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Abstract 

Background:  Breast cancer is the most common cancer among women, and melanoma incidence increases world-
wide. The emergence of drug resistance and side effects of chemotherapy drugs has led to a great deal of attention 
being paid to the development of natural medicines, especially using essential oil. The preparation of essential oil-
based nanoformulation has thus recently received more attention.

Results:  In this study, chitosan nanoparticles (ChiNPs) containing Zataria multiflora essential oil with a particle size 
of 177 ± 10 nm, a narrow particle size distribution (SPAN 0.96), and a cubic-like shape were first prepared. IC50 val-
ues of the prepared nanoformulation against human melanoma (A-375) and breast cancer cell lines (MCF-7 and 
MDA-MB-468) were obtained as 32 (12–84), 46 (32–67), and 105 (85–131) µg/mL. Besides, an electrospun polycap-
rolactone–polyethylene oxide scaffold was prepared as a dressing after treatment with the nanoformulation. Fourier 
transform infrared analysis confirmed the scaffold’s preparation as well as successful loading of the essential oil in 
chitosan nanoparticles. Furthermore, the scaffold did not show a cytotoxic effect on A-375, MCF-7, and MDA-MB-468, 
and its surface was hydrophobic as the water contact angle with the surface was 136.5°.

Conclusions:  The prepared prototype with natural ingredients and high efficacy could be considered for further 
consideration in vivo study or complementary medicine.
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1 � Background
After cardiovascular disease, cancers with approximately 
17% of the global deaths are major health challenges 
worldwide. In addition, cancer imposes many onerous 
burdens, including emotional, physical, and financial 
encumbrance, on humankind societies [1]. Although the 
cancer rate was decreased by 3.1% in men yearly, it has 
a steady state in women (from 2009 to 2012) [2]. Mela-
noma (cancer of melanocytes) and breast cancer are two 
of the most dreadful cancers in the world. Breast cancer 
is the most predominant cancer in Asian nations [3]. As 
the incidence rate of melanoma has recently increased 
worldwide, an urgent consideration is required to reduce 
its morbidity and mortality [4, 5].

The side effects of synthetic or semisynthetic anti-
cancer drugs, including a remarkable decrease in white 
blood cell count, loss of immunity, bone marrow depres-
sion, severe physical weakness, and alopecia, were given 
serious concern [6]. Therefore, natural products, espe-
cially essential oils (EOs), have received special attention 
in developing new anticancer drugs with less harm-
ful effects [7]. However, since EOs are hydrophobic, to 
enhance their performance in laboratory and animal 
research, the preparation of EO-loaded nanostructures 
(e.g., nanofibers, nanoparticles, and lipid nanocarri-
ers) has received more attention [8, 9]. For instance, as 

a natural biocompatible and biodegradable polymer, 
ChiNPs have been widely employed in drug delivery 
research. For example, ChiNPs containing Torreya gran-
dis EO with a particle size of 349.6  nm offered a more 
potent antibacterial agent than non-formulated EO [10]. 
In another research, ChiNPs (30–80  nm) containing 
Carum copticum EO showed a better antioxidant effect 
than the bulk EO [11].

Our previous studies investigated the cytotoxicity of some 
EOs against A-375 melanoma cells and MCF-7 and MDA-
MB-468 human breast cancer cells. For instance, the IC50 
value of Myrtus communis EO against A-375 was 580.8 µg/
mL [12]. Besides, Mentha spicata and Tanacetum balsamita 
EOs IC50 values’ against A-375 were 1136 and 1312 µg/mL. 
On the other hand, their efficacy against MDA-MB-468 
cells was 1067 and 2323  µg/mL [13]. IC50 values of their 
major ingredients, i.e., carvone, were obtained as 3657 and 
6038  µg/mL against A-375 and MDA-MB-468 cells [13]. 
Moreover, IC50 values of clove EO against A-375 and MDA-
MB-468 were 545 and 243 µg/mL [14]. Besides, IC50 values 
of Anethum graveolens, Citrus limon, and Zingiber officinale 
EOs against MCF-7 were 1908, 201, and > 500 µg/mL; their 
efficacy on MDA-MB-468 cells were 403, 210, and 775 µg/
mL [15]. However, the efficacy of Zataria multiflora Bioss. 
EO was more potent than the mentioned EO; its IC50 values 
against A-375, MCF-7, and MDA-MB-468 were obtained 
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as 59, 76, and 302  µg/mL [8, 16]. Therefore, this EO was 
selected for further investigation in the current study. 
ChiNPs containing Z. Multiflora EO were thus first investi-
gated, and their efficacy was then investigated on melanoma 
and breast cancer cells (A-375, MCF-7, and MDA-MB-468). 
Besides, a polycaprolactone–polyethylene oxide electrospun 
scaffold was proposed as dressing after topical treatment 
with the nanoparticles.

2 � Methods
2.1 � Materials
The cell lines were purchased from the Pasteur Insti-
tute of Iran; A-375 (ATCC CRL-1619), MCF-7 (ATCC 
HTB-22), and MDA-MB-468 (ATCC HTB-132). Poly-
caprolactone (PCL 80.000 Da), polyethylene oxide (PEO 
20.000 Da), acetic acid, phosphate-buffered saline tablets, 
tween 20, sodium-tri-polyphosphate (TPP), chitosan low 
molecular weight, and 3-(4,5-dimethyl-thiazol-2-yl)-
2,5-diphenyltetrazo-lium bromide (MTT) were pur-
chased from Sigma-Aldrich (USA). Fetal bovine serum 
was purchased from Gibco (USA). Dulbecco’s Modified 
Eagle’s Media (DMEM) cell culture medium, trypsin, 
penicillin–streptomycin, and dimethyl sulfoxide were 
obtained from a Chinese company, Shellmax.

2.2 � Preparation of chitosan nanoparticles containing Z. 
multiflora EO

Chitosan powder (0.25% w/v) was dissolved in a 1% 
acetic acid aqueous solution (4  h, 2000  rpm, ambient 

temperature). In order to prepare ChiNPs containing Z. 
multiflora EO, a modified ionic gelation technique was 
employed [17]. In the first step, the EO (0.5% w/v) and 
tween 20 (0.25% w/v) were mixed at room temperature 
for 3 min while the rotation speed was 2000 rpm (Fig. 1). 
In the next 30 min, the chitosan solution was added and 
stirred. Then, a syringe pump was employed to add 1 mL/h 
TPP (0.15% w/v) aqueous solution. The mixture was stirred 
for 40 min (2000 rpm) to stabilize the ChiNPs containing 
Z. multiflora EO. The same methodology was used for pre-
paring free chitosan nanoparticles; only no EO was used.

2.3 � Preparation of PCL–PEO scaffold
PCL granules and PEO powder (10%:4% w/v) were dis-
solved in hexafluoroisopropanol (overnight/ 2000 rpm/ 
room temperature). The solution was poured into a 
10  mL syringe connected to a blunted needle (23 G) 
and was situated in a syringe pump of the electro-
spinning machine (Fanavaran nano-meghyas, Iran). 
Instrumental factors were optimized for preparing 
the beadles nanofibers with the nano-sized diameter; 
0.7  mL/h the injection rate, 20  kV applied DC voltage 
between needle and collector, and 120  mm distance 
between needle and collector. In order to separate the 
formed nanofibrous scaffold, the cylindrical collector 
(diameter 7.5 cm) was covered using a thin layer of alu-
minum foil. The collector was rotated during the prepa-
ration of scaffolds (110 rpm).

Fig. 1  Preparation of chitosan nanoparticles containing Z. Multiflora EO
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2.4 � Characterizations of the prepared nanostructures
The dynamic light scattering (DLS) technique (K-ONE 
NANO. LTD, Korea) analyzed the particle size of ChiNPs 
containing Z. multiflora EO. D50 and d90-d10/d50 were 
considered particle size and size distribution (SPAN). D 
is the diameter, and 10, 50, and 90 show the percentile 
of particles with a smaller diameter than these specified 
diameters. Transmission electron microscopy (LEO 906E 
Zeiss, Germany) confirmed the particle size of ChiNPs 
containing Z. multiflora EO and determined their mor-
phology. The sample was first concisely diluted using 
distilled water twice, and one drop was then located on 
a 200-mesh carbon-coated copper grid and applied to 
the device. ChiNPs nanoparticles and preparation of 
PCL–PEO scaffold were confirmed using Fourier trans-
form infrared analysis (Bruker Company, Model Ten-
sor II, Germany). The spectra of ChiNPs containing Z. 
multiflora EO, the scaffold, and their ingredients were 
recorded in 400–4000/cm.

Scanning electron microscopy was used to investi-
gate the morphology and size of the PCL–PEO scaffold 
(Scanning Electron Microscopy, Vega 3, TESCAN, Czech 
Republic). The scaffolds were punched and coated with 
gold vapor (sputtering coater, Q150R-ES, Quorum Tech-
nologies, UK) before subjecting to the scanning electron 
microscopy instrument. Besides, the wettability of the 
prepared scaffold was evaluated by determining the con-
tact angle of deionized water with its surface. A five μL 
volume of deionized water was injected into the surface 
of the scaffold, and the contact angle was measured.

2.5 � Investigation of the anticancer activity
The MTT assay was used to investigate the anticancer 
activity of ChiNPs containing Z. multiflora EO. The cell 
lines were cultured in 25 cm2 culture flasks using DMEM 
medium cell culture (supplemented with 10% and 1% of 
fetal bovine serum and penicillin–streptomycin) and 
incubated at 37  °C in an air/CO2 mixture (95:5%). First, 
the cells (A-375, MDA-MB-468, and MCF-7) were sepa-
rated by trypsin; then, they were seeded (1 × 104 cells per 
well) in 96 well plates and incubated overnight for attach-
ment. The next day, the culture media was discarded, and 
a 75 µL complete fresh medium was added to each well. 
Finally, concentrations were fixed at 1200, 600, 300, 150, 
and 75 µg/mL by adding appropriate amounts of ChiNPs 
containing Z. multiflora EO. Moreover, a piece (0.5 cm) 
of PCL–PEO scaffold was got into other wells to investi-
gate their cytotoxicity.

The treated plates were incubated for 24  h at 37  °C 
with CO2 5%. Then, their content was discarded, and 
wells were washed with 100  μL phosphate-buffered 
saline to remove the nanoformulations’ milky color and 

non-degraded scaffold. In the next step, 100 μL MTT rea-
gent (0.5 mg mL−1) was added to each well and incubated 
for another 4 h; dimethyl sulfoxide then dissolved created 
formazan crystals (100  μL/well). Finally, by an ELISA 
plate reader, the absorbance of the wells was measured at 
570 nm; the cell viability at each concentration was cal-
culated using the following equation; (mean absorbance 
sample/mean absorbance control) × 100. Noteworthy, 
the control group (six-well/plate) was not treated.

3 � Results
3.1 � Characterization of chitosan nanoparticles containing 

Z. multiflora EO
DLS diagram of ChiNPs containing Z. multiflora EO 
with particle sizes of 177 ± 10 nm is depicted in Fig. 2A. 
The SPAN value is less than 1 (0.96) [18], so its narrow 
particle size distribution was confirmed. In addition, the 
presence of a peak sharp in nanoformulations is also indi-
cated narrow particle size distribution. Finally, the trans-
mission electron microscopy verified the morphology of 
ChiNPs containing Z. multiflora EO; it revealed a cubic 
shape (Fig. 2B).

3.2 � Loading of Z. multiflora EO in chitosan nanoparticles
Fourier transform infrared analysis is popular optical 
spectroscopy for identifying the molecular structure and 
possible interactions between the main components of 
polymeric nanoparticles or scaffolds [19]. Spectra of free 
chitosan nanoparticles, Z. multiflora EO, ChiNPs con-
taining Z. multiflora EO, as well as PCL, PEO, and PEO–
PCL scaffold spectra, are shown in Fig. 3A.

In the spectrum of free chitosan nanoparticles, the 
strong bond at about 1700  cm−1 can correspond to 
carbonyl stretching of the secondary amide band of 
the pure chitosan and carbonyl group in tween. The 
characteristic peak at 1094  cm−1 relates to symmet-
ric and anti-symmetric stretching vibrations in the 
PO2 group. The strong band at 1020  cm−1 belongs to 
symmetric and anti-symmetric stretching vibrations 
in the PO3 group. After the crosslinking process, two 
bands at 1280 and 1152  cm−1 belonging to anti-sym-
metric stretching vibrations of PO2 groups in TPP ions 
appeared. This new peak showed the formation of ionic 
crosslinks between protonated amino groups of chi-
tosan and tripolyphosphate anionic groups [20]. The 
Z. multiflora EO spectrum showed broadband between 
3200 and 3600  cm−1, characteristic of the hydroxyl 
functional group, and a band at 3019  cm−1, attributed 
to the stretching vibration of =C–H groups from ole-
fins. In addition, peaks at 2959, 2925, and 2869  cm−1 
relate to –CH’s stretching vibrations and the absorption 
peak around 1737  cm−1 relates to C=O. The absorp-
tion peaks around 1619 and 1420 cm−1 are attributed to 
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C=C, peaks at 1222 and 1175 cm−1 relate to (C–O–C) 
bonds, and the ones at 809 cm−1 are attributed to angu-
lar deformations of CH2 groups. In spectra of ChiNPs 
containing Z. multiflora EO, two bands at 1280 and 
1098  cm−1 belong to the linkage between phosphoric 
groups of TPP and the ammonium group of chitosan. 
This new peak showed the formation of ionic crosslinks 
between protonated amino groups of chitosan and TPP 
anionic groups. The other characteristic peaks are simi-
lar to Z. multiflora EO.

3.3 � Physicochemical characteristics of PCL–PEO scaffolds
The spectra of PCL and PEO and the PEO–PCL scaf-
fold are shown in Fig. 3B. The main characteristic peaks 
of pure PEO at 2878 and 1466 cm−1 are attributed to the 
asymmetric stretching and asymmetric bending of CH2. 
The peaks at 1341 and 1359 cm−1 are associated with the 
bending vibration of –CH2. The triplet peaks at 1144, 
1094, and 1059 cm−1 are related to the C–O–C vibration 
and are also assigned to the existence of the crystalline 
PEO. The peaks at 960 cm−1 and 841 cm−1 are associated 

Fig. 2  A DLS diagram of ChiNPs containing Z. multiflora EO and B transmission electron microscopy image of them

Fig. 3  Fourier transform infrared spectra: A free chitosan nanoparticles (ChiNPs), Z. multiflora EO, ChiNPs containing Z. multiflora EO and B 
polycaprolactone (PCL), polyethylene oxide (PEO), and PCL–PEO scaffold
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with the CH2 rocking vibrations of the methylene (–CH3) 
group [21, 22]. In the case of PCL, the prominent peak at 
1722 cm−1 is associated with the carbonyl (C=O) group. 
The characteristic peaks located at 2943 and 2865  cm−1 
are assigned to the stretching vibration of –CH2. The 
FTIR spectrum of PCL also exhibited absorption bands at 
1292 cm−1 for C–O and C–C stretching and at 1164 and 
1236 cm−1 for COC symmetric and asymmetric stretch-
ing, respectively [23]. Importantly, the main characteris-
tic bands of each compound (PEO and PCL) appeared in 
the FTIR spectrum of the PEO–PCL scaffold, thus sug-
gesting that both PEO and PCL were present in the pre-
pared scaffolds [24]. The PCL’s C=O stretching vibration 
at 1722 cm−1 gets shifted to 1704 cm−1 in the PCL–PEO 
scaffold with lower intensity. The absorption peaks at 
2943 and 2865  cm−1 corresponding to stretching vibra-
tion of –CH2 in PCL are decreased in intensity in the 
PCL–PEO scaffold. The shifting of the main peaks indi-
cates the molecular interaction of PEO and PCL in the 
final scaffold [22, 24].

The wettability of solid surfaces is investigated with a 
water contact angle meter. If the measured contact angle 
is above  90 degrees, the solid has poor wetting and is 
called hydrophobic [25]. The water contact angle of the 
PCL–PEO scaffold was high as 136.5° (Fig. 4A). Besides, 
Fig. 4B shows randomly oriented and beadles PCL–PEO 
nanofibrous with a mean diameter of 246 ± 39 nm.

3.4 � In vitro anticancer activity of chitosan nanoparticles 
containing Z. multiflora EO

Figure  5 indicates the dose-dependent effects of the 
ChiNPs containing Z. multiflora EO on all examined 

cell lines, including the A-375 melanoma cell line and 
two breast cancer cell lines, MCF-7 and MDA-MB-468. 
Interestingly, the viability of A-375 and MCF-7 more 
than 90% were reduced after treatment with ChiNPs 
containing Z. multiflora EO 600 and 1200  µg/mL. 
Besides, the viability of cells after treatment with free 
ChiNPs 10–15% was reduced. Moreover, the scaffold 
did not significantly affect three cell lines (data not 
shown).

Furthermore, IC50 values of ChiNPs containing 
Z. multiflora EO against A-375, MCF-7, and MDA-
MB-468 were obtained as 32 (12–84), 46 (32–67), and 
105 (85–131) µg/mL, respectively.

Fig. 4  A Water contact angle with the surface of PCL–PEO scaffold and B its scanning electron microscopy image

Fig. 5  Anticancer effects of chitosan nanoparticles containing Z. 
multiflora EO against human melanoma (A-375) and breast cancer 
cell lines (MDA-MB-468 and MCF-7), n = 3
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4 � Discussion
Zataria multiflora (Lamiaceae family) is one of the 
most common medicinal plants that grows in Pakistan, 
Afghanistan, and southern Iran [26]. Its EO possesses 
some biological properties, such as antibacterial, anti-
oxidant, and anticancer effects [27, 28]. In this study, the 
anticancer effect of ChiNPs containing Z. multiflora EO 
on the viability of melanoma (A-375) and breast cancer 
(MCF-7 and MDA-MB-468) cells was examined. A-375 
human melanoma cell maintains typical cutaneous mela-
noma characteristics and is a suitable in vitro model for 
studying human cancers’ most aggressive, treatment-
resistant, and chemo-resistant form [29, 30]. MCF-7 cell 
is a suitable in vitro model for investigating breast cancer 
pathogenesis and anticancer drugs and is the most stud-
ied ER-positive cell line globally [31, 32]. MDA-MB-468, 
as an ER-negative breast cancer cell line, is a target cell 
line for evaluation in vitro invasive and metastatic cancer 
models [33]. Since the 1970s, incidence rates for many 
cancers like lung cancer have decreased, but breast and 
skin cancers are the most commonly diagnosed cancers 
with high incidence and poor survival rates [34]. There-
fore, further research and more effective chemotherapeu-
tic agents are needed to achieve the best outcomes for 
treating these cancers.

Plant-derived substances originate about 50% of the 
clinically active chemotherapeutic agents [35, 36]. At 
least four classes of herbal anticancer agents are on the 
market today, vinca alkaloids (vincristine, vindesine, and 
vinblastine), epipodophyllotoxins (teniposide and etopo-
side), taxanes (docetaxel and paclitaxel), and the camp-
tothecin derivatives (irinotecan and camptothecin) [37]. 
Moreover, many attempts have been made to exploit 
EOs as antioxidant, antimicrobial, and anticancer drugs. 
Nevertheless, besides low water solubility, EOs main 
compounds have low absorption, low efficiency, and low 
plasma membrane permeability, which has the limited 
clinical application of these herbal compounds [29, 38]. 
Therefore, the preparation of EO-based nanoformulation 
is a promising approach that increases cellular uptake, 
solubility, and biological and pharmacological activities. 
Nanoformulation could also reduce the dosage use, toxic-
ity, and side effects and increase the noticeable efficacy 
of EOs [39]. For example, nanoformulated Mentha piper-
ita EO, as noted by Abedinpour et  al., increases notice-
ably cytotoxic and efficacy of Mentha piperita EO against 
human breast cancer cell lines [18]. It has also been indi-
cated that lipid nanoparticles increased the release rate 
of EO compared to pure EO. Furthermore, Poladi et al. 
have shown that Artemisia EO inhibits cancer cell viabil-
ity, which is more effective by nanoformulation [40]. Fur-
thermore, emerging evidence suggests that ChiNPs can 
penetrate cancerous cells and induce DNA damage, and 

finally disrupt cancer cell growth and metabolism [41, 
42]. ChiNPs containing EOs have thus been widely used 
to improve the EOs’ therapeutic and pharmacological 
effects. For instance, Soltani et al. designed a cytotoxic-
ity study against liver hepatocellular carcinoma cells by 
loading Boswellia sacra EO in ChiNPs with a particle 
size of 80.13  nm [43]. Another group proposed ChiNPs 
containing green tea EO with a mean particle size of 
30.7 ± 1.13 nm as a natural drug delivery system to can-
cer against hepatocellular breast and colon carcinoma 
cells [44].

In the present study, preclinical cancer models (MCF-
7, MDA-MB-468, and A-375) investigated the antican-
cer effect of ChiNPs containing Z. multiflora EO with a 
particle size of 177 ± 10  nm. In  vitro treatment of both 
ER-positive (MCF-7), negative breast cancer (MDA-
MB-468), and melanoma (A-375) cells by ChiNPs con-
taining Z. multiflora EO inhibited growth percentages 
in cancer cells. The obtained IC50 value for ChiNPs con-
taining Z. multiflora EO against A-375 melanoma cells 
(IC50 = 32 μg/mL) lower than ER-negative MDA-MB-468 
cells (IC50 = 105 μg/mL). ER-positive MCF-7 breast can-
cer cells (IC50 = 46 μg/mL) was sensitive compare to the 
ER-negative MDA-MB-468 cells (IC50 = 105 μg/mL). Our 
results agreed with the findings of previous studies indi-
cating that Z. multiflora EO has anticancer properties on 
breast, melanoma, and colon cancers and has the poten-
tial to be used in cancer treatment [45, 46]. The results 
demonstrated that A-375 melanoma cells are more sen-
sitive toward ChiNPs containing Z. multiflora EO than 
ER-positive and –negative breast cancer. It can be con-
cluded that ChiNPs containing Z. multiflora EO has a 
cell line-dependent anticancer activity. In agreement with 
these results, Yerlikaya et al. showed that chitosan could 
reduce cell proliferation in melanoma cell lines (A-375, 
SKMEL28, and RPMI7951) with different mechanisms 
and cells line-dependent manner [47]. It is important to 
note that, the potency of ChiNPs containing Z. multiflora 
EO in our study was more potent than non-formulated 
Z. multiflora EO in previous studies against these cells; 
A-375 (IC50 = 59 µg/mL), MCF-7 (IC50 = 76 µg/mL), and 
MDA-MB-468 (IC50 = 302  µg/mL) [8, 16]. The findings 
reported in this study and previous results give depth 
to our understanding of cell line-dependent anticancer 
activity of ChiNPs.

The wettability of biomaterials is one of the most 
important properties considered in tissue engineer-
ing for skin diseases such as metastatic melanoma [48, 
49]. Pathogenic infections increase patient mortal-
ity because of a weakened immune system in cancer 
patients [50]. This study prepared a PCL–PEO scaffold 
to create a skin coating for melanoma patients after 
treatment with ChiNPs containing Zataria multiflora 
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EO. The scaffold could be used as a protective coat-
ing in melanoma patients for inhibiting the entry of 
environmental pathogens into the site, allowing air 
exchange [51, 52].

5 � Conclusions
The findings of in  vitro cancer models suggest that the 
ChiNPs containing Z. multiflora EO could act as a drug 
supplement to inhibit cancer cell proliferation (breast 
and melanoma cells). The comparative study showed 
that the anticancer effect of ChiNPs containing Z. mul-
tiflora EO was more pronounced in melanoma cells than 
in breast cancer cells. The PCL–PEO scaffold was also 
proposed as a skin coating after treatment with the nano-
formulation. The prepared prototype could be considered 
for further investigations in in vivo studies.
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