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Abstract 

Background:  Helminth infection and infestation in fishes are detrimental and have a major effect on fish health 
and fish production. Among various factors, parasitic infections are known to modulate antioxidant defences in fish. 
Similar to other aerobic animals, fish are also susceptible to the effect of reactive oxygen species and thus have well 
established intrinsic and efficient antioxidant defences. ‘Oxidative stress markers are an important indicator of the 
physiological state of the parasite and its host’. Indian catfish,Wallago attu is a freshwater fish that serves as the defini-
tive host of the adult piscine trematode Isoparorchis hypselobagri. Our two years prevalence data signifies the intensity 
of the problem revealing a minimum of 5.5% and a maximum of 54% I. hypselobagri infection in Indian catfish W. attu 
(unpublished data). The present study aimed to achieve baseline data attributed to changes in some oxidative mark-
ers due to parasitic infection.

Results:  During the present study, the level of enzyme activities of Catalase (CAT), Glutathione reductase (GR), 
Glutathione-S-transferase (GST), Glutathione peroxidase (GPx), Superoxide dismutase (SOD) and lipid peroxidation 
was investigated to explore the pathogenic impact on the fish host. The level of these oxidative stress markers was 
monitored in the swim bladder, liver, intestine and muscle of the host. We also recorded the enzyme activities in the 
parasite I. hypselobagri. Analysis of data revealed an elevation in GST, SOD, GR, GPx and CAT activity in the infected 
host tissue as compared to the non-infected fish. Further, we observed presence of GST, SOD, GR and GPx enzymes in 
the parasite I. hypselobagri while CAT did not show any enzyme activity.

Conclusions:  Increased level of enzyme activity in liver, muscle and intestine of infected host has been recorded 
which indicates increased oxidative stress in the host due to parasitic invasion. The presence of antioxidant enzymes 
in the parasites suggests an active antioxidant defence system to avoid immune responses to long term survival and 
establishment in their host.
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1 � Background
Isoparorchis hypselobagri (Billet 1898) is a digenetic 
trematode parasitizing swim bladder of the Indian cat-
fish Wallago attu and other important food fishes namely 
Channa, Notopterus, Mystus, Mystacembelus and carps 
[4, 16, 50] (Rahaman and Manna [ 42]). Moreover, many 

vertebrates like a whale [54], crocodile [8], frog [43], tur-
tle [45], pig [52] and human being [14, 25] have been 
reported to be infected with I. hypselobagri. This spe-
cies has been recorded from India, Bangladesh, Pakistan, 
Thailand, Japan, China, Australia and Indonesia [18].The 
infection makes the fish unsuitable for human consump-
tion since it produces black spot disease or ink spot dis-
ease in the muscles and visceral organs, causing mortality 
of fishes and thus resulting in the great economic loss 
[16, 29]. Human infection with I. hypselobagri has been 
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recorded by Chandler and Read [15] which is very com-
mon in Manipur State of India due to eating raw swim 
bladders of fish. Cribb [18] proposed a three-host life 
cycle of parasite I. hypselobagri. Eggs of the parasite do 
not hatch and must be eaten by a gastropod, within the 
gastropod, it develops into sporocyst, rediae and cercar-
iae. The cercariae leave the gastropod and are consumed 
by a second intermediate fish host Oxygaster bacaila, 
Gagata cenia and Gambusia affinis etc., in which the cer-
cariae develop into metacercariae. The second intermedi-
ate host is consumed by a catfish and the metacercariae 
penetrate the intestine and migrate to the swim bladder 
and develop into an egg-producing adult [18].

Diseases in fish are one of the major factors which 
impede the successful development of the fish indus-
try including the safety of fish products [34]. Helminth 
infection can cause a major effect on the fish trade due 
to the harmful effect of several helminth species. Many 
commercially important fish species are infected by hel-
minth parasites, which may have a considerable impact 
on physiological and biochemical processes in the host 
organisms and are harmful to their health [49]. Humans 
get fish borne helminth infection by ingesting raw or 
undercooked fish containing infective parasitic larvae 
[51] (Chai and Lee [13]). Parasitic infection may also 
harm the function, growth, reproduction and survival 
of its host [46]. Financial losses due to parasitic diseases 
in the fish sector were estimated at 9.6 billion US dollars 
per year at the global level [44]. World Health Organiza-
tion (WHO) has estimated that ‘the number of people 
currently infected with fish-borne trematodes exceeds 
18 million, and many more are at risk’ [40]. Parasites can 
affect the fish population by causing mechanical, physi-
ological as well as reproductive damage which may lead 
to a decline in the stock [30].  Morphological changes 
including partial necrosis of fin tissue, scale loss, loss 
of pigmentation, damage to the viscera, especially the 
gonads, and the abdominal muscles, on fish Channa 
punctata infected with I. hypselobagri, has been reported 
by Mahajan et  al., [35]. Reduced feeding behaviour and 
a high mortality rate have been observed in infected 
fish. Infection by helminths causes ‘oxidative stress in 
their host [25] which as a result generates reactive oxy-
gen species (ROS) including superoxide anion radicals, 
hydroxyl radicals, singlet oxygen, hydrogen peroxide and 
hypochlorous acid [21]. These are mainly produced as a 
part of the immune defence mechanism against foreign 
particles [39]. Oxidative stress is described as an imbal-
ance state between pro-oxidants and antioxidants, result-
ing in higher production of ROS and free radicals which 
causes detrimental effects [38] on the host. Production 
of ROS is increased due to parasitic infection, which is 
responsible for killing or expulsion of parasites from their 

hosts and also prevents the establishment of infection 
[5, 11, 47]. The antioxidant system protects against the 
damage by scavenging free radicals. The main enzymatic 
antioxidants are catalase, GPx and SOD while reduced 
glutathione, vitamin C, vitamin E, β carotene, cerulo-
plasmin and bilirubin are non-enzymatic factors [21]. 
Superoxide dismutase converts superoxide radicals into 
hydrogen peroxide and molecular oxygen, glutathione 
peroxidase and catalase convert hydrogen peroxide into 
water. Hence, two toxic species, superoxide radical and 
hydrogen peroxide are converted into water [53].

The oxidative stress due to I. hypselobagri infection 
in its host and the oxidative stress experienced by the 
parasites have not been reported earlier. Therefore, the 
present study aims to estimate the levels of some anti-
oxidant enzymes and lipid peroxidation in the parasite 
I. hypselobagri and the liver, swim bladder, intestine and 
muscle tissues of the host Wallago attu. The intestine 
has an important function in food digestion and nutrient 
absorption, however, the intestinal tract is prone to suf-
fering from oxidative damage by the oxidants in foods or 
the larval stages of helminth parasites migrating through 
the intestine. The muscle (skeletal muscle) is crucial 
in maintaining ROS below a threshold level to keep up 
redox homeostasis. Since, the juvenile worms of Isopa-
rorchis hypselobagri penetrate the intestine, liver and 
swim bladder before transforming into an adult stage, we 
hypothesise that the migrating juvenile worms cause tis-
sue damage that could result in the down-regulation of 
antioxidant enzymes.

2 � Methods
2.1 � Collection of samples
Indian catfish W. attu, (Fig. 1a) were purchased from the 
local fish market and brought to the laboratory. Mature I. 
hypselobagri (Fig.1c, d) were collected from the infected 
swim bladder (Fig. b) and washed several times with 
50  mM phosphate buffer solution, pH 7.4 to remove 
host-related debris. The liver, intestine, muscle and swim 
bladder of both infected and non-infected fishes were 
collected to determine the level of antioxidant enzymes.

2.2 � Homogenate preparation
Tissue samples were subjected to 10% (w/v) homogeni-
zation in chilled phosphate-buffered saline, (pH7.0) using 
pestle and mortar. The homogenate was centrifuged at 
10,000×g for 10  min at 4  °C; then the supernatant was 
collected and stored at − 20 °C till further use.

2.3 � Protein estimation
The protein concentration was estimated by the Brad-
ford dye-binding method (1976) as modified by Spec-
tor [48] using bovine serum albumin (BSA) as standard. 
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Coomassie Brilliant Blue G-250 dye was prepared by 
dissolving 0.01% (w/v) in 5% Ethanol (v/v) and 10% 
Orthophosphoric acid (v/v). The optical density was 
recorded at 595 nm on a UV spectrophotometer.

2.4 � Estimation of glutathione‑S‑transferase (GST)
GST enzyme activity was assayed spectrophotometri-
cally at 340  nm following the method of Habig et  al. 
[28]. A total of 3.0 ml reaction mixture contained 50 µl 
of sample, 2.640 ml of 0.1 M phosphate buffer (pH,6.5), 
0.3 ml of 1 mM reduced glutathione and 10 µl of 1 mM 1 
chloro-2,4 dinitrobenzene (CDNB). The enzyme activity 
was expressed as nmol/mg protein/min (molar extinction 
coefficient = 9.6 × 103 M/cm).

2.5 � Estimation of superoxide dismutase (SOD)
SOD enzyme activity was assayed spectrophotometrically 
at 420  nm by the method of Marklund and Marklund 
[36]. A total of 3.0 ml reaction mixture contained 50 µl of 
the sample, 2.85 ml of 50 mM Tris cacodylate buffer and 
0.1 ml of 0.2 mM pyrogallol. One unit of enzyme activ-
ity is defined as the amount of enzyme required to cause 
50% inhibition of the rate of pyrogallol auto-oxidation. 
The enzyme activity was expressed as units/mg protein/
min.

2.6 � Estimation of glutathione peroxidase (GPx)
Glutathione peroxidase enzyme activity was assayed 
spectrophotometrically at 340  nm by the method of 
Flohé’s and Günzler [26]. The reaction mixture (1.0  ml) 
contained 500  µl of 0.1  M potassium phosphate buffer 
(pH7.0) containing 1 mM EDTA, 100 µl of 10 mM GSH 
(prepared in water), 100 µl of 1.5 mM NADPH (prepared 
in 0.1% NaHCO3), 100  µl of enzyme sample and 100  µl 
substrate (H2O2). The enzyme activity is expressed as 
nmol/mg protein/ml.

2.7 � Estimation of glutathione reductase (GR)
Glutathione reductase enzyme activity was assayed 
spectrophotometrically at 340  nm by the method of 
Carlberg and Mannervik [12]. The reaction mixture 
(1.0 ml) contained 500 µl of 0.2 M potassium phosphate 
buffer (pH 7.0) containing 2 mM EDTA, 50 µl of 2 mM 
NADPH (prepared in 10 mM Tris HCl pH 7.0), 50 µl of 
20  mM GSSG, 350  µl distilled water. The reaction was 
initiated by adding 50 µl of the sample. The enzyme activ-
ity is expressed as nmol/mg protein/min.

2.8 � Estimation of catalase (CAT)
Catalase activity was assayed spectrophotometrically 
at 240  nm by the method of Aebi [1]. A total of 3.0  ml 

Wallago attu fishes
A

Fig. 1  Showing Indian catfish Wallago attu (a), swim bladder infected with Isoparorchis hypselobagri (b), adult I. hypselobagri flukes in a petri dish (c) 
and stained adult fluke I. hypselobagri (d)
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reaction mixture contained 2.85 ml of 50 mM potassium 
phosphate buffer (pH 7) and 0.05 ml sample. The reaction 
was initiated by adding 0.1 ml of 30 mM H2O2. One unit 
of enzyme activity is defined as the amount of enzyme 
needed for degradation of 1  μm of H2O2 per min. The 
enzyme activity is expressed as units/mg protein/min.

2.9 � Estimation of lipid peroxidation (LPO)
Lipid peroxidation was assessed by determining MDA 
(a thiobarbituric acid reactive species: TBARS) spectro-
photometrically following the method of Beuge and Aust 
[11]. The reaction mixture contained 1 ml of sample and 
2  ml of TBA-TCA-HCl reagent (0.37% thiobarbituric 
acid, 0.25  N hydrochloric acid and 15% trichloroacetic 
acid), placed in boiling water bath for 15 min, cooled at 
room temperature and centrifuged for 10 min. The pink 
chromogen formed by the MDA-TBA complex was 
detected at 535  nm. The level of lipid peroxidation was 
expressed in nmoles of malondialdehyde (MDA) formed/
mg protein.

2.10 � Statistical analysis
Statistical analysis was done by student’s t-test followed 
by Prism 8.0.1.244. All the values are mean of three inde-
pendent replicates ± SEM (Standard error mean). Values 
of p < 0.05, p < 0.01, p < 0.001 and p < 0.0001 were consid-
ered to be significant.

3 � Results
During the present study, we observed both qualitative 
and quantitative differences in the activity of antioxi-
dant enzymes (Figs. 2, 3, 4, 5, 6). An overall comparison 
of enzyme activities in the infected and non-infected 

liver, swim bladder, muscle and intestine of Indian cat-
fish Wallago attu revealed a unique pattern in their 
order of activity. We recorded the higher enzyme activity 
of SOD followed by Catalase, GPx, GR and GST in the 
swim bladder, muscle and intestine, while in the liver tis-
sues, Catalase revealed higher activity followed by GPx, 
SOD and GST enzymes (Figs.  2, 3, 4, 5,  6).In general, 
we observed that the fishes infected with I. hypselobagri 
demonstrated an elevation in the level of the antioxidant 
enzyme as compared to non-infected fish.

A higher level of GST was noticed in the liver and 
intestine of infected fish but there was no signifi-
cant increase in muscle and swim bladder of the host 
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Fig. 2  The specific enzyme activity of glutathione-s-transferase 
(GST) in parasite I. hypselobagri and non-infected and infected 
liver, swim bladder, muscle and intestine of host Wallago attu. 
NIL = Non infected liver, IL = Infected liver, NISB = Non infected swim 
bladder, ISB = Infected swim bladder, NIM = Non infected muscle, 
IM = Infected muscle, NII = Non infected intestine, II = Infected 
intestine
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Fig. 3  The specific activity of superoxide dismutase (SOD) enzyme 
in parasite I. hypselobagri and non-infected and infected host tissues 
of fish Wallago attu (liver, swim bladder, muscle and intestine). 
NIL = Non infected liver, IL = Infected liver, NISB = Non infected swim 
bladder, ISB = Infected swim bladder, NIM = Non infected muscle, 
IM = Infected muscle, NII = Non infected intestine, II = Infected 
intestine
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Fig. 4  The specific enzyme activity of glutathione peroxidase 
(GPx) in parasite I. hypselobagri and non-infected and infected liver, 
swim bladder, muscle and intestine of Wallago attu. NIL = Non 
infected liver, IL = Infected liver, NISB = Non infected swim 
bladder, ISB = Infected swim bladder, NIM = Non infected muscle, 
IM = Infected muscle, NII = Non infected intestine, II = Infected 
intestine
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(Fig.  2). Elevation in the level of GST by 49.6, 15, 13 
and 76.36% in infected liver, swim bladder, muscle and 
intestine (p < 0.05) were recorded as compared to non-
infected fish (Fig. 2). It can be surmised that the higher 
GST activity helps to re-establish the balance between 
pro-oxidative damage and antioxidants to ease ROS 
induced oxidative damage. Figure 3, shows a significant 
elevation in the enzyme activity of SOD in the liver 
(p < 0.05), intestine (p < 0.01), muscle and swim blad-
der (p < 0.05) of the infected host which is an indication 
of increased oxidative stress due to parasitic infection. 
Further, we observed a significant increase in the level 
of GPx activity in the liver (86%) (p < 0.01) and mus-
cle (31%) while the level decreased significantly in the 
infected intestine (p < 0.01) and swim bladder (p < 0.001) 
respectively (Fig.  4) indicating that this enzyme failed 

to influence the expulsion of the parasite. We also 
observed increased Glutathione reductase (GR) activity 
in the liver, muscle and intestine of infected fish while 
the activity decreased in the swim bladder (Fig.  5).GR 
activity in infected liver (p < 0.01), muscle (p < 0.01) and 
intestine increased by 3.1, 5 and 1.75 fold respectively 
while the activity decreased significantly (p < 0.01) by 
6.6 fold in the swim bladder (Fig. 5), in comparison to 
non-infected fish. Figure  6, showed that the enzyme 
activity of CAT in the infected liver (p < 0.05), swim 
bladder, muscle (p < 0.05) and intestine increased by 2, 
10 and three fold respectively, as compared to the non-
infected host. In the present study, we also observed 
increased lipid peroxidation activity in the liver, intes-
tine and muscle of the infected host whereas a consid-
erable decrease in the enzyme activity was observed in 
the swim bladder of infected fish (Fig.  7). We found a 
significant elevation in the level of lipid peroxidation 
by 1.3, 2.8 and 6.6 fold in the infected liver (p < 0.05), 
intestine (p < 0.001) and muscle (p < 0.001), respectively 
whereas considerable decrease by 18.7 fold in swim 
bladder (p < 0.01) was noticed (Fig. 7).

In addition to examining antioxidant enzyme activities 
in the tissues of infected and non-infected W. attu, we 
also performed antioxidant enzyme assays in the para-
site I. hypselobagri which infects the swim bladder of the 
fish under investigation. Analysis of the result revealed 
that the parasite possesses an active antioxidant system 
showing a higher amount of enzyme activity for SOD fol-
lowed by GPx, GR and GST (Figs. 2–6). Catalase was also 
examined in the parasite but it did not show any enzyme 
activity.
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Fig. 5  The specific activity of glutathione reductase (GR) enzyme 
in parasite I. hypselobagri and non-infected and infected liver, swim 
bladder, muscle and intestine of host Wallago attu. NIL = Non 
infected liver, IL = Infected liver, NISB = Non infected swim 
bladder, ISB = Infected swim bladder, NIM = Non infected muscle, 
IM = Infected muscle, NII = Non infected intestine, II = Infected 
intestine
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Fig. 6  The specific enzyme activity of catalase (CAT) in parasite I. 
hypselobagri and non-infected and infected liver, swim bladder, 
muscle and intestine of fish Wallago attu. NIL = Non infected liver, 
IL = Infected liver, NISB = Non infected swim bladder, ISB = Infected 
swim bladder, NIM = Non infected muscle, IM = Infected muscle, 
NII = Non infected intestine, II = Infected intestine
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Fig. 7  The specific activity of lipid peroxidation in parasite I. 
hypselobagri and non-infected and infected host tissues of fish 
Wallago attu (liver, swim bladder, muscle and intestine). NIL = Non 
infected liver, IL = Infected liver, NISB = Non infected swim 
bladder, ISB = Infected swim bladder, NIM = Non infected muscle, 
IM = Infected muscle, NII = Non infected intestine, II = Infected 
intestine
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4 � Discussion
Antioxidant enzymes represent the first line of defence 
which has an important role to restrain the damage done 
by reactive oxygen molecules (ROS) of parasite origin 
[17], whereas the survival of parasite may rely on its abil-
ity to maintain the necessary balance between oxidation 
and antioxidation [38]. It is well-established fact that 
the physiological function of the host is altered by high 
intracellular ROS concentration which weakens the host 
immune system and becomes more prone to parasitic 
diseases [39]. While lower levels regulate several physi-
ological mechanisms including cell differentiation, apop-
tosis and cell proliferation [53].

Liver and intestine tissues of infected fish revealed 
an elevation in the GST activity whereas no significant 
increase in GST was recorded in the muscle and swim 
bladder of the host. In a study by Radovanović et al. [41], 
higher glutathione-dependent enzyme activities in barbel 
(Barbus barbus) infected with intestinal parasite Pom-
phorhynchus laevis has been observed. Higher antioxi-
dant enzyme activity could be correlated with a greater 
scale of protection against parasitic infection [27].  Our 
present study shows a significant elevation of SOD in the 
liver, intestine, muscle and swim bladder of the infected 
host. Elevation in the level of SOD in sheep liver infected 
with Fasciola spp. has also been observed by Assady et al. 
[2], which is an indication of increased oxidative stress 
due to parasitic infection. Further, in our study, a sig-
nificant increase in the level of GPx in the infected liver 
and muscle and a decrease in the infected intestine and 
swim bladder of W. attu has been observed. Increased 
level of peroxidase activity in the liver due to F. hepatica 
infection has also been observed by Benzer and Ozan 
[6]. Elevation in the GPx enzyme activity could be sug-
gested as an adaptive change against potential liver injury 
[21]. The lower level of peroxidase activity in the intestine 
and swim bladder of infected fish indicated that the GPx 
enzyme could not compensate for the damage caused by 
the parasitic invasion. During the present study, infected 
liver, swim bladder, muscle and intestine revealed a sig-
nificant increase in CAT enzyme activity. Increased level 
in the enzyme activity of catalase indicates an accumu-
lation of hydrogen peroxide in infected tissue [27]. Sig-
nificant elevation of CAT and GST has been reported 
in the liver and head kidney of Cyprinus carpio infected 
with Ptychobothryumsp. [21]. Eissa et  al. [23] reported 
increased SOD, CAT, GR, GPx activities and MDA con-
centration in liver and muscle tissues of Tilapia infected 
with Diplostomum and Heterophys sp. Kumar et al. [33] 
reported induction of antioxidant enzymes (GST, SOD 
and CAT) in gills and liver tissue of fish Pangasianodon 
hypophthalmus infected with Thaparocleidus sp. Our 
results showed significant elevation in the level of lipid 

peroxidation in the infected liver, intestine and mus-
cle whereas a considerable decrease in swim bladder 
(p < 0.01) was noticed. A similar finding has also been 
reported by Nabi et  al. [39] who observed an increased 
level of LPO in the liver, intestine and muscle of Schizo-
thorax plagiostomus infected with Pomphorhynchus sp. 
The enhanced level of LPO protects the parasite from 
host immune responses. Low level of lipid peroxidation 
in infected swim bladder may indicate that cells stimulate 
their maintenance and survival through essential antioxi-
dant defence that upregulate antioxidant proteins result-
ing in an adaptive stress response [3]. Decreased activity 
of GR and GPx may be due to protein structure modifica-
tion leading to change in its function and also responsible 
for accumulation of peroxides up to toxic level [32].

Analysis of antioxidant enzyme assays in the parasite 
I. hypselobagri under study revealed the presence of an 
active antioxidant system showing a higher amount of 
enzyme activity for SOD followed by GPx, GR and GST. 
Moreover, we observed the absence of catalase activity in 
the parasite. Our finding is in agreement with the study 
of Khan et al. [31], who observed that the catalase activity 
was not present in the somatic extract of the fish infect-
ing parasite, Clinostomum complanatum while GST 
and SOD enzymes have been observed. In parasites, the 
production of antioxidant enzymes is helpful to avoid 
immune responses thereby facilitating long term survival 
in the host. According to Deger et al. [21], the presence of 
an elevated level of antioxidant enzyme in the host is to 
provide a cellular protective role to oppose the oxidative 
stress generated by parasitic invasion. It is reported that 
parasitic infection can disturb the metabolic activity of its 
host [10].The antioxidant defence system of the parasite 
helps to tackle the host’s immune responses for success-
ful establishment and long-term survival in the definitive 
host. Parasites need protection from reactive oxygen spe-
cies that arise from host phagocytic cells [19] and [22]. 
Antioxidant molecules of parasite origin represent a fac-
eted shield in drug resistance, as well as in the modula-
tion of the host immune response. Thus, antioxidants are 
not only a barrier but an essential factor to establish the 
host–parasite relationship [17]. The increase or decrease 
in the activity of different antioxidant enzymes in host 
tissues infected with I. hypselobagri during the present 
study can be linked to modulated metabolic activity in 
the host owing to parasitic load.

5 � Conclusions
It is concluded that infection of parasite I. hypselobagri 
induces oxidative stress which results in the generation 
of reactive oxygen species in the host Wallago attu, with 
modulation in the level of essential antioxidant enzymes 
(GST, SOD, GPx, GR, CAT and LPO). Parasitic infection 
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induces significant oxidative stress which is evident from 
the increased antioxidant enzymes and lipid peroxidation 
causing a pathogenic response in the host. Moreover, the 
antioxidant defence system of the parasite helps to tackle 
the host’s immune responses for successful establishment 
and long-term survival in the definitive host.
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