were identified by Gas Chromatography–Mass 
Spectrum (GC–MS) analysis.

2 � Methods
2.1 � Plant collection and isolation of endophytic fungi
The uninfected rhizome of Polygonatum sibiricum (P. 
sibiricum) was procured from the alpine area of Sancha 
Township (Enshi, China, 109°45′24″E, 30°10′51″N)  and 
the plant material was identified by Dr Meijun He, Col-
lege of Biological and Food Engineering, Hubei MINZU 
University   (Additional file 1: Fig. S1). The isolation and 
purification of endophytes were carried out by following 
the method Li et al. [10]. Briefly, the rhizome of healthy 
plant was washed under running tap water. Under the 
aseptic condition, the washed young shoots were sur-
face-sterilized in 5 mL of 70% EtOH for 2 min and then 
soaked in 5 mL of 4% sodium hypochlorite for 5 min and 
finally washed with 5 mL of sterile water to remove the 
traces of sodium hypochlorite and ethanol. The dried 
shoots were then ground and inoculated onto potato dex-
trose agar (PDA) medium containing kanamycin with a 
final concentration of 50  µg/mL. The inoculated plates 
were incubated at 25  °C for 7  days were observed daily 
for visible fungal growth. The fungi were later transferred 
to the freshly prepared PDA for purification. Pure isolates 
were identified by observing the color, colony morphol-
ogy, growth pattern and sequencing. The pure fungal iso-
lates were maintained in PDA slants and kept at 4 °C for 
further studies.

2.2 � Morphological and molecular characterization 
of endophytic fungus

Colony morphology including color, growth, spore size, 
shape and spore producing structures were observed by 
growing the isolates on PDA and incubated for 7–14 days 
at 28 ± 2  °C [24, 25]. For molecular identification, the 
isolates were grown on potato dextrose broth (PDB) 
at 28 ± 2  °C for 3  days on an orbital shaker at 150  rpm. 
After incubation the biomass was collected and the 
genomic Deoxyribonucleic acid (DNA) was extracted 

Table 1  Secondary metabolites from endophyte fungus and their antibacterial activities reported

Medicinal plants/regions and countries Endophytic fungi Active component Activities References

Pelargonium sidoides/South Africa Aspergillus sp. Extract Antibacterial activity [4]

Zingiber officinale/Duesseldorf, Germany Trichoderma harzianum Pretrichodermamide A Antimicrobial activity [8]

Ampelopsis grossedentata/enshi, china Alternaria alternata Extract Antibacterial activity [9]

Adiantum capillus/Egypt Chaetomium globosum Extract Antioxidant activity [10]

Euphorbia hirta/china Achaetomium sp. Extract Antioxidant activity [11]

Elaeocarpus sylvestris/Guangxi, China Pseudocercospora sp. Extract Antioxidant activity [12]

Otoba gracilipes/Colombia Fusarium oxysporum Extracts Antioxidant activity [13]
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by cetyltrimethyl ammonium bromide (CTAB) method. 
Polymerase Chain Reaction-mediated amplification 
of the Internal transcribed spacer (ITS) gene was car-
ried out using the fungal universal primers and the PCR 
products were sequenced (Wuhan Aoke Dingsheng). The 
sequencing results were analyzed by Basic Local Align-
ment Search Tool (BLAST) in GenBank (https://​blast.​
ncbi.​nlm.​nih.​gov/​Blast.​cgi) to obtain the ITS sequences 
homologous to the strains. The phylogenetic tree was 
constructed using Neighbour Joining method with aid 
of MEGA-X software version 10.2.2 (https://​www.​megas​
oftwa​re.​net).

2.3 � Fermentation and extraction of secondary metabolites
The fully-grown spores of endophytic fungi were inocu-
lated into 50 mL of PDB for bioactive secondary metabo-
lites production. The flasks were incubated for 14  days 
at 28 ± 2  °C on a rotary shaker. At the end of fermenta-
tion, the culture broth along with the cells was soaked 
in equal volume of different organic solvents viz., petro-
leum ether, ethyl acetate and methanol at room tempera-
ture followed by ultra-sonication for 30 min. The organic 
phase was then evaporated to dryness and stored at 4 °C 
until use [26].

2.4 � Test strains
Eleven strains of bacterial pathogens including Kleb-
siella pneumonia ATCC 13883, Enterococcus faecalis 
ATCC 29212, Bacillus subtilis ATCC 19659, Micrococcus 
luteus ATCC 4698, Bacillus thuringiensis ATCC 10792, 
Methicillin resistant Staphylococcus aureus ATCC 43300 
(MRSA), Multi-drug resistant Pseudomonas aeruginosa 
ATCC 9027, Escherichia coli ATCC 25922, Acinetobacter 
baumannii ATCC 19606, Methicillin resistant Staphylo-
coccus epidermidis ATCC 12228 (MRSE) and Staphylo-
coccus aureus ATCC 29213 were obtained from the Key 
Laboratory of Tropical Marine Biological Resources and 
Ecology, Chinese Academy of Sciences.

2.5 � Antibacterial assay
The antibacterial activities of the different extracts of 
the endophytic fungi were assayed by modified filter 
paper disc method [27]. The sterile filter paper discs 
were soaked with 20  μL of crude extract and placed on 
pre-coated bacterial plates (50  μL of freshly prepared 
test cultures, 1 × 104–6 CFU/mL) of Mueller–Hinton agar 
(MHA). Kanamycin (50 µg/disc) and Dimethyl sulfoxide 
(DMSO) (20 μL/disc) were used as positive and solvent 
controls, respectively. The plates were first incubated at 
4  °C for 10  min to allow proper diffusion of the extract 
into the medium and then incubated at 37  °C for 24  h. 

After incubation period, the inhibition zones were meas-
ured and expressed in terms of millimeter (mm). An 
average inhibition zone was calculated for 5 replicates.

2.6 � Determination of minimal inhibitory concentration 
(MIC) and minimum bactericidal concentration (MBC)

The minimal inhibitory concentration (MIC) values of 
the active extracts of the endophytic fungi were deter-
mined using broth micro dilution assay in sterile 96-well 
microtiter plate according to the Clinical and Labora-
tory Standards Institute (CLSI) document M07-A10 
and M100-S25 [28, 29]. Briefly, a two-fold dilution of 
the extract was carried out with double strength Muel-
ler–Hinton broth (MHB). 100 µL inoculum and extracts 
were added into each well to a final volume of 200 μL 
with the final concentration ranging from 0.1 to 100 µg/
mL. Kanamycin was included as positive antibiotic con-
trol. Then, the 96-well microtiter plate was incubated at 
37 °C for 24 h. After incubation period, 40 μL of 0.2 mg/
mL iodonitrotetrazolium chloride dissolved in 99.5% 
ethanol was added into each well and again incubated for 
30 min at 4 °C. The color changed from yellow to purple 
indicating the microbial growth in the well. To determine 
the minimum bactericidal concentrations (MBC) and to 
check the viability of the test microorganisms, the mix-
ture in every well was streaked on nutrient agar and again 
incubated at 37 °C for 24 h [30].

2.7 � Antioxidant assay
The antioxidant activities of the extracts of the endo-
phytic fungi were assayed by a modified method of 
Kumar et  al. [31]. Stock solutions of α-diphenyl-β-
picrylhydrazyl (DPPH) (200 μM/L) and extracts of endo-
phytic fungi (50  µg/mL) were prepared in methanol, 
respectively. 3  mL extracts of different concentrations 
added with 1 mL of 200 μM/L DPPH solution and were 
wrapped in aluminum foil and kept at 30  °C for 30 min 
in dark. Meanwhile, 3  mL extracts of different con-
centrations added with 1  mL of ethanol was set to the 
blank groups and 3  mL of ethanol added with 1  mL of 
200  μmol/L DPPH solution was labeled as the control 
groups. All measurements were done under dim light. 
Spectrophotometric measurements were done at 517 nm 
using Spectronic Genesys 5 spectrophotometer. The 
results were expressed as percentage of reduction of the 
initial DPPH absorption by test samples as follows: DPPH 
scavenging effect (%) = [BG − (TG − CG)/BG] × 100.

2.8 � Identification of secondary metabolites using GC–MS 
analysis

The active crude extract was analyzed for its chemi-
cal constituents with aid of GC–MS (HP6890GC with 

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.megasoftware.net
https://www.megasoftware.net
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5973 MS, Agilent Technologies, Santa Clara, CA, USA) 
equipped with a HP-5MS column (30 mm × 0.25 mm with 
film thickness 0.25 μm; Agilent Technologies). Briefly, the 
sample was dissolved in MeOH (2 μL) and injected with 
split ratio of 20:1 with anterior column pressure of about 
7 psi. Analysis was carried out with oven temperature 
programmed at 80 °C (hold 3 min) and raised to 280 °C 
at a rate of 3 °C/min. The injection port temperature was 
250  °C, transfer temperature was 250  °C and ion source 
temperature was 230 °C. Helium was used as carrier gas 
at a flow rate of 1 mL/min. The instrument was calibrated 
to a scan range of m/z 35–500. The spectra of known and 
unknown compounds were identified by comparing their 
mass spectral fragmentation patterns with the NIST98-
MS and the Wiley KnowItAll 2020 Mass Spectral Library 
(http://​www.​knowi​tall.​com) [32].

2.9 � Statistical analysis
All experimental data were statistically analyzed by Sta-
tistical Product and Service Solutions (SPSS) 19.0 (IBM, 
Armonk, NY, USA) and the experimental data were 

expressed as mean ± standard deviation (P < 0.05), indi-
cating a significant difference (P < 0.01), indicating a very 
significant difference [33].

3 � Results
3.1 � Identification of endophytes
Two distinct endophytic fungal isolates HJ.14 and HJ.15 
were isolated and purified from fresh rhizome of Polygo-
natum sibiricum (P. sibiricum). The HJ.14 colonies with 
radial growth rate of 3.73 ± 0.78 mm/d on potato dextrose 
agar (PDA) plates are characterized by felt-like, textured, 
pale-white colonies and white undersides (Fig.  1a–c, 
Additional file 1: Tables S1, S2). The HJ.15 colonies with 
radial growth rate of 12.37 ± 0.11  mm/d on PDA plates 
are characterized by villous colonies, the upper sur-
face is light pink, and the color becomes lighter as the 
circle spreads to the border, the mycelium is very thin 
(Fig.  1d–f, Additional file  1: Tables S1, S2). Microscopi-
cally, the lower part of the mycelium is thick and erect, 
rose red and has many diaphragms. The small conidia are 
mostly unicellular, a few have 1–3 septa; they are ellipti-
cal conidia that produce spores from aerial hyphae. The 

Fig. 1  Morphological characteristics of P. sibiricum-derived endophytic fungi (a) Macroscopic image of F. oxysporum HJ 15 on Potato Dextrose Agar; 
b Microscopic image (40X) of F. oxysporum HJ 15; c mycelial growth rate of F. oxysporum HJ 15; d Macroscopic image of T. assiutensis HJ.14 on Potato 
Dextrose Agar; e Microscopic image (40X) of T. assiutensis HJ.14; f mycelial growth rate of T. assiutensis HJ.14

http://www.knowitall.com
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macroconidia were sickle-shaped or spindle-shaped, con-
sistent with the morphological characteristics of Fusar-
ium [34].

Further, the isolates were confirmed by molecular 
identification in which highly conserved Internal tran-
scribed spacer (ITS) gene sequences of the fungus were 
amplified using ITS universal primers (ITS1 and ITS4) 
by PCR and sequenced. Approximately 571 and 524 bps 
of two sequences (HJ.14 and HJ.15) were  subjected to 
Basic Local Alignment Search Tool (BLAST) analysis. 
HJ.14 showed a high homology (100%) with the previ-
ously submitted sequences of Talaromyces assiuten-
sis (GenBank accession number MW798752.1); HJ.15 
revealed maximum homology (100%) with Fusarium 
oxysporum (GenBank accession number MN749138.1). 
Furthermore, the phylogenetic tree for the HJ.14 and 
HJ.15 isolates constructed using Mega X 10.2.2 soft-
ware as depicted in Fig. 2 confirmed that they belonged 
to T. assiutensis and F. oxysporum, respectively. These 
sequences were further deposited in the GenBank 
of NCBI under the accession numbers MZ514009.1 
(HJ.14), MZ514011.1 (HJ.15) (Additional file  1: 
Table S3).

3.2 � Preliminary antibacterial activity
As shown in Fig.  3 and Additional file  1: Table  S4, 
among the extracts screened the ethyl acetate extract 
of F. oxysporum HJ.15 showed significant broad spec-
trum of antibacterial activity against all the 11 bacterial 
strains tested with the zones of inhibition ranging from 
10.98 ± 0.19 to 15.66 ± 1.49 mm. Interestingly, it showed 
highest antibacterial activity against the multidrug-
resistant bacteria such as B. thuringiensis, E. faecalis, S. 
aureus and P. aeruginosa with the zones of inhibition 
ranging from 13.19 ± 0.19 to 15.66 ± 1.49  mm. On the 

other hand, methanol and petroleum ether extracts 
showed moderate and weak activities as compared to 
kanamycin (Additional file 1: Fig. S1).

3.3 � Determination of MIC and MBC
Based on the preliminary antibacterial activities, the ethyl 
acetate extract of F. oxysporum HJ.15 was alone individu-
ally tested against selected pathogenic strains to deter-
mine their MIC and MBC values. The resulting MICs and 
MBCs of ethyl acetate extract against the tested patho-
gens is described in Table 2 and Additional file 1: Fig. S2. 
Interestingly, the ethyl acetate extract of F. oxysporum 
HJ.15 showed potential antibacterial activity with MICs 
ranging from 0.24 to 1.88 µg/mL. MIC testing indicated 
that the volume of ethyl acetate extract required to pre-
vent the growth of the test microorganisms was found to 
be as follows: 1.88  µg/mL for S. aureus (ATCC 29213), 
B. thuringiensis (ATCC 10792), K. pneumonia (ATCC 
13883), P. aeruginosa (ATCC 9027) and A. bammannii 
(ATCC 19606) 0.94  µg/mL for M. luteus (ATCC 4698), 
0.24  µg/mL for E. faecalis (ATCC 29212). The MBC of 
ethyl acetate extract ranged from 0.94 to 1.88 µg/mL.

3.4 � Antioxidant activity
The ability of three different extracts (methanol, ethyl 
acetate extract and petroleum ether) of F. oxyspo-
rum HJ.15 to scavenge DPPH radicals were shown 
in Fig.  4. The results clearly indicated that the ethyl 
acetate extract induced 45.41 ± 0.30–94.47 ± 0.94% of 
radicals scavenging rate followed by methanol extract 
34.82 ± 4.66–62.91 ± 0.53% and petroleum ether 
24.83 ± 0.04–47.59 ± 0.16% from 6 to 16 µg/mL with the 
EC50 value of 6.21 µg/mL, 11.70 µg/mL and 17.97 µg/mL, 
respectively. The results were compared with that of well-
known antioxidant standard drug ascorbic acid (Addi-
tional file 1: Fig. S3).

Fig. 2  Phylogenetic relatedness of T. assiutensis HJ.14 and F. oxysporum HJ.15
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3.5 � GC–MS analyses of active crude extract
The GC–MS spectra of the active ethyl acetate extract 
of F. oxysporum HJ.15 and its chemical constituents are 
depicted in Additional file 1: Table S5 and Figs. S4–S28. It 

can be seen from Additional file 1: Table S5 that there are 
25 volatile compounds detected from the crude extract of 
F. oxysporum HJ.15, including 9 esters (13.91%), 3 alcohols 
(3.04%), 3 aldehydes (2.18%), 6 carboxylic acids (12.56%), 
and 4 other types (3.53%). Of the 25 compounds identi-
fied, the most important compounds are propanoic acid 
ethyl ester, hexadecanoic acid methyl ester, hexadecanoic 
acid ethyl ester, 9-Octadecenoic acid (Z)-methyl ester, 
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Fig. 3  Antibacterial activity of extracts from endophytic fungi

Table 2  Minimum Inhibitory Concentrations (MIC) and 
Minimum Bactericidal Concentrations (MBC) of Fusarium 
oxysporum HJ.15 extracts

Test organisms F. oxysporum HJ.15 
(µg/mL)

Kanamycin (µg/
mL)

MIC MBC MIC MBC

Gram-positive

 B. subtilis 0 0 0.016 0.031

 B. thuringiensis 1.88 1.88 0.063 0.125

 E. faecalis 0.24 0.94 6.250 6.250

 M. luteus 0.94 0.94 0.002 0.002

 MRSA 1.88 0 0.024 6.250

 S. aureus 0 0 3.125 3.125

 S. epidermidis 0 0 0.008 0.008

Gram-negative

 E. coli 0 0 0.031 0.031

 K. pneumonia 1.88 0 0.031 0.063

 P. aeruginosa 1.88 1.88 0.063 0.063

 A. bammannii 1.88 0 0.008 0.016
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1-Octanol, 2-Undecenal, butanoic acid, 3-hydroxy and hex-
anoic acid which are crucial for its antibacterial and anti-
oxidant activity (Table 3, Fig. 5).

4 � Discussion
The use of life-saving antibiotics has long been plagued by 
the ability of pathogenic bacteria to acquire and develop 
an array of antibiotic resistance mechanisms, the sum 
of which is a formidable threat to antibiotic discovery, 
development and use [35]. The emergence and spread of 
antibiotic resistance have coincided with slow progress 
in the development of new antibiotics which further 
complicates the situation. Consequently, many common 
and once easily treated infectious diseases are becoming 
more challenging to treat [36] and the investigation for 
novel antibiotics against these bacteria is urgent [37].

For the past two decades the endophytic fungi have 
been explored as bio-factories of novel bioactive mol-
ecules. The extracts and pure compounds obtained from 
the culture broths or fungal biomass have exerted sig-
nificant antibacterial activity when tested on the bacterial 
strains resistant to the antibiotics currently in use [38]. 
In the present study, we isolated two endophytic fungi 
T. assiutensis HJ.14 and F. oxysporum HJ.15 from the 
rhizomes of P. sibiricum and tested for their antibacte-
rial efficacy. Among the extracts of endophytes screened, 
the ethyl acetate extracts of F. oxysporum HJ.15 exhibited 
significant antibacterial activity against all the tested type 
strains including multidrug resistant bacterial patho-
gens. Contrarily petroleum ether and methanol extracts 
showed weak antibacterial activity. In addition, the ethyl 
acetate extract exerted good antioxidant activity. Further 
chemical analyses of the active ethyl acetate extract of 
F. oxysporum HJ.15 revealed the presences of propanoic 
acid ethyl ester, hexadecanoic acid methyl ester, hexade-
canoic acid ethyl ester, 9-Octadecenoic acid (Z)-methyl 

ester, 1-Octanol, 2-undecenal, butanoic acid, 3-hydroxy 
and hexanoic acid. These compounds might be respon-
sible for the antibacterial activity of the extract as previ-
ously reported elsewhere. Similarly, Naoko Togashi et al. 
[39] reported that the antimicrobial effect of long-chain 
fatty alcohol 1-Octanol on the growth of S. aureus with 
the MIC value of 256 μg/mL. On the other hand, Villa-
Ruano et  al. [40] reported that the compound 2-unde-
cenal exhibited a moderate growth inhibitory activity 
against H. pylori at 94.7–110.4  μg/mL. More recently, 
Zahara et  al. [41] and Shaaban et  al. [42] reported that 
9-Octadecenoic acid (Z)-, methyl ester, Hexadecanoic 
acid methyl ester were effective against S. aureus, P. aer-
uginosa, K.pneumoniae, and K. pneumoniae with very 
low MIC values. Similarly, other studies conducted by 
Nayak et al. [43], Ma et al. [44] and Yuan et al. [45] the 
compounds propanoic acid ethyl ester, butanoic acid, 
3-hydroxy- and hexanoic acid displayed a strong antimi-
crobial activity against S. aureus, K. pneumoniae and C. 
albicans. By correlating the previous reports, these com-
pounds might be responsible for the significant antibac-
terial activity of the extract of F. oxysporum against tested 
bacteria.

5 � Conclusions
Two endophytic fungi were isolated from rhizomes of P. 
sibiricum, which were identified as T. assiutensis HJ.14 
and F. oxysporum HJ.15 based on ITS sequence analysis. 
The ethyl acetate extracts of F. oxysporum HJ.15 exhib-
ited significant antibacterial activities with very low MICs 
and MBCs values against the tested bacterial pathogens. 
In addition, it showed significant DPPH radical scaveng-
ing activity with very low EC50 values. Further, GC–MS 
analysis showed a few crucial chemical constituents for its 
antibacterial and antioxidant activities were propanoic acid 
ethyl ester, hexadecanoic acid methyl ester, hexadecanoic 

Table 3  Metabolites with antibacterial and antioxidant activities identified by GC–MS of highly potent extracts from Fusarium 
oxysporum HJ.15

RT Retention time, Mol.Wt. Molecular weight, Mol.For. Molecular formula, √, having biological activity; ×, without biological activity

Peak Active metabolites RT (min) Mol.For Mol.Wt Similarity (%) Content (%) Antibacterial 
activity

Antioxidant 
activity

References

1 Propanoic acid, ethyl ester 2.875 C5H10O2 102 97.3 5.184 √  ×  [28]

2 Hexadecanoic acid, methyl ester 51.281 C17H34O2 270 94 0.769 √  ×  [27]

3 Hexadecanoic acid, ethyl ester 53.584 C18H36O2 254 90.1 1.709  ×  √ [39]

4 9-Octadecenoic acid (Z)-, methyl 
ester

57.008 C19H36O2 296 85.4 0.480 √  ×  [26]

5 1-Octanol 15.178 C8H18O 130 87.7 0.459  ×  √ [24]

6 2-Undecenal 29.175 C11H20O 168 87.9 0.829 √  ×  [25]

7 Butanoic acid, 3-hydroxy 10.135 C4H8O3 104 89.8 10.115 √  ×  [29]

8 Hexanoic acid 11.722 C6H12O2 116 91.8 0.080 √  ×  [30]
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Fig. 5  GC–MS analysis of the active extract from F. oxysporum HJ 15 showing major volatile compounds; a Chromatogram of the EtoAC extract 
from F. oxysporum HJ 15; b mass spectrum of propanoic acid, ethyl ester; c mass spectrum of hexadecanoic acid, methyl ester; d mass spectrum 
of hexadecanoic acid, ethyl ester; e mass spectrum of 9-Octadecenoic acid (Z)-, methyl ester; f mass spectrum of 1-Octanol; g mass spectrum of 
2-Undecenal; h mass spectrum of butanoic acid, 3-hydroxy; i hexanoic acid
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acid ethyl ester, 9-Octadecenoic acid (Z)-methyl ester, 
1-Octanol, 2-Undecenal, butanoic acid, 3-hydroxy and 
hexanoic acid. Overall, our investigation demonstrated 
the antibacterial and antioxidant capacity of endophytes 
isolated from P. sibiricum rhizomes and provided a good 
starting point for the identification of powerful antibacte-
rial and antioxidant compounds with novel mechanisms of 
action.
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