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Abstract 

Researchers have paid a lot of attention to complex networks in recent decades. Due to their rapid evolution, they 
turn into a major scientific and innovative field. Several studies on complex networks are carried out, and other 
subjects are evolving every day such as the challenge of detecting influential nodes. In this study, we provide a brief 
overview of complex networks, as well as several concepts key related to measurements, the structure of complex 
network and social influence, an important state of the art on complex networks including basic metrics on complex 
networks, the evolution of their topology over the years as well as the dynamic of networks. A detailed literature 
about influential finding approaches is also provided to indicate their strength and shortcomings. We aim that our 
contribution of literature can be an interesting base of information for beginners’ scientists in this field. At the end of 
this paper, some conclusions are drawn and some future perspectives are mentioned to be studied as new directions 
in the future. More detailed references are provided to go further and deep in this area.
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1 � Background
The study of complex networks has been the subject of 
great attention from the scientific community and has 
proved useful in many fields such as physics, biology, 
telecommunications, computer science, sociology and 
epidemiology. Complex networks (CN) become a major 
scientific research field. In our daily life, there are several 
examples of complex networks. For instance, the world 
wide web is a real network composed of web pages con-
nected by hypertext links; internet is a network of com-
puters and routers attached by optical fibers; metabolic 
networks is a network of interaction between metabo-
lites; neural networks represent simple neurons in brain 

linked to form a complex system. Such CN and others 
can be modeled as graphs composed of nodes that inter-
act with each others, and the interaction between nodes 
is presented by links or edges. Graph theory is a power-
ful tool that has been employed in a variety of complex 
network studies [1, 2]. The modeling of these systems 
allowed us to explore them, to understand their math-
ematical description, to understand their various behav-
ior and to predict it. The modeling consists of creating 
coherent models that reflect the properties of real net-
works as much as possible. In real networks, while local 
interactions are well known such as the communication 
between routers and the protein–protein interaction, the 
overall result of all the interactions is still poorly under-
stood (emergence property). For a better understanding 
of the characteristics of networks, we will need a formal-
ism that encompasses the structure of the network (static 
approach) and its function (dynamic approach) [3]. The 
analysis of complex networks relies on knowing some 
fundamental concept such as network measurements, 
network structure, and social influence.
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Models and real networks can be compared using 
network measurements. These measurements can 
express the most suitable topological features and 
can be an efficient source for networks investigation. 
Clustering coefficient, average path length, and degree 
distribution are some statistical measurements that 
can define the structure and the behavior of networks. 
An overview about these measurements is provided in 
Sect. 2. The structure of a network means the way each 
node is arranged. It is the underlying layer of network’s 
dynamics [4, 5]. Analyzing the dynamic of networks 
allows us to find out different behaviors of networks 
either in static or variable state.

With the study of network structure, the identifica-
tion of influential nodes and the detection of commu-
nity are an important issues that have recently been 
dealt by the scientific community. The detection of 
community is addressed in a range of methods. Each 
method has its own characteristics. The second issue 
is determining which nodes in networks are impor-
tant; different approaches are proposed to fix this 
challenge. These approaches are divided into four cate-
gories: structured approaches (local, semi local, global 
and hybrid methods), Eigen vector-based approaches 
which rely on the quantity of neighbors and their influ-
ences, multi-criteria decision making (MCDM)-based 
approaches and machine learning-based approaches. 
Each method has its limitations. There are methods 
that consider local network information or methods 
that consider global information or methods that rely 
on feature engineering and the selection of this fea-
tures. We give later a detailed comparison summary 
table of some used approaches to extract similarities 
and differences between them.

The main contributions of this paper are the pres-
entation of a relevant state-of-the-art review on com-
plex networks, and all concepts related to them like 
measurements, structure, social influence, and espe-
cially the influential node approach. A comprehensive 
review and categorization of different approaches used 
in influential node findings are presented to highlight 
their main advantages and weaknesses. Hoping that 
this paper will help scientists with the analysis in this 
field.

The rest of this paper is organized as follows: Sect. 2 
provides the main text of the manuscript, a quick 
review of our subject’s fundamental concepts is pro-
vided in Sect.  2.1. An interesting literature review 
about complex networks is highlighted in Sect. 2.2. The 
third sub-section discusses methods for detecting influ-
ential nodes. Section  4 is a summary of the classifica-
tion of several papers. In Sect. 3, we draw conclusions 
and some perspectives.

2 � Main text
2.1 � Fundamental concepts
In this section, we present some basic concepts and defi-
nitions that will be used in this article.

2.1.1 � Complex network
In the context of network theory, CN is a network of 
interactions between entities whose overall behavior is 
not deductible from the individual behaviors of the said 
entities, hence the emergence of new properties. It refers 
to all entities that are linked to each other in some way. 
In other word, CN is a graph (network) with nontrivial 
topological features, features that do not occur in simple 
networks such as random networks, but often occur in 
networks representing real systems. The study of com-
plex networks is a young and active field of scientific 
research largely inspired by the empirical findings of real-
world networks such as:

•	 Social networks A social network, such as Facebook 
or Twitter, is a collection of social actors, such as per-
sons or groups, connected by social interactions. It is 
a set of vertices and edges that describes a dynamic 
community.

•	 Biological networks for example, metabolic networks 
with proteins as nodes and chemical interactions as 
links.

•	 Infrastructure networks for example, transport net-
works whose nodes are airports and the links are air 
links as well as electricity networks (cables between 
places of production and consumption).

Most social, biological, and technological networks 
exhibit substantial non-trivial topological features, 
with connection patterns between their elements that 
are neither purely regular nor purely random [6]. These 
characteristics include a heavy tail in the degree dis-
tribution, a high clustering coefficient, assortativity or 
dissortativity between vertices, community structure, 
and hierarchical structure. In the case of directed net-
works, these characteristics also include reciprocity, 
triad importance profile, and other characteristics [7]. 
In contrast, many mathematical models of networks 
that have been studied in the past, such as networks 
and random graphs, do not exhibit these character-
istics. The most of complex structures can be realized 
by networks with an average number of interactions. It 
is often possible to predict the functionality or under-
stand the behavior of a complex system if we can verify 
certain "good properties" by analyzing the underlying 
network [8]. For example, if we detect clusters of ver-
tices with the same topological characteristics of the 



Page 3 of 15Ait Rai et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:18 	

network, we can obtain information about the par-
ticular roles played by each vertex (e.g., hubs, outliers) 
or how whole clusters describe or affect the general 
behavior of the CN [9]. The use of graph theory to 
model networks as graphs makes it easier to examine 
and understand their structure. Graphs are used to 
model this, with nodes representing entities and links 
representing relationships. A graph G is a couple (V ,E) 
where: V = v1, v2, . . . , vn such as n = |v| is a set of ver-
tices or nodes. E = e1, e2, . . . ., em such as m = |e| is 
a set of edges or links. If each edge E is an unordered 
pair of nodes, the edge is undirected and the network 
is an undirected network. Otherwise, if each edge is 
an ordered pair of nodes, the edge is directed from 
node to other and the network is a directed or ori-
ented network. In this case, an ordered pair of nodes 
(u, v) is a directed edge from node u to node v . If each 
edge has an associated numeric value called a weight, 
the edge is weighted and the network is a weighted net-
work [10]. Figure  1 shows three examples of networks 
including undirected, directed and weighted network 
(undirected).

Two well-known and much-studied classes of com-
plex networks are scale-free networks [11, 12] and 
small-world networks [13, 14], whose discovery and 
definition are canonical case studies in the field. Both 
are characterized by specific structural features: power-
law degree distributions for the first class [15], short 
path lengths and high clustering for the second class. 
Examples of these classes are presented in Fig.  2. The 
random network is virtually homogeneous and fol-
lows the Poisson distribution. Nearly all nodes have the 
same number of links. Road network is an example of 
this class. scale-free network: An inhomogeneous net-
work that exhibits power-law behavior. The majority 
of nodes have one or two links, but a few densely con-
nected nodes, or "hubs," have many links. Airline net-
works is an example of this class. However, as the study 
of complex networks has continued to grow in impor-
tance and popularity, many other aspects of network 

structures have also attracted attention [16, 17]. Sec-
tion 3 presents these classes with their characteristics.

Recently, the study of complex networks has been 
extended to networks of networks. If these networks are 
interdependent, they become significantly more vulner-
able than single networks to random failures and targeted 
attacks and exhibit cascading failures and first-order 
percolation transitions [19]. In addition, the collective 
behavior of a network in the presence of node failure and 
recovery has been studied. It has been found that such a 
network can have spontaneous failures and spontaneous 
recoveries [20].

The field continues to grow at a rapid pace and has brought 
together researchers from many fields, including mathemat-
ics, physics, biology, computer science, sociology, epidemiol-
ogy, and others. Ideas and tools from network science and 
engineering were applied to the analysis of metabolic and 
genetic regulatory networks; the study of the stability and 
robustness of ecosystems; clinical science; modeling and 
design of scalable communication networks such as gen-
eration and visualization of complex wireless networks; the 
development of vaccination strategies for disease control; 

Fig. 1  Examples of networks

Fig. 2  The random network and scale free network a the random 
network is virtually homogeneous and follows the Poisson 
distribution. Nearly all nodes have the same number of links. b 
Scale-free network: An inhomogeneous network that exhibits 
power-law behavior. The majority of nodes have one or two links, 
but a few densely connected nodes, or "hubs," have many links.in the 
scale-free network, the largest hubs are highlighted with dark circles, 
nodes are presented with white circles [18]
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and a wide range of other practical issues [21]. In addition, 
network theory has recently proven useful in identifying bot-
tlenecks in urban traffic. Network science is the subject of 
many conferences in a variety of different fields [22].

2.1.2 � Network measurements
In the field of complex network, measurements can dem-
onstrate the most relevant topological features, especially 
after the representation of the network structure, the 
analysis of the topological characteristics of the obtained 
representation carried out in the form of a set of informa-
tive measurements. During the modeling process, some 
respective measurements are used for comparing models 
with real networks. That is why it is an essential resource in 
many network investigation [23].

Thereafter, some measurements that can be used to 
measure significant properties of complex systems. We 
consider then a graph G with G(V ,E) . V  is a set of nodes, 
and E is a set of edges.

Density the density d of a graph G is the proportion of 
links existing in G compared to the total number of possi-
ble links: (G) = 2m/n(n− 1) . If m is of the order of n , the 
graph is said to be sparse (as opposed to dense graphs). 
Indeed, this measure is sensitive to the number of vertices, 
so the density equal to 0 corresponds to the graph where all 
the vertices are isolated, and equal to 1 in the case of a com-
plete graph. In a graph resulting from empirical observa-
tions, the more the number of vertices increases, the more 
the density tends to decrease.

Shortest path it is the length of the shortest path connect-
ing two nodes in the network. One of the algorithms for 
calculating the distance between two nodes in a graph is: 
Dijkstra’s algorithm [24]. The average distance between two 
pairs of nodes makes it possible to evaluate the transmis-
sion time required between two “any” individuals.

Diameter the diameter of a network is formally the long-
est of the shortest paths between two entities, or nodes, of 
the network, via its connections. It allows for example to 
know the maximum time to transmit the disease.

Degree the degree d(i) of a node is the number of edges 
incident to node i , in other words, the number of neighbor-
ing nodes of i.

Degree distribution perhaps calculated as follows [25]:

δ(v) denotes the number of vertices of the network G 
having degree k and N  : denotes the size of G (number of 
nodes). The above equation represents the proportion of 
vertices of G having degree k . The degree ki of node i is 
the number of links connected to node i . The distribu-
tion of degrees allows the understanding of the distribu-
tion of connectivity and the structure of the network.

(1)P(k) =
|δ(v)|

N

Clustering coefficient is the probability that two neigh-
bors of a node are also neighbors to each other. It can be 
interpreted as the probability that two nearest neighbors 
of i are connected to each other.

The average clustering coefficient of the graph G is the 
average of the clustering coefficient of all its vertices 
(nodes). In the literature, there are two definitions of the 
clustering coefficient: global clustering coefficient (also 
called transitive) and local clustering coefficient on aver-
age [26]:

The global clustering coefficient is defined as:

With:
A triangle is a complete subgraph with three nodes;
A connected triple is a set of three vertices with at least 

two links between them.
Closeness centrality indicates if a node is located close 

to the all other nodes of the graph and if it can quickly 
interact with them. It is written formally [27]:

With dG(u, v) is the distance between nodes u and v.

Betweenness centrality is one of the most important 
concepts. It measures the usefulness of the node in the 
transmission of information within the network. The 
node plays a central role if many shortest paths between 
two nodes have to go through this node [27]. Formally, 
we express it as:

with σij(v) the number of paths between i and j that go 
cross v.

Vulnerability A node’s vulnerability is defined as the 
decrease in performance that occurs when the node and 
all of its edges are removed from the network.

where E is the original network’s global efficiency and Ei 
is the global efficiency after omitting node i and all its 
edges.

(2)C =
3 ∗ number of triangles

number of connected triplets

(3)Cc(v) =
1

u∈V∈\{v} dG(u, v)

(4)
CB(v) =

∑

i, j
i �= j �= v

σij(v)

σij

(5)Vi =
E − Ei

E

(6)E =
1

N (N − 1)

∑

i �=j

1

dij



Page 5 of 15Ait Rai et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:18 	

2.1.3 � Complex network structure
The way in which the nodes are arranged is another 
aspect in the study of the complex networks or the study 
of their structure. The structure refers to the real-world 
network modeling research that has been done. Several 
models, however, appear to explain how small world net-
works and scale-free features emerge in the real world: 
Watts and Strogatz proposed a model [26] to explain 
how the two characteristics of small world networks, a 
high clustering coefficient and a low average path length, 
expound in networks. Barabàsi and Albert offered a 
model [28] to show how networks with power-law degree 
distribution emerge in networks.

Usually, models of networks can help us to understand 
the meaning of these properties, we can classify these 
models in two categories:

•	 Evolving models explains the evolution of the com-
plex network as a function of time in order to show 
how these networks behavior develop and to deter-
mine the laws governing the evolution of physical 
systems. ex: Barabási and Albert for scale free net-
works [28].

•	 Static models show how networks are structured and 
how some properties of complex networks are pre-
sent. The Watts and Strogatz model it is an exam-
ple that explains the appearance of high clustering 
coefficient and low average path length in networks 
according to time [26].

There are several aspects in terms of the structure of 
a network that can be useful for predicting the overall 
behavior of a complex network, in terms of clusters how 
are interconnected, how to communicate with each other, 
how identify influential nodes in complex networks, how 
network structure affect the dynamics of social systems.

2.1.4 � Social influence
The social influence is the most important topic in the 
field of complex system especially social network. We 
cannot talk about these type of networks without talk-
ing about spreading idea and information and the impact 
of this information on our society. Interactions between 
actors of social networks are the means by which infor-
mation spreads. The maximizing of social influence is 
one of the issues concerning information propagation. It 
is essential to find a group of the most influential indi-
viduals in a social network so that they can extend their 
influence to the largest scale (influencers). In other 
words, the activation of these nodes can cause the propa-
gation of information in the whole network. The problem 
of maximizing social influence has been an important 

research topic for many years because it has a consider-
able impact on the society. Some parties are interested by 
the progress in this area in order to optimize the spread-
ing of information and new ideas through social network. 
Viral marketing is one of its application. The principle is 
that to promote a new service for all potential customers. 
The brand can target a limited group of clients who will 
subsequently tell their friends and acquaintances about 
the service. Other application of spreading information is 
the political company via social networks [29].

2.2 � Literature review on complex networks
In past decades, CN have gotten much consideration 
from researchers and nowadays, they have become a 
subject key in many areas of science. Studies on CN 
show that the modeling of these systems the complexity 
reduces to a level that we can manage them in a practi-
cal way [30]. The graphical properties produced by this 
modeling are similar to the real system [30]. There are 
various examples of complex networks in our daily life. 
Despite the fact that various measures have been sug-
gested by researchers about complex networks, there are 
three basic metrics that can describe the characteristics 
of complex networks. These metrics are average path 
length [4], clustering coefficient and degree distribution. 
Degree distribution is a probabilistic distribution of the 
degrees of each node of the network [31]. Clustering 
coefficient evaluates the level of local or global transitiv-
ity of a graph. In other words, we study the links at the 
level of the triads (relations between three nodes) and we 
check whether, when there is a link between the nodes ab 
and bc, there is also a link between the nodes a and c. The 
average path length is the average length of shortest path 
between any two vertices [32].

Formerly, researches on complex networks focus on the 
topological structure of the network and its characteris-
tics as well as its dynamics. The objective of studying and 
analyzing complex networks is not only to understand 
different real systems but also to achieve an effective 
control of these networks. In fact, to predict and control 
such a complex system or network an understanding of 
the mathematical description of these systems is neces-
sary [30]. According to the dynamic process of complex 
networks, networks can be divided into two classes: static 
and temporal. The study of complex networks began with 
this class where the presence of nodes and links is unre-
lated from any idea of time. The static network contains 
nodes and edges altered gradually over times or fixed 
permanently. It is widely studied and suitable for ana-
lytical traceability [30]. In the dynamic class, the concept 
of time is relevant and the existence of links and nodes 
is time-sensitive, they are not always granted to exist. 
This kind of network is more realistic. Links between 
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nodes in these networks may appear or disappear over 
time, the scientific collaboration network as an example 
[30]. There is a lot of sub-classes under these two classes 
(static-temporal). Networks can be distinguished accord-
ing to their distribution degree, the average distance and 
other metrics. Models are developed through the year 
from simple lattices until improved models. Lattices are 
the simple models of networks. They are suitable for solv-
ing analytic problems [30] such as Ising Model [33] and 
Voter Model [34]. They have a simplified structure but 
are unrealistic in comparison with real-world systems 
[30], this is why the historical evolution of the models 
knows more improvement by taking into account more 
real characteristics. Afterward, in 1959 Erdos and Rényi 
explored another basic network mockup is the random 
regular network [35]. Watts and Strogatz [26] proposed 
the small-world model. It is more realistic and social 
network-inspired. Barabasi and Albert [13] developed 
a preferential attachment model that might be used to 
reproduce the time growth features of many real net-
works. Nodes are added in this model at each step by 
creating links with the already existing nodes with a pro-
portional probability of their degrees at that moment. 
A model close to the BA (Barabasi and Albert) network 
was proposed by Bianconi and Barabasi [14] (Fitness 
Model). This model relies in addition to degree, on the 
fitness of each node for realizing new links. A new idea 
in BA models is introduced by Almeida et  al. [13]. This 
idea is homophily, and models are christened homo-
philic model. Homophilic models rely on degree, fitness 
and also similarity between nodes for example similar-
ity of jobs or similarity of interests, etc. Catanzaro et al. 
provide an algorithm for creating uncorrelated ran-
dom networks (URN), despite the fact that this model is 
uncommon in real networks. URN is created in order to 
reach a theoretical solution for the behavior of dynamical 
systems. Waxman [36] suggested a generalization model 
of the Erdos–Renyi graph in 1988 (spatial Waxman 
Model). The challenge of building longer connections 
between nodes is fully considered in this model. Rozen-
feld et  al. [11] proposed the scale free on lattice. When 
creating new links, this model considers the Euclidean 
distance among nodes. Perra et al. [37] propose the activ-
ity driven model as an example of temporal social net-
work. Actor activity drives relationships in this model. 
Afterward, the Adaptive networks model is appeared to 
give the same importance between the topology and the 
dynamical process [38]. Metapopulation model [39] also 
is presented as network constituted by collection of net-
works describing interconnected populations. Two level 
characterizing this model, the first is interpopulation that 
contain set of individuals and each individual constitutes 
the intrapopulation level. Multilayer model presents two 

layers (horizontal and vertical) which contain a two-way 
dynamic process within the layer and between layers [40]. 
Covid 19 is a good example to clarify this model as one of 
the infectious diseases which is contagious from bat ani-
mals to human. In this case, we can model human and 
their dynamic process as first layer and the same for bats 
animals as a second layer. There are human-to-human 
interactions, as there are human-to-animal relationships. 
Table 1 summarizes all of these network models. For each 
network model, we highlight its advantages as well as its 
limits.

In the last few years, there has been a growing inter-
est in community structure and influential nodes in the 
field of complex network analysis. A large number of 
articles were published, including a different approach 
to the problem of community detection as in [47–53]. 
These referred approaches are classified as approach-
based static non-overlapping communities, approach-
based static overlapping communities, approach-based 
hierarchical communities and approach-based dynamic 
communities [54]. Researches are also interested in iden-
tifying influential nodes. Many approaches are proposed 
in this context as explained in the following section.

2.3 � Influential nodes finding approaches
In network science, each node plays a specific role. Nodes 
do not have the same importance, and some nodes are 
more important in the network than others remaining 
nodes due to their important capability of spreading in 
the whole network. These nodes are known as influential 
nodes. The identification of significant nodes is necessary 
in network attacks, network of terrorists, and disease 
spreading studies. Reason for what, approaches for find-
ing important nodes in complex networks have attracted 
much interest. Several methods are proposed to iden-
tify these nodes: Degree centrality (DC) [55], between-
ness centrality (BC),closeness centrality (CC) [56], page 
rank (PR) [57], Leader rank (LR) [58], H-index [59], 
Hyperlink-Induced Topic Search (HITS) [60], weighted 
formal concept analysis (WFCA) [61], weighted TOPSIS 
(W-TOPSIS) [62], Analytic hierarchy process AHP [63], 
Least-squares support vector machine LS-SVM [64]…. 
These proposed approaches are divided into four cat-
egories: structured approaches, vector-based approaches, 
MCDM-based approaches and machine learning-based 
approaches.

2.3.1 � Structured approaches
In structured approaches, there are several types: local, 
semi-local, global and hybrid approaches. These tech-
niques can also be classified into two classes: one is based 
on each node’s neighborhood (including degree central-
ity, K-shell, and H-index techniques), whereas the other 
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is based on node pathways (such as closeness centrality 
and betweenness centrality). For local approaches, they 
determine the impact of nodes based on local data which 
means they depend on nodes and their neighbors to indi-
cate their influence (impact). For example, H-index and 
degree centrality (DC), these approaches’ advantages are 
their simplicity and minimal computational complexity. 
However, the overall system structure is neglected and 
important nodes are found mostly in big components of 
multi-component [65], which diminishes the adequacy of 
these methods in extensive scale networks [66]. In global 
approaches, the importance of nodes is described by the 
entire structure of the network, e.g., closeness centrality 
(CC), betweenness centrality (BC), Coreness centrality 
(Cnc) [56], Kshell decomposition [59]. Centralities like 
closeness and betweenness are based on paths between 
nodes. These two measures are not as impactful in 

large-scale networks as a result of their great complex-
ity of information, Kshell decomposition (Ks) indicates a 
global location features of network nodes but is not ideal 
for tree networks. Semi-local approaches use informa-
tion on neighbors’ neighbors (second-order neighbors) 
not withstanding information on neighbors to deter-
mine the spread capacity of a node. Example of these 
approaches: Weight Degree Centrality (WDC) [67] and 
Extended Weight Degree Centrality (EWDC) [10], in WDC 
and EWDC the computation of the diagrams assortativity 
is vital which can prompt more prominent time intricacy 
in vast scale graphs. Hybrid approaches use global infor-
mation in conjunction with local information to specify 
these influential nodes and to determine the extended 
ability of these nodes, these techniques are based on the 
Ks index these methods, which are based entirely on 
the ks index include mixed degree decomposition [68], 

Table 1  Network models and their characteristics

Authors Networks models Advantages Limits

Jozef Sumec Regular lattices Simple models of networks. Suitable for 
solving analytic problems.

Unrealistic compared with real networks.

Erdos and Renyi [35] Random regular network Simple prototype of network, homogene-
ous.

Too restrictive.

Watts and Strogatz [26] Small world networks Realistic roused from social networks. With a power-law basis, it is unable to con-
struct heterogeneous degree distribution.

Barbasi and Albert [28] Barbasi Albert model Appropriate for generating the time 
growth characteristic among several 
real—world networks.
Model of emergence graph.

The dynamic process is treated as static in 
this network.
Fitness of nodes is not considered for mak-
ing new links.

Bianconi and Barbasi [41] Fitness model Similar to BA model.
Consider degree and fitness of nodes for 
making new connections.

Does not predict the impact of homophily.

Almeida et al. [42] Homophilic model Consider similitude of nodes.
Model of emergence of small-world fea-
tures and power-law degree distribution.

Produces undirected networks, It faces 
some difficulties in extending this model to 
directed networks.

Catanzaro et al. [43] Uncorrelated random networks It is important for checking theoretical 
solutions of the interactions of dynamical 
systems.

Unusual in real networks.

Waxman [36] Spatial Waxman model generalization of the Erdos–Renyi graph
Consider geographical properties.

Weak in the prediction of most real systems.

Rozenfeld et al. [11] Scale free on lattice When creating new links, keep the 
Euclidean distance between nodes in 
consideration.

The entire length of the system’s links can 
be kept to a minimum.

Perra et al. [37] Activity driven model Actor action drives relationships.
Example of temporal social network.

Do not consider other features of actor 
activity like different weights associated 
with each connection.

Gross et al. [44] Adaptive networks Useful to model many real systems.
With adaptive way, topologies change 
with changes of node’s states.

There is yet no clear theoretical explanation 
for large-scale adaptive network limitations.

Colizza and Vespignani [39] Metapopulation model A network of networks that describes a 
connected population.
Widely used because of the mobility of 
node.

In spatial epidemiology, it is difficult to 
represent the essential aspects of spatial 
transmission of infectious diseases [45].

Mucha et al. [40] Multilayer networks The dynamic process has the potential to 
propagate inside and between layers.

The spectral characteristics of the graph 
can be used to identify distinct multiplexity 
regimes and coupling between layers [46].



Page 8 of 15Ait Rai et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:18 

neighborhood coreness [69], k-shell iteration factor [66] 
and mixed core, degree and entropy [70].

2.3.2 � Eigenvector‑based approaches
Eigenvector-based approaches take into account the 
quantity of neighbors and their influences, such as: eigen-
vector centrality [71], Pagerank (PR) [57], LeaderRank 
(LR) [58], HITS (Hyperlink-Induced Topic Search) [60]. 
Eigenvector centrality can be productively determined 
utilizing a power iteration approach, yet it might end 
up caught in a zero status, on account of the presence of 
many nodes without in-degree [61]. PageRank is a vari-
ant of the eigenvector centrality. This famous algorithm 
is used in Google search engine. Firstly, acquainted with 
measure the ubiquity of a website page. It expects that 
the significance of a page is dictated by the amount and 
nature of the pages connected to it. It has been used in 
several areas and works well in networks without scale. 
However, it is sensitive to disturbances of random net-
works and presents thematic drifts in special network 
structures [61]. The HITS algorithm considers every 
node in the system by including two jobs: the author-
ity and the hub similarly HITS introduces a wonder of 
topical drift. LeaderRank works well in complex directed 
networks but seems to be inapplicable on non-directed 
complex networks.

2.3.3 � MCDM‑based approaches
Recently, multi-criteria analysis methods (MCDMs) or 
multiple attribute decision making methods (MADMs) 
have been used to classify nodes according to their 
importance, like TOPSIS [14] W-TOPSIS [62] and AHP 
[63]. Various measurements of centrality have been 
utilized as multiple attributes of complex networks. 
However, each attribute assumes an imperative job in 
TOPSIS, which is not sensible, to cure this issue W-TOP-
SIS not just considers diverse centrality measures as mul-
tiple network attributes, However, it also suggests a new 
technique for calculating the weight of each attribute. 
AHP is also applied to detect important nodes and uses 
the model susceptible-Infected SI to obtain the weights. 
Yang also mixes entropy with TOPSIS to generate EW—
TOPSIS [72]. In this combination, TOPSIS is based on 
centrality measures as multi-criteria and the entropy is 
used to calculate the weight of each factor.

2.3.4 � Machine learning‑based approaches
Recently, there has been a significant focus on machine 
learning-based approaches. Least Square Support Vector 
Machine (LS-SVM) was used by Wen et al. to identify the 
mapping rules among basic indicators and AHP perfor-
mance evaluation [64]. LS-SVM furnishes good super-
vision for identifying important nodes in large-scale 

networks. Zhao et al. proposed a model to identify vital 
nodes based on seven algorithms of machine learn-
ing (Naïve Bayes, Decision Tree, Random Forest, Sup-
port Vector Machine SVM, K-Nearest Neighbor KNN, 
Logistic Regression, and Multi-layer Perceptron MLP). 
This model relies on graph model and rate of infection 
in the ranking of nodes. Approaches based on machine 
learning rely a lot on feature engineering, and the selec-
tion of these features can influence the performance of 
these approaches. To handle this task, Zhao et  al. [73] 
introduced a deep learning model called infGCN. It is 
based on graph convolutional networks. InfGCN treat in 
the same time the features of node and the link between 
them.

2.4 � Classification summary
In this section, we present different well-known 
approaches that are used to identify influential nodes 
and we perform a comparison between them based 
on some factors. The selected approaches do not pre-
sent an exhaustive list of research on influential finding 
nodes approaches. In this comparison, we will focus on 
the type, the nature and the direction of network used 
in the approach. The network’s type indicates whether 
the network is weighted or unweighted. The network’s 
nature indicates whether it is static or dynamic. The net-
work direction indicates whether or not the network is 
directed. Network size provides the size of the used net-
work. The implementation datasets present datasets used 
in the implementation of the approach. Table 2 presents 
the abbreviation and its description for the used complex 
networks datasets for each technique implementation.

For the benchmarking approaches used in the detection 
of influential nodes, a list of real and artificial networks 
is presented above in Table 2. This step of benchmarking 
is important to see how the approach or the algorithm is 
efficient, and also, it can give us the ability to compare 
results of different approaches on the same dataset.

We give, in the following comparison table, examples 
of employed implementation datasets (refer to Table  2) 
in each specified reference, as well as other features as 
follows:

The following comparison offers an overview of the 
most widely used techniques in this problematic of influ-
ential node’s detection. All of these techniques show 
their effectiveness throw various experimentation and 
produce results differentiated by their calculation, limi-
tations, complexity, time of execution, nature and size of 
network.

In this table, there are some approaches that are in the 
same spirit for example PageRank and HITS. Both of 
them utilize the connection structure of the Web graph 
to determine the pertinence of the pages. HITS works on 
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Table 2  Operational network datasets implemented in the main comparison’s referred research

Networks dataset Common abbreviation Description

LFR benchmark LFR Lancichinetti–Fortunato–Radicchi benchmark (An artificial network 
produced by the LFR algorithm that resembles a real-world network).

Zebra ZBR Animal network that contains interactions between 28 Grévy’s zebras 
(Equus grevyi) in Kenya. Zebras are represented by nodes, and an edge 
between two zebras indicates that there was interaction between them 
during the study.

Zachary karate club ZKC Human Social network of university of karate club that gathers students 
of the club of karate by Wayne Zachary in 1977. Each node represents 
a member of the club, and each edge represents a tie between two 
members of the club.

Contiguous CTG​ The contiguous zone, the marin boundary between 12NM (Nautical 
miles) and 24NM.

Dolphins DLP A social network of bottlenose dolphins. The nodes are the bottlenose 
dolphins (genus Tursiops) of a bottlenose dolphin community living off 
Doubtful Sound, a fjord in New Zealand (spelled fiord in New Zealand). 
An edge indicates a frequent association. The dolphins were observed 
between 1994 and 2001.

Copperfield CPF Network of common word (adjacencies between noun and adjectives) 
for the novel David Copperfield by Charles Dickens. Nodes represent 
the most commonly occurring adjectives and nouns in the book. Edges 
connect any pair of words that occur in adjacent position in the text of 
the book.

Co authorship in network science NTS Co-authorship of scientists in network theory and experiments.

Caenorhabditis elegans ELG Neural network of neurons and synapses in C. elegans, a type of worm. It 
consists of around 1000 cells including 302 neurons.

Euroroad ERD A international E-road network located mostly in Europe. Network 
includes cities, and an edge connecting two cities indicates that they are 
linked. It contains 1174 cities.

Chicago CCG​ Contains a comprehensive list of all current City of Chicago workers with 
details.

Hamsterster HMS Network is of the friendships and family links between users of the 
website http://​www.​hamst​erster.​com. It is an independent site created 
in 2003 or 2004. Hamsterster appears to have been shut down as of 
October 2014.

US power grid UG Undirected infrastructure network provides data concerning the Western 
States of the USA of America’s power grid. An edge represents a power 
supply line. A node is either a generator, a transformator or a substation.

Pretty good privacy PGP An online contact network or an interaction network of users of the 
pretty good privacy (PGP) algorithm. The network contains only the 
giant connected component of the network.

Astro physics ASP Collaboration or cooperation network based on the e-print arXiv and 
includes scientific partnerships between authors of articles submitted to 
the Astro Physics field. If an author i co-authored a paper with author j, 
the graph contains a undirected edge from i to j. The data covers papers 
in the period from January 1993 to April 2003 (124 months). It begins 
within a few months of the inception of the arXiv, and thus represents 
essentially the complete history of its ASTRO-PH section.

Enron email network ENR The Enron email dataset comprises about 500,000 emails sent by 
Enron Corporation employees. This data was originally made public, 
and posted to the web, by the Federal Energy Regulatory Commission 
during its investigation. Nodes of the network are email addresses and 
if an address i sent at least one email to address j, the graph contains an 
undirected edge from i to j.

Jazz musicians JZ Collaboration network between Jazz artists. Each node represents a 
Jazz artist, and each edge indicates that two artists have collaborated 
in a band. Two levels of collaborations are studied. First, the collabora-
tion network between individuals, where two musicians are connected 
if they have played in the same band and second, the collaboration 
between bands, where two bands are connected if they have a musician 
in common.

http://www.hamsterster.com
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Table 2  (continued)

Networks dataset Common abbreviation Description

Email network of URV URV The email communication network of the University Rovira I Virgili in 
Tarragona, Catalonia, Spain. Nodes are users and each edge represents 
that at least one email was sent. The direction of emails and the number 
of emails between two persons are not stored.

BLOGS BG Communication network between users of MSN’s (windows live) blog. 
It’s composed of 3982 nodes and 6803 edges.

COND-MAT (condense matter physics) CoundMath Collaboration network based on the e-print arXiv and includes research 
partnerships between authors who have submitted articles to the 
Condense Matter category. If an author i co-authored a paper with 
author j, the graph contains a undirected edge from i to j. If the paper is 
co-authored by k authors this generates a completely connected (sub) 
graph on k nodes. The data covers papers in the period from January 
1993 to April 2003 (124 months). It begins within a few months of the 
inception of the arXiv, and thus represents essentially the complete his-
tory of its COND-MAT section.

Live journal LJ Free online blogging community with almost 10 million members where 
individuals express their friendship toward others. LiveJournal allows 
members to maintain journals, individual and group blogs, and it allows 
people to declare which other members are their friends they belong.

Contact network of inpatients CNI Presents link between two inpatients if they have both been admitted to 
the same hospital.

Internet Movie database actors in adult films IMDB Network of connections between actors who have co-starred in films, 
whose genre has been labeled by the Internet Movie Database as ‘adult’. 
The dataset is a bipartite graph in which each node either corresponds 
to an actor or to a movie. Edges go from a movie to each actor in the 
movie. It also provides metadata for the nodes like movie/actor name, 
year of the movie, and genre of the movie.

Email contact network EM The network of email contacts is formed on email messages sent and 
received at University College London’s Computer Sciences Department.

The Internet at the router level (RL) RL The nodes of the RL Internet network are the Internet routers. Two rout-
ers are connected if there exists a physical connection between them.

The Internet at the autonomous system level (AS) AS The nodes are autonomous systems that are linked if there is a real 
connection beyond them. graph of routers comprising the Internet can 
be organized into sub-graphs called Autonomous Systems (AS). Each 
AS exchanges traffic flows with some neighbors (peers). We can con-
struct a communication network of who-talks-to- whom from the BGP 
(Border Gateway Protocol) logs. The data was collected from University 
of Oregon Route Views Project—Online data and reports. The dataset 
contains 733 daily instances which span an interval of 785 days from 
November 8 1997 to January 2 2000. In contrast to citation networks, 
where nodes and edges only get added (not deleted) over time, the AS 
dataset also exhibits both the addition and deletion of the nodes and 
edges over time.

Product space of economic goods PS Is a network that formalizes the idea of relatedness between products 
traded in the global economy. Proximity network between products 
according to Ref.

Word WAN Represents an adjacency relation in English text.

E. coliproteins ECP Presents the problem of identifying E.coli proteins based on amino acid 
sequences in cell localization regions. It contains 336 E.coli proteins split 
into 8 different classes.

Tandem affinity purification TAP Yeast protein–protein binding network generated by tandem affinity 
purification experiments.

Yeast 2 hybrid Y2H Yeast protein–protein binding network generated using yeast two 
hybridization. It is originally created by Fields and Song. Is a genetic 
system wherein the interaction between two proteins of interest is 
detected via the reconstitution of a transcription factor and the subse-
quent activation of reporter genes under the control of this transcription 
factor.

Power PWR Connections between power stations.

Internet (router level) Int Symmetrized snapshot of the Internet ‘s structure at the level of autono-
mous systems, the network size is 22963.



Page 11 of 15Ait Rai et al. Beni-Suef Univ J Basic Appl Sci           (2023) 12:18 	

small subgraph representing the connection between hub 
and authority websites from the webgraph which explains 
their complexity that is inferior of O

(

logN
)

. The limi-
tations of PageRank are that does not account for time; 
also, it is unable to handle advanced search queries. It is 
unable to analyze a text in its entirety while searching for 
keywords. Instead, Google interprets these requests and 

filters search results using natural language processing 
NLP. From these experiments on the datasets mentioned 
above, there are some methods that have low time com-
plexity, for example, the k-shell algorithm, HKS, MDD, 
KS-IF, and Cnc, their time complexity is O(n) where n is 
the number of edges in the network. The k-shell decom-
position approach was initially developed for unweighted 

Table 2  (continued)

Networks dataset Common abbreviation Description

Facebook FB This dataset consists of friends lists from Facebook. Nodes represents 
actors or friends and edge represent the relationship between them.

Twitter TW Microblogging social network operated by the company Twitter Inc. It 
allows a user to send free text messages, called tweets, over the internet, 
by instant messaging or by SMS.

The John Padgett—Florentine Families Dataset JPFF Multiplex network with 2 edge types representing marriage alliances 
and business relationships between Florentine families during the Italian 
Renaissance. Data hosted by Manlio De Domenico. Marriage and com-
mercial links between Renaissance Florentine families are represented in 
this dataset.

Delicious.com DLC Feature network. This dataset includes labeled web pages obtained from 
the website delicious.com. Left nodes represent tags, right nodes repre-
sent URLs and an edge shows that a URL was tagged with a tag.

UsairPort UP Network of direct flights linking US airports in 2010. Each edge rep-
resents a connection from one airport to another, and the weight of 
an edge shows the number of flights on that connection in the given 
direction, in 2010.

AirLines AL Flight arrival and departure data for all commercial flights from 1987 to 
2008.

American College Football Network ACF Interaction network that represents Football games between Division IA 
institutions during the regular season in the Fall 2000.

Yeast YST Metabolic network. The dataset consists of a protein–protein interaction 
network. Research showed that proteins with a high degree were more 
important for the survival of the yeast than others. A node represents a 
protein and an edge represents a metabolic interaction between two 
proteins. The network contains loops.

Router RTR​ Routing network composed of 5022 nodes and 12 516 connections.

Human protein HP A network of protein–protein interactions that includes physical con-
tacts between proteins that have been experimentally demonstrated in 
humans, such as metabolic enzyme-coupled interactions and signaling 
interactions. Nodes represent human proteins and edges represent 
physical interaction between proteins in a human cell.

General relativity and quantum cosmology col-
laboration network

CA-GrQc The collaboration network derives from the e-print arXiv and contains 
scientific partnerships between authors on articles submitted to the 
category of General Relativity and Quantum Cosmology. If an author i 
co-authored a paper with author j, the graph contains a undirected edge 
from i to j. The data covers papers in the period from January 1993 to 
April 2003 (124 months). It begins within a few months of the inception 
of the arXiv, and thus represents essentially the complete history of its 
GR-QC section.

High energy physics theory collaboration network Ca-HepTh collaboration network is from the e-print arXiv and covers scientific col-
laborations between authors papers submitted to High Energy Physics—
Theory category. If an author i co-authored a paper with author j, the 
graph contains a undirected edge from i to j. If the paper is co-authored 
by k authors this generates a completely connected (sub)graph on k 
nodes. The data covers papers in the period from January 1993 to April 
2003 (124 months). It begins within a few months of the inception of the 
arXiv, and thus represents essentially the complete history of its HEP-TH 
section.

Groad GRD Highway network of 1168 nodes.
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undirected networks, but it has lately been expanded 
to other kinds of networks. The k-shell approach was 
expanded by Garas et al. [74] to recognize core-periphery 
structure in weighted networks. In K-shell decomposi-
tion, the K-shell value is not an appropriate metric for 
measuring influence. The k-shell index’s monotonicity 
is lower than other centrality indices. MDD is proposed 
to remedy the problem of the k-shell method where the 
exhausted degree, as well as the residual degree, are taken 
into account. AHP, TOPSIS, and W-TOPSIS also have 
the same philosophy to aggregate centralities to evaluate 
the influence of nodes. They consider local information 
and global structure to identify influential nodes. TOPSIS 
is implemented under four real directed and undirected 
networks, and it demonstrates their practicability. AHP 
is implemented under four real undirected networks, and 
the SI model is used to confirm the accuracy of ranking 
nodes using AHP. This method outperforms W-TOPSIS. 
W-TOPSIS is extended to dynamic networks in other 
work by Pingle Yang et al. [75]. LS-SVM is implemented 
on an artificial network using two network models: 
WS-small world network and power-law BA scale-free 

network, real networks also are used in an implemen-
tation like the US aviation network, dolphin social net-
work, American college football, netscience, and email 
network. LS-SVM reduced the computation-intensive 
evaluation of node importance to a basic calculation of 
the nodes’ basic indicators. infGCN proves its accuracy 
on five different real networks (different types and sizes). 
Experimental results on these networks indicate that Inf-
GCN can strongly increase prediction accuracy.

The topology characteristics of the networks have an 
effect on the index accuracy. The performance of the 
same index varies among networks. In some situations, 
it can be challenging to select the indices that will best 
identify the influential nodes. Therefore, finding influen-
tial nodes is still a current unresolved problem.

3 � Conclusion
In this paper, a short review of complex networks is 
presented. Some taxonomy around complex networks 
is summarized, like the structure of networks, meas-
urements of the network, and social influence within 

Table 3  Influential nodes finding approaches comparison

References Approach Network type Network nature Network direction Network size Implementation 
datasets

[76] HKS Unweighted/weighted Static Undirected All LFR, ZBR, ZKC, CTG, DLP, 
CPF,NTS, ELG, ERD, CCG, 
HMS, UG, PGP, ASP, ENR

[69] Coreness centrality 
(Cnc)

Unweighted Dynamic Undirected All ZKC, DLP, JZ,ELG,NTS, 
URV, BG, UG, BA, LFR
PG, ASP, CA-CondMat, 
ENR, EM

[59] Kshell decomposition Weighted/Unweighted Dynamic Directed/undirected Medium and large LJ, EM, CNI,
IMDB, CondMat
RL, AS, PS

[68] Mixed degree decom-
position (MDD)

Unweighted Static Undirected All DLP, JZ, NTS, EM, 
Ca-HepTh, PGP, ASP 
CondMat, WAN, ECP, ELG, 
TAP, Y2H, PWR, Int

[66] k-shell iteration factor
(KS-IF)

Unweighted Dynamic Undirected All LFR,ZKC,DLP, JZ, NTS, EM, 
BG, PGP, ENR,FB, TW

[77] Eigenvector centrality Unweighted Static Directed Small JPEF

[57] PageRank Unweighted/weighted Dynamic Directed Large Google search Engine

[58] LeaderRank Unweighted Static Directed Large DLC

[60] HITS Weighted/unweighted Dynamic Directed Small Clever search engine

[78] TOPSIS Unweighted Static Undirected, directed Medium and large UP, AL, EM, ACF

[17] W-TOPSIS Unweighted Static Undirected Large YST, BG, RTR, PGP

[63] AHP Unweighted Static Undirected Medium and large EM, GRD, YST, UP

[64] LS-SVM Unweighted/Weighted static Undirected/directed All WS small-world network, 
power-law, BA scale-free 
network, UP, DLP,ACF, 
NTS, EM

[73] infGCN Unweighted Static Undirected Large HMS, HP, CA-GrQc, CA-
HepTh, CondMat
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networks. A literature review is provided including the 
evolution of networks and models through the years, 
from simple lattices to more complex models. The 
pros and cons of each model are highlighted with some 
references for those who want to go further with this 
issue. In addition, we provide a detailed comparison 
review between approaches used to identify influen-
tial nodes as mentioned above in Table  3. Throw this 
comparison, this paper clarifies some strengths of each 
approach in order to help beginner researchers in this 
field to identify the relevant directives for their future 
contributions to this problem of influential node iden-
tification. This given work of literature review does 
not cover all available works related to the identifica-
tion of influential nodes. Although dynamic networks 
rely on variations in characteristics and the emergence 
of properties of networks over time, the majority of 
approaches are applied to static networks rather than 
dynamic ones. It really requires working on dynamic 
networks again. From future perspectives, we can adapt 
existing approaches of identifying influential nodes to 
dynamic networks. Additionally, we can combine exist-
ing methods with the aim of taking advantage of both 
methods and achieving a balance between them as we 
can combine machine learning and deep learning algo-
rithms with other methods.
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