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Abstract 

Background:  The paper investigates the analytical and numerical solution of the radiation effect on MHD flow of 
Rivlin–Ericksen nanofluid of grade three through a porous medium with a uniform heat source between two vertical 
flat plates. The governing equations are solved analytically using multi-step differential transform method (MDTM) 
and numerically using finite difference method (FDM) and shooting method by designing MATLAB and Mathematica 
algorithms. The study discovered that the MDTM, FDM, and shooting methods are effective for solving nonlinear dif-
ferential equations like this one.

Results:  Graphs and tables show the influence of different parameters on velocity and temperature. Figures and 
tables show the comparisons between current outcomes and previous results that are accessible.

Conclusions:  The present results showed that the analytical and numerical solutions agree well with previously 
published outcomes.

Keywords:  Rivlin–Ericksen nanofluid, Radiation, Magnetic field, Porous medium, Heat source, Analytical and 
numerical solutions
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1 � Background
The analysis of heat transfer characteristics of vari-
ous fluid flows can be extremely useful in improving 
the performance of industrial systems. Natural convec-
tion can highly be significant, especially when moving 
fluid is minimally influenced by forced convection heat 
transfer. Natural convection has piqued the interest of 
scientists since it occurs in a variety of technical appli-
cations. Geothermal systems, heat exchangers, chemical 
catalytic reactors, fiber and granular insulation, packed 
beds, petroleum reservoirs, and nuclear waste dumps 
all use natural convection to transfer heat [1–3]. Mixed 
convection of Cu–water nanofluid inside a two-sided lid-
driven cavity filled with heterogeneous porous media is 

optimized. The horizontal walls are adiabatic and mov-
able, and the vertical walls are exposed to constant hot 
and cold temperatures. Two-phase mixture model and 
Darcy–Brinkman–Forchheimer relation are imple-
mented, respectively, for the simulation of nanofluid and 
fluid flow through porous media [4–6]. In the recent dec-
ade, various researchers investigated exergy analyses and 
entropy generation to provide the best geometry of the 
heat exchanger. Using nanofluid and swirl flow devices 
are passive techniques for improving thermal efficiency. 
Exergy variations for forced convection of nanofluid 
through a pipe equipped with twisted tape turbulators 
have been simulated via finite volume method [7, 8].

The study of blood flow through a stenosed artery is 
very important because of the fact that the cause and 
development of many cardiovascular diseases are related 
to the nature of blood movement and the mechanical 
behavior of the blood vessel walls. Stenosis is defined 
as a partial occlusion of the blood vessels due to the 
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accumulation of cholesterol, fats, and the abnormal 
growth of tissue. Cardiac catheterization (also called 
heart catheterization) is a diagnostic procedure that 
does a comprehensive examination to determine how the 
heart and its blood vessels function. One or more cath-
eter is inserted through a peripheral blood vessel in the 
arm (antecubital artery or vein) or leg (femoral artery or 
vein) with X-ray guidance. This procedure gathers infor-
mation such as adequacy of blood supply through the 
coronary arteries, blood pressure, blood flow throughout 
chambers of the heart, collection of blood samples, and 
X-rays of the heart’s ventricles or arteries [9, 10].

Analysis of natural convection is often difficult, par-
ticularly when a non-Newtonian fluid is flowing in a sys-
tem. Various flows of Newtonian and non-Newtonian 
fluids bounded by two infinite parallel vertical plates 
have been studied analytically, numerically, and experi-
mentally by numerous scholars. A numerical solution is 
investigated for Rivlin–Ericksen fluid natural convection 
flow and heat transfer between parallel plates. Nowadays, 
much attention is being paid to the application of nano-
fluids for cooling purposes [11–13].

Nanoparticles can significantly improve the thermal 
conductivity of base fluids by altering their thermo-
physical properties, resulting in improved heat trans-
fer [14–17]. Chamkha [18], using continuum equations, 
constructed a mathematical model for a continuous two-
phase non-Newtonian fluid flow over an infinite porous 
flat plate. Ellahi et al. [19] used series solutions to investi-
gate the heat transfer features of a fully developed incom-
pressible non-Newtonian fluid flow in coaxial cylinders 
using Reynolds and Vogel models. Youssri et al. [20, 21] 
presented a numerical technique for solving one- and 
two-dimensional partial differential heat equation and 
the fractional Bagley–Torvik equation with homogene-
ous boundary conditions by employing the tau and col-
location methods. The Runge–Kutta method was used to 
investigate the influence of free convection flow on non-
Newtonian fluid flow through a porous media along with 
an isothermal vertical flat plate [22]. The natural convec-
tion of a non-Newtonian nanofluid flow between two 
infinite parallel vertical flat plates was investigated ana-
lytically using the differential transformation approach. 
Domairry et  al. [23] discovered that as the volume per-
centage of nanoparticles grows, the thickness of the 
momentum boundary layer increases while the thickness 
of the thermal boundary layer drops.

Pittman et  al. [24] examined the natural convection 
heat transfer of a non-Newtonian fluid moving over an 
electrically heated vertical plate under constant surface 
heat flux circumstances and found that the tempera-
ture difference grows as the distance between the fluid 
and the plate increases. Using analytical and numerical 

approaches, Hatami et al. [25] examined the natural con-
vection of a non-Newtonian nanofluid flow between two 
vertical flat plates. The Boussinesq approach was utilized 
by Ternik et  al. [26] to calculate the natural convection 
of non-Newtonian nanofluids in a square differentially 
heated chamber.

The aim of this work is to investigate analytical and 
numerical solutions of the radiation effect on MHD flow 
of Rivlin–Ericksen nanofluid of grade three through 
porous medium with uniform heat source between two 
vertical flat plates. In addition, the effects of dimension-
less non-Newtonian viscosity, radiation, porosity param-
eter, Hartmann number, Eckert number, Prandtl number, 
and heat source parameter on the temperature and veloc-
ity of flow between two infinitely parallel vertical flat 
plates are investigated. The reduced ordinary differential 
equations are solved using MDTM, FDM, and shooting 
method. This approach provides highly accurate solution 
estimates in a series of steps. The variation distribution 
of velocity and temperature with the parameters that 
govern the problem is presented. Furthermore, graphical 
and numerical results for the velocity and temperature 
profiles are presented and discussed for various para-
metric conditions. Finally, comparisons with previously 
published works are made and showed that the present 
results have high accuracy and are found to be in good 
agreement.

2 � Mathematical formulation of the problem
A schematic of the problem under study is shown in Fig. 1. 
It consists of two flat plates that can be positioned verti-
cally. A non-Newtonian fluid is contained on two flat plates 
separated by 2b. At x =  + b and x = b, the walls are kept at 
constant temperatures T1 and T2, respectively, with T1 > T2. 
The fluid near the wall is caused by the temperature differ-
ence, at x =  − b to rise and at x =  + b to fall [27]. The fluid 
is a water-based nanofluid containing copper. The base 

Fig. 1  Schematic diagram of the problem under investigation
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fluid and the nanoparticles are considered to be in thermal 
equilibrium, with no slide between them. Table 1 lists the 
nanofluid’s thermophysical properties [28].

Radiative heat flux qr can be calculated by using Rosse-
land approximation as follows [29, 30]:

where the Stephan–Boltzmann constant and the mean 
absorption coefficient, respectively, are represented by 
σ* and K*. The temperature differences in the flow are 
supposed to vary by the fourth power of T which can be 
expressed by a linear function of temperature. This can 
be implemented by expansion of T 4 based on Taylor 
series as follows [29]:

By neglecting higher-order terms of temperature in 
Eq. (2) against the first-degree term, the following expres-
sion is achieved [29]:

Subsequently, by substituting Eq.  (3) into Eq.  (1), radia-
tive heat flux is rewritten as follows [29]:

The effective density ρnf , the effective dynamic viscosity 
µnf , the heat capacitance 

(

ρCp

)

nf
 , and the thermal conduc-

tivity κnf of the nanofluid can be expressed by the solid vol-
ume fraction ϕ as

(1)qr = −
4 σ ∗

3 k∗
∂T 4

∂x
,

(2)
T 4

= T 4
∞

+ 4T 3
∞
(T − T∞)+ 6T 2

∞
(T − T∞)2 + · · ·

(3)
(

T 4 ∼= 4T 3
∞
T − 3T 4

∞

)

(4)qr = −
16T 3

∞
σ ∗

3 k∗
∂T

∂x

(5)ρnf = ρf (1− ϕ)+ ρf ϕ

(6)µnf =
µf

(1− ϕ)2.5

(7)
(

ρCp

)

nf
=

(

ρCp

)

f
(1− ϕ)+

(

ρCp

)

s
ϕ

(8)
κnf

κf
=

κs + 2κf − 2ϕ
(

κf − κs
)

κs + 2κf + ϕ
(

κf − κs
)

The Navier–Stokes and energy equations can be con-
structed as follows under these assumptions and using 
the nanofluid model presented by Maxwell Garnett 
(MG) model [31]:

The equation of motion is [32 and 31]:

and the energy equation is as follows:

Rajagopal [27] has demonstrated that by using the 
similarity variables:

By substituting the above parameters, the Navier–
Stokes equations and the energy equations can be 
reduced to two ordinary differential equations:

where A = σnf
σf

 , B = κnf
κf

 , µnf =  µf

(1−ϕ)2.5
 , vo = ρ0γ gb

2(T1−T2)

µnf

,δ = β3u
2
0

µf b
2 is the dimensionless non-Newtonian viscosity, 

P =
b2

kf
 is the porosity parameter, Ha2 =

σf β
2
0
b2

µf
  is the 

Hartmann number,Rd =
kk∗

4σ ∗T 3
∞

 is the radiation parame-

ter, Ec = u2
0

cf (T1−T2)
 is the Eckert number, Pr = µf cf

kf
 is the 

Prandtl number and  α =
Q0b

2

kf
 is the heat source 

parameter.
The following are the appropriate boundary 

conditions:

(9)
σnf

σf
= 1+

3

(

σs
σf

− 1

)

ϕ
(

σs
σf

+ 2

)

−

(

σs
σf

− 1

)

(10)
µnf

d
2u

dx2
+ 6β3

(

du

dx

)2
d
2u

dx2
+ ρoγ (T − Tm)g

−
µnf

Knf

u− σnfβ
2
0u = 0,

(11)
Knf

d
2T

dx2
+ 2β3

(

du

dx

)4

+ µnf

(

du

dx

)2

+ Q0(T − Tm)−
dqr

dx
= 0,

(12)v =
u

u0
, η =

x

b
and θ =

T − Tm

T1 − T2

,

(13)

d
2v

dη2
+ 6δ(1− ϕ)2.5

(

dv

dη

)2
d
2v

dη2
+ θ

− AHa
2(1− ϕ)2.5v −

P

B
v = 0,

(14)

(

1+
4

3BRd

)

d2θ

dη2
+ 2δ Ec Pr

(

dv

dη

)4

+

(

Ec Pr

B

)

(1− ϕ)−2.5

(

dv

dη

)2

+
α

B
θ = 0,

Table 1  Thermo-physical properties of water and nanoparticles

Material Density ( ρ ) 
(kg/m3)

Cp (J/Kg.k) K (w/m.k) β × 105 (k−1)

Pure water 997.1 4179 0.613 21

Copper 8933 385 401 1.67
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3 � Methods
3.1 � Analytical method
When DTM is used for solving differential equations 
with the boundary conditions at infinity or problems 
that have highly nonlinear behavior, the outcomes were 
diverse solutions. Furthermore, power series are inef-
fective when the independent variable has large values. 
To address this problem, MDTM has been used for the 
analytical solution of differential equations, and it is 
discussed in this section. For this, the following nonlin-
ear initial value problem is considered.

By applying differential transformation theorems on 
Eqs. (13) and (14), the following recursive relations can 
be obtained:

where V (k) and Θ (k) are the differential transforms of u 
( η ) and θ ( η).

The boundary condition’s (15–16) differential trans-
form is as follows:

We can consider the following boundary conditions 
(15–16):

(15)v(−1) = 0, θ(−1) =
1

2
,

(16)v(1) = 0, θ(1) = −
1

2
,

(17)
(k + 1)(k + 2)V (k + 2)+ 6δ(1− ϕ)2.5

k
∑

r2=0

r2
∑

r1=0

(r1 + 1)(r2 − r1 + 1)(k − r2 + 1)(k − r2 + 2)

V (r1 + 1)V (r2 − r1 + 1)V (k − r2 + 2)+�(k)− AHa
2(1− ϕ)2.5V (k)−

P

B
V (k) = 0,

(18)

(

1+
4

3BRd

)

(k + 1)(k + 2)�(k + 2)+ 2δEc Pr

k
∑

r3=0

r3
∑

r2=0

r2
∑

r1=0

(r1 + 1)(r2 − r1 + 1)(r3 − r2 + 1)

(k − r3 + 1)V (r1 + 1)V (r2 − r1 + 1)V (r3 − r2 + 1)V (k − r3 + 1)+
EcPr

B
(1− ϕ)−2.5

k
∑

r=0

(r + 1)(k − r + 1)

V (r + 1)V (k − r + 1)+
α

B
�(k) = 0,

(19)V (0) = 0, �(0) =
1

2
,

(20)
i

∑

k=0

v(k)2k = 0,

i
∑

k=0

�(k)2k = −
1

2
,

Then, differential transforms of (21–22) are given by

Moreover, by substituting Eqs.  (23) and (24) into 
Eqs. (17) and (18) and by the recursive method, we can 
calculate other values of V (k) and Θ (K) with the aid of 
Mathematica 12.3 algorithms.

3.2 � Finite difference method
The system of coupled nonlinear ordinary differen-
tial Eqs.  (13–14) with boundary conditions (15–16) is 
solved for the flow velocity and temperature using FDM 
by designing MATLAB and Mathematica programs and 

then the present graphics are drawn by designing the 
Excel program. The following linearized form should be 
applied because of nonlinearity in this system:

(21)v(−1) = 0, θ(−1) =
1

2
,

(22)v‘(−1) = �, θ ‘(−1) = ω,

(23)V (0) = 0, �(0) =
1

2
,

(24)V (1) = �, �(1) = ω,

(25)

d
2v

dη2

(

1+ 6(1− ϕ)2.5
(

dv

dη

)2
)

+ θ

(

AHa
2(1− ϕ)2.5 +

P

B

)

v = 0,
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where bar notation denotes the iterated terms that con-
vert Eqs. (13–14) to a linearized one.

By applying Taylor’s expansions of the dependent vari-
ables about central point for Eqs. (25–26), a system of 
algebraic equations [33] is obtained:

where i = 1, 2, 3,…, m + 1 and m is the number of subin-
tervals of the finite domain of solution (− 1 < η < 1).

3.3 � Shooting method
Numerical solutions of the ordinary differential Eqs. (13–
14) subject to Neumann boundary conditions (15) and 
(16) are obtained using classical Runge–Kutta method 
with shooting techniques and MATLAB package (ode45). 
The set of coupled nonlinear ordinary differential equa-
tions along with boundary conditions have been reduced 
to a system of simultaneous equations of the first order 
for the unknowns following the method of superposition 
in Na [34].

Equations (13)–(14) can be written as follows:

where z1 = v and z3 = θ.

(26)
(

1+
4

3BRd

)

d
2θ

dη2
+ Ec Pr

dv

dη

(

2δ

(

dv

dη

)3

+
(1− ϕ)−2.5

B

dv

dη

)3

+
α

B
θ = 0,

(27)
dvi

dη
=

vi+1 − vi−1

�
+ o(�2)

(28)
d
2vi

dη2
=

vi+1 − 2vi + vi−1

�2
+ o(�2)

(29)
d
2θi

dη2
=

θi+1 − 2θi + θi−1

�2
+ o(�2)

(30)z
′

1 = z2,

(31)z
′

2 =
−z3 + AH2

a (1− ϕ)2.5z1 +
P
Bz1

1+ 6δ(1− ϕ)2.5(z2)
2

(32)z
′

3 = z4,

(33)

z
′

4 =

−2δEcPr(z2)
4
−

(

EcPr
B

)

(1− ϕ)−2.5(z2)
2
−

α
Bz3

(

1+ 4
3BRd

)

where i1 and i2 are a priori unknowns that must be 
resolved as part of the solution.

Ode45 integrates the system of differential Eqs.  (30–
33) with suitable guess values for initial conditions i1 
and i2 . The calculated values of the velocity and tem-
perature profiles are compared with the given boundary 
conditions.

4 � Results
4.1 � Discussion
In this paper, MDTM, FDM, and shooting method are 
applied successfully to find the solution of the radia-
tion effect on MHD flow of Rivlin–Ericksen nanofluid 
of grade three through porous medium with uniform 
heat source between two vertical flat plates. Tables and 
graphical representation of the results are very useful 
to demonstrate the efficiency and accuracy of MDTM, 
FDM, and shooting method for the problem stated in 
this work. In order to ensure that the current results are 
accurate, we compared these results with the previously 
published work. The graphs (2–9) (a) and (b) show the 
effects of φ, δ, P, Ha, Rd, Ec, Pr, and α on V (η) and θ (η) 
profiles. Figures 2, 3, 4, and 5a show that an increase in φ, 
α, Ec, and Pr parameters leads to an increase in V (η), but 
Figs. 6, 7, 8, and 9a present that an increase in δ, Rd, Ha, 
and P parameters leads to a decrease in V (η). In addi-
tion, Figs.  2, 3, 4, and 5b show that an increase in φ, α, 
Ec, and Pr parameters leads to an increase in θ (η), but 
Figs. 6, 7, 8, and 9b present that an increase in δ, Rd, Ha, 
and P parameters leads to a decrease in θ (η). It can also 
be observed that P and Ha on θ (η) are very little, almost 
nonexistent (Figs. 8 and 9b).

In addition, Tables 2 and 3 show comparison between 
MDTM, FDM, and shooting method with GM, LSM, and 
CM [32]. As can be seen, this approximate analytical and 
numerical solution is in good agreement with the rel-
evant solutions.

Moreover, Tables  4, 5, 6, and 7 (Nu and HPM [35]) 
demonstrate a comparison between MDTM, FDM, and 
shooting technique. This approximate analytical and 

(34)

The initial conditions are

z1(−1) = 0, z2(−1) = i1,

z3(−1) =
1

2
, z4(−1) = i2,



Page 6 of 14Soliman ﻿Beni-Suef Univ J Basic Appl Sci           (2022) 11:81 

numerical solution agrees well with the pertinent solu-
tions, as can be seen.

5 � Conclusions
In this paper, the radiation effect on MHD flow of Riv-
lin–Ericksen nanofluid of grade three through porous 
medium with uniform heat source between two verti-
cal flat plates is studied analytically by MDTM and 

numerically by FDM and shooting method. Results in 
graphs and tables for the velocity and temperature pro-
files are presented and discussed for various parameters 
φ, δ, P, Ha, Rd, Ec, Pr, and α. Moreover, the results indi-
cate the restraining effects of various parameters on 
velocity and temperature. Furthermore, comparisons 
with previously published works are made and showed 
that the present results have high accuracy and are 
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found to be in good agreement. In particular, results for 
different parameters are summarized in the next two 
paragraphs.

•	 It has been found that the parameters φ, α, Ec, and 
Pr vary directly with velocity v (η) and temperature 
θ (η).

•	 It has been displayed that the parameters δ, P, Ha, 
and Rd vary inversely with velocity v (η) and tempera-
ture θ (η).
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Fig. 7  Result of V (η) and θ (η) for various Rd when ϕ = 0.01, δ = 1, P = 1, Ha = 1, Ec = 1, Pr = 1, and α = 1
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Fig. 9  Result of V (η) and θ (η) for various P when ϕ = 0.01, δ = 1, Rd =1, Ha = 1, Ec = 1, Pr = 1, and α = 1
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Table 2  Comparison solution by MDTM, FDM, and shooting method with GM, LSM, and CM [32] for V (η) when ϕ = 0.01, δ = 1, P = 0, 
Ha = 3, Rd = 2, Ec = 1, Pr = 6.2, and α = 0

η Present v (η) v (η) [32]

MDTM FDM Shooting method G.M L.S.M C.M

 − 1 0 0 0 0 0 0

 − 0.9 0.008927973453246 0.008787225412899 0.008957094 0.007785 0.008539 0.006847

 − 0.8 0.014223686772939 0.013959477936244 0.014244837 0.013111 0.014381 0.011531

 − 0.7 0.016769654790264 0.016440045972315 0.016784495 0.016252 0.017827 0.014294

 − 0.6 0.017266325478027 0.016922743531933 0.017251388 0.017481 0.019175 0.015375

 − 0.5 0.016255425114184 0.015931229672889 0.016188057 0.017072 0.018726 0.015014

 − 0.4 0.014150728407177 0.013863775889415 0.014023246 0.015296 0.016779 0.013453

 − 0.3 0.011268952330109 0.011027308517539 0.011090881 0.012428 0.013633 0.010931

 − 0.2 0.007857588237348 0.007663635866098 0.007649044 0.008741 0.009589 0.007687

 − 0.1 0.004116729433862 0.003970101131019 0.003898955 0.004507 0.004945 0.003964

0 0.000217343161713 0.000116424993575 3.9459E06 4.23 × 10−7 1.54 × 10−6 1.81 × 10−9

0.1  − 0.003683298028354  − 0.003740824702763  − 0.003891557  − 0.00451  − 0.00494  − 0.00396

0.2  − 0.007427456163251  − 0.007444902635067  − 0.007643058  − 0.00874  − 0.00959  − 0.00769

0.3  − 0.010842771287347  − 0.010825560149113  − 0.011087014  − 0.01243  − 0.01363  − 0.01093

0.4  − 0.013726806197571  − 0.013684591023138  − 0.014021855  − 0.0153  − 0.01678  − 0.01345

0.5  − 0.015828922831118  − 0.015779021734224  − 0.016189006  − 0.01707  − 0.01872  − 0.01501

0.6  − 0.016828099926917  − 0.016800520671318  − 0.017253911  − 0.01748  − 0.01917  − 0.01537

0.7  − 0.016305660627378  − 0.016349281399216  − 0.016787055  − 0.01625  − 0.01783  − 0.01429

0.8  − 0.0137132512402211  − 0.013900167871314  − 0.014244981  − 0.01311  − 0.01438  − 0.01153

0.9  − 0.0083405628843889  − 0.008758254914885  − 0.008951319  − 0.00778  − 0.00854  − 0.00685

1 0.0007030694820217 0 0 0 0 0



Page 11 of 14Soliman ﻿Beni-Suef Univ J Basic Appl Sci           (2022) 11:81 	

Table 3  Comparison solution by MDTM, FDM, and shooting method with GM, LSM, and CM [32]) for θ (η) when ϕ = 0.01, δ = 1, P = 0, 
Ha = 3, Rd = 2, Ec = 1, Pr = 6.2, and α = 0

η Present θ (η) θ (η) [32]

MDTM FDM Shooting method G.M L.S.M C.M

 − 1 0.5 0.5 0.5 0.5 0.5 0.5

 − 0.9 0.45048334393744 0.4500557057 0.449970142 0.449982 0.449947 0.449999

 − 0.8 0.400767395390827 0.40020133769 0.399959597 0.399969 4.00E-01 0.399998

 − 0.7 0.350989746391596 0.35039626873 0.349957975 0.349962 0.349892 0.349997

 − 0.6 0.301201167815963 0.30061028898 0.299961713 0.29996 0.299885 0.299997

 − 0.5 0.251410810147527 0.25082103146 0.249968222 0.249961 0.24989 0.249997

 − 0.4 0.201610063585561 0.20101206823 0.199975753 0.199966 0.199905 0.199997

 − 0.3 0.151784736266043 0.15117151419 0.149983257 0.149973 0.149926 0.149998

 − 0.2 0.101920941655585 0.10129101917 0.099990246 0.099983 0.099954 0.099998

 − 0.1 0.052007749159865 0.05136506198 0.049996659 0.049994 0.049985 0.049999

0 0.002038317205475 0.00139048604 2.7177E-06 4.73 × 10−6 1.74 × 10−5 2.05 × 10−8

0.1  − 0.04798969711509  − 0.04863376327  − 0.049991207  − 0.04998  − 0.04995  − 0.05

0.2  − 0.09807401948685  − 0.09870672228  − 0.099984735  − 0.09997  − 0.09992  − 0.10

0.3  − 0.14820784031401  − 0.14882532079  − 0.149977617  − 0.14996  − 0.14989  − 0.15

0.4  − 0.19838020932551  − 0.19898411506  − 0.199969867  − 0.19996  − 0.19988  − 0.20

0.5  − 0.24857715789604  − 0.24917481927  − 0.249961909  − 0.24995  − 0.24986  − 0.25

0.6  − 0.29878442328292  − 0.29938559613  − 0.299954708  − 0.29995  − 0.29986  − 0.30

0.7  − 0.3489934561497  − 0.34960004659  − 0.34994991  − 0.34996  − 0.34987  − 0.35

0.8  − 0.3992138754586  − 0.39979581311  − 0.399949984  − 0.39997  − 0.3999  − 0.40

0.9  − 0.44949797889672  − 0.44994267864  − 0.449958355  − 0.44998  − 0.44994  − 0.45

1  − 0.4999868653492  − 0.5  − 0.5  − 0.5  − 0.5  − 0.5

Table 4  Comparison solution by MDTM, FDM, and shooting method with Nu and HPM [35] for V (η) when ϕ = 0.01, δ = 1, P = 0, 
Ha = 0, 1

Rd
 = 0, Ec = 1, Pr = 6.2, and α = 0

η Present v (η) v (η) [35]

MDTM FDM Shooting method Nu HPM

 − 1 0 0 0.000008625000000 0  − 1.00e−12

 − 0.8 0.0248889137406262 0.025100805859412 0.025678351456000 2.49e-02 0.024978

 − 0.6 0.0343610151313935 0.034694542987441 0.035179982872000 0.034361 0.034499

 − 0.4 0.0315996426708186 0.031972343649594 0.032362783968000 0.0316000 0.031771

 − 0.2 0.0205042979192536 0.020866193989263 0.021116768584000 0.020505 0.020717

0 0.0050363939659476 0.005367924421495 0.005374300000000 0.005037 0.005283

0.2  − 0.0109298916536909  − 0.010638770093157  − 0.01088830874400  − 1.09e−02  − 1.07e−02

0.4  − 0.0234796480160966  − 0.023252896625209  − 0.02364919452800  − 2.35e−02  − 2.32e−02

0.6  − 0.0285202216294248  − 0.028395751318524  − 0.02883934383200  − 2.85e−02  − 2.83e−02

0.8  − 0.0218952703866748  − 0.021876616709771  − 0.02234099241600  − 2.19e−02  − 2.17e−02

1 1.27761*10^-7 0 0.000013975000000 0 1.00e−12
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Table 5  Comparison solution by MDTM, FDM, and shooting method with Nu and HPM [35] for V (η) when ϕ = 0.07, δ = 2, P = 0, 
Ha = 0, 1

Rd
 = 0, Ec = 2, Pr = 6.2, and α = 0

η Present v (η) v (η) [35]

MDTM FDM Shooting method Nu HPM

 − 1 0 0 0.000017360000000 0.000000 2.00e−11

 − 0.8 0.0263871069970389 0.026756648117180 0.028131952780800 2.64e−02 0.026707

 − 0.6 0.0377968202181078 0.038456991519952 0.039791286425600 0.037801 0.038229

 − 0.4 0.0366455592452191 0.037449540554391 0.038657135014400 0.036652 0.037135

 − 0.2 0.0266332183474780 0.027461728992522 0.028476807859200 0.026641 0.027227

0 0.0116755798181022 0.012471144615492 0.013091000000000 0.011684 0.012360

0.2  − 0.0044314126089784  − 0.003695940273408  − 0.00355835729920  − 4.42e−03  − 3.73e−03

0.4  − 0.0178316240970406  − 0.017207382328530  − 0.01742024605440  − 1.78e−02  − 1.72e−02

0.6  − 0.0243573107682773  − 0.023940881135197  − 0.02432671106560  − 2.44e−02  − 2.37e−02

0.8 0.0196282178526106  − 0.019476674321430  − 0.01998500942080  − 1.96e−02  − 1.90e−02

1 3.524349637965*^-7 0 0.000030240000000 0.000000 0.000000

Table 6  Comparison solution by MDTM, FDM, and shooting method with Nu and HPM [35] for θ (η) when ϕ = 0.01, δ = 1, P = 0, 
Ha = 0, 1

Rd
 = 0, Ec = 1, Pr = 6.2, and α = 0

η Present θ (η) θ (η) [35]

MDTM FDM Shooting method Nu HPM

 − 1 0.500000000000000 0.500000000000000 0.500612300000000 0.5 0.5

 − 0.8 0.4048517213003998 0.404741915710620 0.404681040960000 0.404852 0.404687

 − 0.6 0.3075705040841343 0.308430072374435 0.308052719840000 0.307571 0.307541

 − 0.4 0.2100694862476117 0.211064469991446 0.210698745920000 0.210070 0.210225

 − 0.2 0.1121566516441399 0.112645108561653 0.112462917600000 0.112157 0.112397

0 0.0130337276413045 0.013171988085055 0.013145000000000 0.013034 0.013246

0.2  − 0.0877464857138474  − 0.087354891438347  − 0.08741569744000  − 8.77e−02  − 8.76e−02

0.4  − 0.1899083279925779  − 0.188935530008554  − 0.18925674336000  − 0.189907  − 0.189774

0.6  − 0.2926661222188964  − 0.291569927625565  − 0.29220900688000  − 0.292665  − 0.292458

0.8  − 0.3955710872738615  − 0.395258084289380  − 0.39581308000000  − 0.395570  − 0.395312

1  − 0.5000000187397369  − 0.500000000000000  − 0.49923570000000  − 0.5  − 0.5

Table 7  Comparison solution by MDTM, FDM, and shooting method with Nu and HPM [35] for θ (η) when ϕ = 0.07, δ = 2, P = 0, 
Ha = 0, 1

Rd
 = 0, Ec = 2, Pr = 6.2, and α = 0

η Present θ (η) θ (η) [35]

MDTM FDM Shooting method Nu HPM

 − 1 0.500000000000000 0.500000000000000 0.501532200000000 5.00e−01 0.500000

 − 0.8 0.4122424546865951 0.411231537502520 0.412400824640000 0.412251 0.410966

 − 0.6 0.3184236211524941 0.319967177782257 0.320214567360000 0.318437 0.317645

 − 0.4 0.2238523181397247 0.226206920839213 0.226089794880000 0.223868 0.223923

 − 0.2 0.1285597853705173 0.129950766673386 0.130139604800000 0.128579 0.129006

0 0.0307284125447637 0.031198715284777 0.031893000000000 0.030749 0.030992

0.2  − 0.0709204281187916  − 0.070049233326614  − 0.06928593696000  − 7.09e−02  − 7.10e−02

0.4  − 0.1760391250819469  − 0.173793079160787  − 0.17377886944000  − 0.176022  − 0.176076

0.6  − 0.282882693412802  − 0.280032822217743  − 0.28129403232000  − 0.282871  − 0.282354

0.8  − 0.3900682662257274  − 0.388768462497480  − 0.39044705760000  − 0.390062  − 0.389033

1  − 0.4999999247040331  − 0.500000000000000  − 0.49834180000000  − 0.500000  − 0.500000
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List of symbols
2b: Distance between the plates; g: Gravity; T: Temperature; T1, T2: Tempera-
tures at left and right plates, respectively; Tm: Mean temperature; β3: Rheologi-
cal material constant; qr: Radiative heat flux; σ*: Stephan–Boltzmann constant; 
K*: Mean absorption coefficient; ρnf: Effective density; µnf: Effective dynamic 
viscosity; (ρCp)nf: Heat capacitance; κnf: Thermal conductivity; ϕ: Solid volume 
fraction of the nanoparticles; u: Velocity of fluid; η: Dimensionless variable; v
: Dimensionless velocity; θ: Dimensionless temperature; Ec: Eckert number; 
Pr: Prandtl number; α: Heat source parameter; P: Porosity parameter; Ha2: 
Hartmann number; Rd: Radiation parameter; δ: Dimensionless non-Newtonian 
viscosity; MDTM: Multi-step differential transform method; FDM: Finite differ-
ence method.
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