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Abstract

Background: Dengue fever is a key public health unease in various tropical and sub-tropical regions. The
improvement of existing agents that can inhibit the dengue virus is therefore of utmost importance. In this work,
the QSAR study was carried out on 25 molecules of phthalazinone derivatives which have been reported to possess
excellent dengue virus inhibitory activity. Density functional computational technique was used in the optimisation
of the molecules with the basis set at theory level (B3LYP, 6-31G*) respectively. The multiple linear regression (MLR)
model was built using genetic function approximation (GFA) in the material studio software package. Also, in this
study, molecular docking simulation was carried between dengue virus serotype 2 protease (PDB CODE: 6mol) and
some selected phthalazinone derivatives (compounds 1, 2, 7, 11, and 21).

Results: The model was robust as evidenced by validation and robustness statistical parameter which include
predicted R2pred., adjusted R2adj., cross-validated Q2 and R2 regression coefficient, etc (R2pred. = 0.71922, R2adj. =
0.939699, Q2

CV = 0.905909, R2 = 0.955567) respectively. The molecular docking studies conducted in this study have
outlined the binding affinities of the selected compounds (1, 2, 7 11, and 21) which are all in good correlation with
their respective pIC50 values. The free binding affinities of the selected compounds were found to be (− 8.7, − 8.8,
− 8.7, − 8.3, and − 8.9 kcal/mol) respectively, compound 21 with the binding affinity of − 8.9 kcal/mol had the best
binding free energy with the protease relative to other compounds under consideration.

Conclusion: The MLR-GFA model study alongside with the molecular docking analysis has essentially provided a
valuable and in-depth understanding as well as knowledge for the development of novel chemical compounds
with enhanced inhibitory potential against the dengue virus serotype 2 (DNV-2). Hence, the developed model can
be applicable in predicting the anti-dengue activity of a new set of chemical compounds that fall within its
applicability domain.
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1 Background
Dengue infection is a mosquito-borne infection caused
by a virus called Dengue virus (DNV) a member of the
Flavivirus found predominantly in tropical and sub-
tropical areas around the world [1]. DNV spreads among
humans by the infected Aedes aegypti or Aedes albopic-
tus specifically female of the Aedes genus [2, 3].
They are classified into four different but closely inter-

related serotypes (DNV-1, DNV-2, DNV-3, and DNV-4).
Infection with one serotype confers life-long immunity;
however, secondary infection by a different serotype can
increase the risk of developing severe dengue, because
cross-immunity to the other serotypes is only partial and
temporary [4].
Dengue virus serotype 2 (DNV-2) is responsible for the

major infections and accounts for the largest death rate
and hence considered as the virulent strain among other
serotypes of the four [5]. The risk of developing dengue
shock syndrome (DSS) and dengue hemorrhagic fever
(DHF) is associated with infection by multiple serotypes as
a result of antibody-dependent enhancement [6].
The dengue virus has about seven non-structural (NS)

proteins, NS-1, NS-2A, NS-2B, NS-3, NS-4A, NS-4B,
and NS-5. The Flavivirus proteases are evolutionally
conserved and exceedingly stable. In NS-3, there is the
presence of N-terminal serine protease domain, although
inactive but becomes active upon complexation with
NS-2B. Also, this protease can assume a structural con-
formation of either open or closed. In the closed state
that is catalytically active, NS-2B is completely tied
round NS3 and becomes a component of the active site.
In the open and inactive conformation, NS-2B has par-
tially bound to NS-3 and far away from the active site
and hence inactive. The highly conserved Flavivirus NS-
2B/NS-3 protease is necessary for viral replication and
hence a druggable target [7].
In recent times, dengue infection has been reported in

the Caribbean region, South America, and Europe [8].
Thus, DNV infection constitutes a serious threat globally.
Approximately 40 to 100 million people are infected by
DNV annually and more than 50% of the population of
the world are at high risk of the infection by this virus [8].
These infections, in some persons, can progress into a
more acute stage known as (DHF) and (DSS) [9–11], thus
constitute a serious fatal threat in major dengue cases,
around 2.5% from 500,000 clinical cases [9].
Despite these fatal consequences of DNV infection

likewise the possible imminent outbreaks, there have
been no antiviral drugs to prevent or treat DNV infec-
tions [12–14]. This problem is also worsened by the
long-lasting dispersal of these viruses to diverse geo-
graphical regions as foretold more than 20 years ago
[15]. The present certified dengue vaccine, Dengvaxia,
has upraised alarms about the efficacy and increased
danger of severe syndrome for seronegative persons at
the phase of clinical trials [16].
Anti-dengue potentials of synthetic and medicinal

plants have been described in the literature [17, 18].
Searching of biochemical libraries of these compounds

is a real stride in the right track for the design of potent
drug candidates against these viruses.
Quantitative structure-activity relationship (QSAR) is

essential in drug improvement as it investigates the
properties of the drug through its models which
characterize mathematical equations correlating the re-
sponse of chemicals (i.e., biological activity) with their
structural and physicochemical information in the form
of numerical quantities named descriptors [19]. QSAR
studies are directed at developing correspondence
models through a response of chemicals and chemical
information data in a statistical approach.
For the reliability of QSAR models, they are subjected to

various authentication tests to check for the consistency
of the developed correlation models. After its develop-
ment, a QSAR model is usually verified by employing
multiple statistical validation strategies giving an estima-
tion of its predictive strength and stability [19, 20].
QSAR analysis is an effective process for improving

lead compounds and designing new drugs of the desired
property. It is also used in predicting the biological activ-
ity of compounds based on the molecular descriptors of
compounds recognized in the appropriate mathematical
models.
The goal of this investigation is to obtain a model, to

forecast the activity of the selected dataset and hopefully
able to predict new compounds with improved activities
capable of mitigating dengue viral replication.
A better understanding and insight of the structural

necessities for the design of effective and specific inhibi-
tors against flaviviral protease would contribute to the
development of targeted therapies for infections by these
viruses.

2 Methods
2.1 Data collection
The dataset used in this study was phthalazinone deriva-
tives reported in a published literature to experimentally
possess anti-dengue activity [21]. It is recommended that
biological activities values such as IC50 and EC50 used
for the building of any given QSAR model should be
obtained from the same species using the related
procedures [22, 23].

2.2 Molecular geometry optimization
The two-dimensional (2-D) structures of the ob-
tained compounds presented in Table 1, 2, 3 and 4
were drawn using the ChemDraw software [24]. The
spatial conformations of the compounds were



Table 1 Molecular structure of phthalazinone derivatives with the substitution of “A” ring and their biological activity (p IC50)
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exported from 2-D structure to three-dimensional
(3-D) structure using the Spartan 14 V1.1.4 by
Wavefunction programming package. The 3-D
structures were geometrically optimized by minimiz-
ing energy. In the process, the chemical structures
were first of all minimized by a molecular mechanics
force field to remove tension energy of the
molecules’ conformation. Density functional theory
(DFT) technique was further employed using the
Becke’s three-parameter exchange functional (B3) hy-
brid alongside the Lee, Yang, and Parr correlation
functional (LYP), termed as B3LYP hybrid functional,
for thorough geometric optimization of the struc-
tures. The Spartan files of all the optimized mole-
cules were then saved in SD file format, which is
one the readable input format in PaDEL-Descriptor
software [25].
2.3 Biological activities (pIC50)
The obtained biological activities of phthalazinone
derivatives against cytoplasmic DNV-RNA replication
measured in IC50 (μM) were converted to the logarithm
unit (pIC50) using the Eq. (1) to increase the linearity of
activity values and approach normal statistical distribu-
tion. The observed structures and the biological activ-
ities of these compounds are presented in Fig. 1a–d and
Tables 1, 2, 3 and 4 respectively.

pIC50 ¼ ‐ log IC50ð Þ ð1Þ

2.4 Molecular descriptor generation
Molecular descriptors which are the mathematical
values describing the properties of a molecule we



Table 2 Molecular structure of phthalazinone with a substituent on benzyl moiety their biological activity
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determined. Quantum chemical descriptors calcula-
tion for all the 25 molecules of phthalazinone deriv-
atives were calculated using PaDEL-Descriptor
software V2.20. A total number of about 1870 mo-
lecular descriptors were calculated and combined
with those obtained from the 3-D structure by the
Spartan program software.
2.5 Splitting of data-set into modeling train and external
evaluation test sets
To build the QSAR models, the data set which is the
chemical compound was separated into two sets in
the ratio of 80:20, the train set and test set respect-
ively. The train set is used for building the QSAR
model; it contains 80% of the entire chemical com-
pounds under consideration. While the test set which
constitutes the remaining 20% of the total chemical
compound data set was not involved in the building
of the QSAR model but to ascertain the analytical
quality of the built model [26].
2.6 MLR-GFA model building
Statistical analysis by genetic function approximation
(GFA) techniques of the Material Studio software 8.0
version was used to build the models based on multiple
linear regression (MLR). The MLR is used to establish a
direct relationship between a dependent variable Y
(pIC50) and independent variable X (molecular descrip-
tors). The model fits well such that sum of the square
difference between the experimental and predicted pIC50

values is lessen. In regression analysis, a contingent
mean of dependent variable (pIC50) Y relies on (Descrip-
tors) X. MLR examination utilizes and also lengthens
this idea to combine more multiple autonomous vari-
ables, and regression equation assumes the form:

Y ¼ k1x1þ k2x2þ k3x3þ…C ð2Þ

where Y is the dependent variable, “k”s are regres-
sion coefficients for corresponding “x”s (independ-
ent variables), and “C” is intercept or a regression
constant.



Table 3 Molecular structure of phthalazinone with substitution of B ring and their biological activity
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The GFA calculates a fitness function identified as
a lack of fit (L.O.F). This fitness function is not used
by the system for indicating equations that are the
best model, rather estimate the superiority of the
models previously built by the system thus helping
in deciding the models to use based on quality.
Quality of the model is inversely proportional to the
Table 4 Molecular structure of phthalazinone with substitution
of phenyl moiety and their biological activity

SN R p IC50

15 4-OCH3 5.712198

16 4-CN 6.154902

17 4-CF3 5.832683

18 3-F 5.821023

19 3-OCH3 6.522879

20 3-CN 5.764472

21 3-CF3 6.886057

22 2-F 5.879426

23 2-OCH3 5.853872

24 2-CN 5.258061

25 2-CF3 5.701147
LOF value and it is computed using the mathemat-
ical expression:

LOF ¼ LSE

1 − cþ dpð Þ=Mð Þð Þ2 ð3Þ

In this equation, LSE is the least-squares error of the
model, c is the number of descriptors in the model, d is the
smoothing parameter (which has a default value of 1.0), p is
the sum of all descriptors, and M is the total number of
compounds involved in the model building [27].

2.7 Model quality assessment
Predictive capacity and the robustness of the developed
model was appraised internally and externally using stat-
istical parameters such as R2 (square correlation coeffi-
cient), Q2

CV (cross-validation coefficient), R2 pred.

(external test set correlation coefficient), cR
2
p

(coeffi-

cient of determination for Y-randomization), etc. The
statistical validation parameters were compared with the
minimum value suggested for a generally satisfactory
QSAR model [28] presented in Table 5.



a

b

c

d

Fig. 1 a Parent structure with substitution on ring A of phthalazinone. b Parent structure of phthalazinone with substituents on the benzyl moiety. c
Parent structure of phthalazinone with substitution of B ring of phthalazin core. d Parent structure of phthalazinone with a substituent on phenyl moiety
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Table 5 Minimum suggested value of authentication
parameters for a generally satisfactory QSAR model

Symbol Name Value

R2 Coefficient of determination ≥ 0.6

P (95%) Confidence interval at 95% confidence level < 0.05

Q2
CV Cross validation coefficient > 0.5

R2–Q2
CV Difference between R2 and Q2

CV ≤ 0.3

Next. test set Minimum number of an external test set ≥ 5

cR
2
p

Coefficient of determination for Y-randomization > 0.5
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2.8 Validation of the QSAR model
The authentication of a QSAR model is mainly ac-
complished based on the chemical compound used in
model development. It comprises activity estimate of
the studied compounds and subsequent estimation of
some validation parameters for verifying the accuracy
of model predictions capacity. To judge the quality
and goodness-of-fit of the model, internal validation
is an ideal technique. Internal validation, which is
regularly used to select a better model among con-
tending models, was done using the data that create
the models. The following internal validation parame-
ters were calculated:
the cross-validated squared correlation coefficient

(R2
CV or Q2):

R2
cv ¼ Q2 ¼ 1 −

P
Y obs: − Y pred:
� �2P
Y obs: − Yobs:
� �2 ð4Þ

Yobs. and Ypred. are the experimental and predicted re-
sponse values respectively and Y obs: is the average of the
experimental biological activity value for the train set
data. A satisfactory predictive model should have Q2

value greater than 0.5 [29].
Also, another important parameter R2, known as the

determination coefficient: is square of the correlation co-
efficient between the observed and predicted response
values of the training set compounds. It is the most used
parameter and may be computed based on the following
expression:

R2 ¼ 1 −

P
Y obs: − Y pred:
� �2P

Y obs: − Y
� �2 ð5Þ

Given that experimental and predicted response
values of biological activity have been designated as
Yobs. and Ypred. respectively, while Y represents the
average response value of the training set. R2 mea-
sures the explanatory power of the model describing
the variation in the activity value of molecules used
in building the model. A perfect model has an R2

value of unity (1) and as the value deviates from unity, the
fit quality of the model declines. A good model is expected
to have an R2 value at least equal to the threshold value of
greater than or equal to 0.5 [30].
R2

adj, known as explained variance: It is an adjusted
form of determination coefficient which accounts for
the effect of new explanatory variables in the model,
by incorporating a degree of freedom to the model
[30]. To reflect the described variance in a better
way, R2

adj is the candidate of choice since the inclu-
sion of either relevant or irrelevant independent vari-
ables in multiple regression analysis often produces
non-decreasing R2 value [31]. It may be computed
with the following expression:

R2
adj: ¼ N − 1ð Þ � R2 − p

N − 1 − p
ð6Þ

where N gives the number of molecules in the data,
R2 is the determination coefficient, p is the number
of descriptors in the model, and N-1-p is the degree
of freedom [31].
The most essential consideration is the assessment

of the generated model is external validation. Usually,
prior to generating a QSAR model, the whole data set
is shared into the train and test sets based on differ-
ent algorithms The test set compounds are not in-
volved in the training of the QSAR model and, hence,
are used in external authentication procedure. The
most recommended criteria for external validation are
evaluated. In this, the biological activities of the test
set compounds are predicted for determining the pre-
dictive power of the model. The most commonly used
parameter for evaluating the predictive performance
of the model is a coefficient of squared correlation
(R2pred.) for the test set that is evaluated by the fol-
lowing expression:

R2
pred: ¼ 1 −

P
Y obs: testð Þ − Y pred: testð Þ
� �2P

Y obs: testð Þ − Y trainð Þ
� �2 ð7Þ

where Yobs. (test), Ypred.(test), and (train) are observed,
predicted, and average values of biological responses
for test and train sets, respectively. R2 value varies
from 0 to unity (1), and it is recommended that it
should not be less than 0.6 [32, 33].

2.8.1 Statistical Y-scrambling evaluation
In this evaluation, random MLR models are created
by haphazardly shuffling the dependent variable while
keeping the independent variables untouched. The
new QSAR models are expected to have considerably
low R2 and Q2 values for numerous trials, which
confirm that the developed QSAR models are robust.
In the process, a very important parameter, cRp2 is
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likewise considered which should exceed a value of 0.5 for
scaling through this test as recommended [29].

CR2
p ¼ R2 � 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − R

2
r

��� ���
r� �

ð8Þ

where R2 is the square correlation coefficient for the

regression analysis of non-randomized model and R
2
r is

the average of the square correlation coefficient for the
regression analysis of all randomization scores.

2.8.2 Evaluation of the applicability domain of the model
The built QSAR model was also appraised based on the
applicability domain (AD) method to prove that the
model is robust and reliable to predict the (pIC50) of
compounds [34]. The leverage method was involved in
defining and describing the applicability domain of
models built [28]. Leverage of a given chemical com-
pound, hi, is defined by Eq. 9:

hi ¼ Z ZTZ
� � − 1

:ZT ð9Þ

where Z is the descriptor matrix and ZT is the transpose
of Z, and standardized residual (SDR) was obtained as
follows:

SDR ¼ ŷ − yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ŷ − yð Þ2

m

s ð10Þ

where the experimental and predicted activity values for
either of the datasets are represented by y and ŷ respect-
ively and m is the number of molecules in the set under
consideration for each case. Also, model AD is defined
by the boundary 0 < hi < h* and − 3 < SDR < 3. Mean-
while, h* indicates cautionary leverage value.
The cautionary leverage (h*) is also the boundary of

values for X outliers and is defined as:

h� ¼ 3 g þ 1ð Þ
n

ð11Þ

where g is the number of descriptors in the model
and n is the number of compounds that are com-
prised of the train set used in building the model. A
summary graphical evaluation of the model AD is the
plot of SDR versus leverage hi called William’s plot
was made [35].

2.8.3 Multi-collinearity test
The existence of a high degree of correspondence be-
tween the descriptors contained in the best descriptors
arrangement reported by GFA was calculated with the
variance inflation factor (VIF) value for each descriptor:
VIFi ¼ 1

1 − R2
ij

ð12Þ

where R2
ij is the correlation coefficient of the multiple

regression between the descriptor i and the remaining j
descriptors in the model [36].

2.8.4 Mean effect

MEj ¼ β j

Pi¼n
i¼1RijPm

j : β j

Pn
i Rij

� 	 ð13Þ

MFj is defined as the mean effect for the considered
molecular descriptor j, while bj is the coefficient of the
descriptor j, Rij represents the values for the target de-
scriptors of each molecule, and m is the total number of
descriptors in the model. The ME values demonstrate
the relative implication of a descriptor, associated with
other descriptors in the model. Its sign shows the vari-
ation direction in the estimations of the model as an ef-
fect of the descriptor values.

2.9 Molecular docking studies
To gain a detailed understanding of the nature of the
interaction of compounds with the DNV-2 NS2B-NS3
protease, molecular docking was accomplished with the
help of Auto Dock Vina of PyRx v software tool. The
binding energy determination and visual analysis of the
docked compound were accomplished using AutoDock
Vina of PyRx and Discovery Studio visualization soft-
ware, respectively. The crystal structure of the DNV pro-
tease was obtained from the protein data bank (PDB
Code 6mol). All the heteroatoms associated with the re-
ceptor were removed from the three-dimensional struc-
ture of the DNV-2 (NS2B-NS3) receptor (Fig. 2a) and its
structure was minimized, protonated, and saved in
PDBQT format. Also, the 3D structures of the optimized
compounds were converted to PDBQT format with the
aid of AutoDock 4.2 software. The protein-ligand inter-
action was analyzed and visualized with the aid of Dis-
covery studio visualization software [37].

3 Results
3.1 QSAR model quality
Based on the genetic algorithm of the descriptors, a
multi-linear regression model was developed containing
five (5) descriptors. The selected MLR-(GA) model is
represented by Eq. (14)

pIC50 ¼ 0:009574310�ATS6e − 0:397088635�AATSC6m
− 20:187750817�GATS2v − 0:005498349�VR1 Dzv
þ 18:229472834�SpMax3 Bhv − 52:345926233

ð14Þ



Fig. 2 Prepared structure of the target (NS2B-NS3) (a) and 3D structure of the prepared ligand (21) (b)
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R2
adj: ¼ 0:939699; R2

pred: ¼ 0:71922; cR ¼ 0:749517;

Q2
CV ¼ 0:905909; N train ¼ 20; N set ¼ 5; ;

R2 ¼ 0:955567

From the above model (Eq. (14)), it can be deduced
that the five (5) most significant descriptors includes:
ATS6e, AATSC6m, GATS2v, VR1_Dzv, and SpMax3_
Bhv.
The plot of predicted pIC50 against experimental

pIC50 values is displayed in Figs. 3 and 4, which shows
close agreement between the predicted activity of the
test set and that of the train set.
Table 6 gives a detail view of the numerical values

of the train and the test sets as well as the respective
predicted value which show minimal residual value
thereby entailing good predictive strength of the
model.
Table 7 provides the statistical internal validation pa-

rameters of the model obtained from the material studio
program package.
Fig. 3 Illustrating the plot of experimental pIC50 and predicted pIC50 value
The result of the Y-randomization test is shown in
Table 8, indicating a robust model evidenced by its
parameters.
The domain within which the models can predict the

biological activity (pIC50) and the absence of outlier as
well as influential compound is depicted by Fig. 5.
Table 9 provides a detailed description of the descriptors

in the model as well as their quality in terms of chance cor-
relation and degree of contribution to the model.
3.2 Docking simulation studies
Table 10 summarizes the docking result presenting the
binding scores, protease residue with interaction distance
as well as interaction type. Figures 2a, b, 6a–d, and 7a,b
showed prepared structure of the target (NS2B-NS3) and
3D structure of the prepared ligand 21, 2D interaction
type for ligand 1, 2, 7, and 11 with different amino acids in
the active site of protease and 2-D interaction type and H-
bond molecular interaction between ligand 21 and the tar-
get respectively.
of train set chemical compounds of model M1



Fig. 4 The plot of experimental against predicted values of biological activities expressed as (pIC50) of phthalazinone

Table 6 Experimental, predicted and residual values of
phthalazinone derivatives

S/N Experimental activity Predicted activity Residual

1* 6.19382 4.203771 1.990049

2 6.207608 5.984294 0.223314

3 5.548214 5.420270 0.127944

4 5.896196 5.836166 0.060030

5* 5.872895 5.171202 0.701693

6 4.699839 4.667067 0.032772

7 6.000000 5.981356 0.018644

8 5.978811 5.981260 − 0.002449

9 5.361511 5.503827 − 0.142316

10 5.853872 5.861122 − 0.007250

11 4.640354 4.848607 − 0.208252

12 5.205512 5.208835 − 0.003323

13 5.185087 5.044666 0.140421

14 5.571865 5.539619 0.032246

15 5.712198 5.856986 − 0.144788

16 6.154902 6.057303 0.097599

17 5.832683 5.927983 − 0.095300

18 5.821023 5.851128 − 0.030105

19 6.522879 6.522358 0.0005210

20 5.764472 5.987768 − 0.223296

21 6.886057 6.868233 0.017824

22* 5.879426 6.126705 0.247279

23* 5.853872 6.770595 0.916723

24 5.258061 5.152296 0.105765

25* 5.701147 6.521113 0.819966

Asterisk represents the test set
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4 Discussion
4.1 GA-MLR model (QSAR)
The GFA model was successfully built from 20 train set
compounds of 25 and 5 descriptors were contained in
the model. The built model was subsequently used to
predict the biological activity values for both the train
and test reported in Table 6.
The multiple linear regression of genetic function al-

gorithm (mlr-GFA) was used to produce three models;
model (M1) was selected for its statistical significance as
the best model with the following statistical parameters
values (LOF = 0.088598, R2

adj = 0.939699, R2
pred =

0.71922, cR
2
p

= 0.749517, Q2
CV = 0.905909, and R2 =

0.955567). Nevertheless, the statistical significance of
this model is based on the suggested authentication
standard as contained in Table 5. Though, based on the
model parameters above, the model (M1) has satisfied
Table 7 Internal validation parameters of the genetic function
approximation from the material Studio Program Package

S/N Name Value

1 Friedman LOF 0.088

2 R-squared 0.956

3 Adjusted R-squared 0.939

4 Cross validated R-squared Q2
CV 0.906

5 Significant Regression Yes

6 Significance-of-regression F value 60.217

7 Critical SOR F-value (95%) 2.978

8 Replicate points 0

9 Computed experimental error 0.000

10 Lack-of-fit points 14

11 Min expt. error for non-significant LOF (95%) 0.104



Table 8 Y-scrambling test parameters

Model Type R R2 Q2LOO

Original 0.977531 0.955567 0.905909

Random 1 0.639447 0.408892 0.167531

Random 2 0.741613 0.54999 − 0.19155

Random 3 0.830995 0.690552 0.461819

Random 4 0.476259 0.226823 − 0.51646

Random 5 0.383505 0.147076 − 0.81078

Random 6 0.606862 0.368281 − 0.25851

Random 7 0.693163 0.480475 − 0.63633

Random 8 0.658695 0.43388 − 0.06581

Random 9 0.447318 0.200094 − 1.19575

Random 10 0.585719 0.343067 − 0.66571

Random models parameters

Average R 0.640101

Average R2 0.436791

Average Q2(LOO) − 0.25506

cRp2 0.749517
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all the requirements for a satisfactory QSAR model.
Having the above-stated validation values for satisfactory
model values is an indication that the generated model
has a good predictive capability. Five descriptors
remained designated to construct the linear model,
which was able to predict the corresponding pIC50

values of all the selected compounds using the MLR-
GFA statistical method.
The predicted pIC50 values for the training and test

sets were plotted against the experimental pIC50 values
as shown in Fig. 4. It is also noticeably from Fig. 3 that
the calculated values for the pIC50 were in a pact with
Fig. 5 The domain of applicability for outlier determination by William’s pl
those of the experimental value, which entails the ab-
sence of error as observed in the model. A good correl-
ation between experimental pIC50 compared to the
estimated pIC50 of the compounds in the train set mole-
cules was observed as demonstrated by Fig. 3, evidenced
by the good correlation value (R2 = 0.955) in Table 7
which is in agreement with the required validation
threshold as suggested in Table 5 is an indication of the
robustness of the built model [26, 34].

4.2 Y-randomization test
The outcome of the Y-scrambling test is depicted in
Table 8 in which the values of R2 and Q2 are within the
standard recommend statistical values. Also, the recom-
mended value of greater than 0.5 was obtained for cR2p
which shows that the model has good predictive
capacity.

4.3 Applicability domain
The applicability domain evaluation process as shown in
Fig. 5 displays William’s plot of the dataset, for which
standardized residuals for both the train and test dataset
were plotted against their respective leverage values
identified no outlier for the compounds as all the data
points were inside the limit of ± 3 domain. However,
one outlier (compound 1) was observed to have
exceeded the precautionary leverage of (h* = 0.9). Fur-
thermore, a close assessment revealed that it was not an
actual outlier as disregarding this compound did not re-
sult in any perfection of the model statistical parameters
and predictive strength and as such, it was retained. Fur-
thermore, the other reason for not eliminating this com-
pound from the test set was to avoid the use of
excessively slight sort of endpoint values.
ot via plotting standardized residual against leverage



Table 9 List of descriptors and their respective classes and statistical parameters

S/
N

Descriptors Description Descriptor
class

VIF ME

1 ATS6e Broto-Moreau autocorrelation—lag 6/weighted by Sanderson electronegativities. 2D 7.282 0.186

2 AATSC6m Centered Broto-Moreau autocorrelation—lag 6/weighted by mass 2D 4.322 0.023

3 GATS2v Geary autocorrelation—lag 2/weighted by van der Waals volumes. 2D 3.489 −
0.313

4 VR1_Dzv Randic-like eigenvector-based index from Barysz matrix/weighted by van der Waals volumes. 2D 5.468 −
0.060

5 SpMax3_
Bhv

Largest absolute eigenvalue of Burden modified matrix—n 3/weighted by relative van der Waals
volumes.

2D 2.499 1.165
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4.4 Variance inflation factor
Table 9 shows the list of descriptors, descriptions, clas-
ses, and other related statistical parameters (VIF) that
possess a relevant influence on selected relevant descrip-
tors. For all the five descriptors, the numerical values of
the VIF were all less than 10 indicating that the specifi-
cations of the model were coronal, and the model’s
consistency is of great significant [19, 38–40].

4.5 Descriptors interpretation and mean effect
To have an insight into relevant factors responsible for
the biological activity of the compound, there is a need
for interpretation of the descriptors in the model and
their respective individual relevant contribution in the
model. The molecular descriptors in model M1 are
ATS6e, AATSC6m, GATS2v, VR1_Dzv, and SpMax3_
Bhv which had the following individual mean effect
values (0.186, 0.023, − 0.313, − 0.060, and 1.165) respect-
ively as obtained from Table 9.
ATS6e is the Broto-Moreau autocorrelation—lag 6/

weighted by Sanderson electronegativities. It measures
the strength of the relationship between relative electro-
negativity of two atoms in a molecule which are sepa-
rated by 6 bonds; it has a positive correlation coefficient.
Increment in its numerical value favors the increase in
anti-dengue activity of the compounds. Also, these ob-
servations suggest that electronegativity of atoms that
made up the compound had a substantial effect on the
activity (pIC50).
Also, AATSC6m is the centered Broto-Moreau auto-

correlation—lag 6/weighted by mass. It measures the
strength of the relationship between relative atomic
mass of the atom pairs in a molecule separated by 6
bonds; it has a positive correlation coefficient. Therefore,
increment in its numerical value would lead to incre-
ment in pIC50 as well. The BrotoMoreau autocorrelation
descriptors (ATS) are given by

ATSdw ¼
Xn

i¼1
:
Xn

j¼1
:δij:wid:wjd ð15Þ

where n is the atom number, δijis the Kronecker delta
function (if dij = d, zero otherwise, then δij=1), d is the
considered topological distance (the lag in the autocor-
relation parameters), and wi and wj are the normalized
atomic properties for atoms i and j respectively. The
normalized van der Waals volume, atomic mass, and
electronegativity can be appropriated for the atomic
property.
GATS2v which is the Geary autocorrelation—lag 2/

weighted by van der Waals volumes, which has a nega-
tive mean effect is suggested to contribute negatively to
anti-dengue activity. It is evaluated or determined in the
same way as the ATS but with the introduction of Geary
coefficient; it measures the strength of the relationship
between van der Waals volumes of two atoms in a mol-
ecule that are eight bond apart.
The Geary autocorrelation descriptors are given by

GATSdw

1
2Δ

Xn

i¼1

Xn

j¼1
δij wi − wj
� �2

1
A − 1

Xn

i¼1
wi − Ŵ j
� �2 ð16Þ

where Ŵ represents the average coefficient of the con-
sidered property for the molecule and Δ is the number
of vertex pairs from a distance equal to d.
Furthermore, VR1_Dzv is the Randic-like eigenvector-

based index from the Barysz matrix/weighted by van der
Waals volumes. It is negatively correlated to the anti-
dengue activity meaning that decrease in its value en-
hances the activity of the compounds. They are based on
the coefficients eigenvector associated with the largest
negative eigenvalue of the distance matrix of a molecule.
However, SpMax3_Bhv is the largest absolute eigen-

value of Burden modified matrix—n 3/weighted by rela-
tive van der Waals volumes. It is obtained from modified
connectivity matrix whose diagonal element is replaced
by relative van der Waals volume of the atoms in the
molecules. It also quantifies the topology of the chemical
structure on the basis of connectivity of atoms present
in the structure. This descriptor contributed the largest
in determining the inhibitory activity which suggests its
significance in the model as evidenced by its positive
mean effect value.



Table 10 Interactions between compounds with a therapeutic target (DNV-2-NS-2B/NS-3 PDB 6M01)

Compound ID Amino acid residue Interaction distance (Å) Type (ΔG) Binding energy (Kcal/mol)

1 Vs. 6mo1 B:GLN64 2.21658 Conventional Hydrogen Bond − 8.7

A:LEU1018 2.33101 Conventional Hydrogen Bond

B:GLU66 3.30183 Halogen (Fluorine)

B:ALA1108 3.49375 Halogen (Fluorine)

B:GLU62 3.54375 Pi-Anion

B:ALA1108 2.70466 Pi-Donor Hydrogen Bond

B:ALA57 4.87127 Alkyl

B:LEU1098 5.29588 Alkyl

B:PRO1106 5.00654 Alkyl

B:ALA1108 5.03772 Alkyl

B:ALA65 5.43738 Pi-Alkyl

B:ARG1107 4.83196 Pi-Alkyl

B:ALA1108 4.58092 Pi-Alkyl

2 Vs. 6mo1 A:TYR1023 2.80588 Conventional Hydrogen Bond − 8.8

B:GLN64 2.18891 Conventional Hydrogen Bond

B:GLU66 2.54142 Conventional Hydrogen Bond; Halogen

A:LEU1018 2.33372 Conventional Hydrogen Bond

B:ALA65 3.06887 Carbon Hydrogen Bond; Halogen

B:GLN64 3.29816 Halogen (Fluorine)

B:ALA1108 3.38615 Halogen (Fluorine)

B:ALA1108 2.58947 Pi-Donor Hydrogen Bond

B:ALA57 4.93795 Alkyl

B:LEU1098 4.7028 Alkyl

B:PRO1106 5.11146 Alkyl

B:ALA1108 4.61181 Alkyl

B:PRO1106 4.88773 Pi-Alkyl

B:ALA65 5.39978 Pi-Alkyl

B:ARG1107 4.82916 Pi-Alkyl

B:ALA1108 4.45163 Pi-Alkyl

7 Vs. 6mo1 B:GLN64 2.31071 Conventional Hydrogen Bond − 8.7

B:GLU66 2.33594 Conventional Hydrogen Bond; Halogen

B:ALA65 3.05757 Carbon Hydrogen Bond; Halogen

A:LEU1018 3.593 Carbon Hydrogen Bond

B:GLN64 3.45412 Halogen (Fluorine)

B:ALA1108 3.18305 Halogen (Fluorine)

B:ALA1108 2.66277 Pi-Donor Hydrogen Bond

B:ALA57 4.78348 Alkyl

B:LEU1098 5.00203 Alkyl

B:PRO1106 4.65372 Alkyl

B:ALA1108 4.90607 Alkyl

B:PRO1106 5.46319 Pi-Alkyl

B:ALA65 5.33194 Pi-Alkyl

B:ARG1107 4.86108 Pi-Alkyl

B:ALA1108 4.50071 Pi-Alkyl
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Table 10 Interactions between compounds with a therapeutic target (DNV-2-NS-2B/NS-3 PDB 6M01) (Continued)

Compound ID Amino acid residue Interaction distance (Å) Type (ΔG) Binding energy (Kcal/mol)

11 Vs. 6mo1 A:ARG55 2.1633 Conventional Hydrogen Bond − 8.3

B:GLN64 2.97358 Conventional Hydrogen Bond

B:ALA1108 2.81224 Conventional Hydrogen Bond

A:LEU53 3.48199 Carbon Hydrogen Bond

A:LYS1061 3.57148 Carbon Hydrogen Bond

B:GLN64 2.98809 Pi-Donor Hydrogen Bond

B:ALA1108 2.53115 Pi-Donor Hydrogen Bond

B:ALA57 4.80428 Alkyl

B:LEU1098 5.21523 Alkyl

B:PRO1106 4.54569 Alkyl

B:ALA1108 5.03321 Alkyl

A:ARG55 5.15853 Pi-Alkyl

B:ALA65 5.15773 Pi-Alkyl

B:ARG1107 4.75336 Pi-Alkyl

B:ALA1108 4.37424 Pi-Alkyl

21 Vs. 6mo1 A:ARG55 2.63892 Conventional Hydrogen Bond; Halogen − 8.9

A:TYR1023 2.88122 Conventional Hydrogen Bond

B:GLN64 2.24277 Conventional Hydrogen Bond

A:LEU101 2.48849 Conventional Hydrogen Bond

A:ASP58 3.27412 Halogen (Fluorine)

B:GLU66 3.57383 Halogen (Fluorine)

B:GLU66 2.8329 Halogen (Fluorine)

B:ALA1108 2.72639 Pi-Donor Hydrogen Bond

B:ALA57 4.68629 Alkyl

B:LEU1098 4.67262 Alkyl

B:PRO1106 4.94631 Alkyl

B:ALA1108 4.82817 Alkyl

B:ARG1107 4.02028 Alkyl

B:PRO1106 4.87684 Pi-Alkyl

B:ALA65 5.23425 Pi-Alkyl

B:ARG1107 5.3005 Pi-Alkyl

B:ALA1108 4.30225 Pi-Alkyl
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The descriptors with positive mean effect value is an
indication that an increase in the value of such descrip-
tor will lead to an increase in the DENV-2 inhibitory ac-
tivity (pIC50) while a negative value indicates negative
influence and as such, decrease in such value will en-
hance the activity (pIC50) also.

4.6 The docking studies
In this study, the molecular docking studies of the
phthalazinone with the NS2B-NS3 protease (PDB
CODE: 6MO1) was investigated using AutoDock Vina of
PyRx and Discovery Studio visualization software for en-
ergy grid calculations and visual analysis of the docking
pose respectively for a detailed understanding of the na-
ture of the described interaction of inhibitors (com-
pounds 1, 2, 7, 11, and 21) with the DNV-2 protease.
The docking studies showed that these compounds
docked well with the target and the binding affinity (−
8.7, − 8.8, − 8.7, − 8.3, and − 8.9 kcal/mol) of the 5 li-
gands under consideration with the target are all in close
agreement with their respective pIC50 values (6.193,
6.21, 6.00, 4.64, and 6.886) for the targets respectively.
Amino acids, numerical data of interaction distances,
and binding free energies (ΔG) between the compounds,
and NS2B-NS3 protease are shown in Table 10. How-
ever, the result showed that compound 21 had the best



Fig. 6 2-D interaction type for ligands 1, 2, 7, and 11 with different amino acids in the active site of DENV2 NS2B-NS3
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binding interaction than the remaining 4. Compounds 1,
2, 7, and 21 were considered for the docking studies due
to their high experimental activity (pIC50) values while
compound 11 was included to establish a basis for the
variation in the observed biological activity with the ones
with the best biological activity based on binding affinity
due to its low pIC50. Furthermore, it can be seen that in
all the compounds docked, their binding energy corre-
sponds with their inhibitory activity which shows that
these compounds have great potentials. It can be seen in
Table 10 that the compounds 1, 2, 7, 11, and 21 form
conventional hydrogen bond with the following residue
(GLN64, LEU1018: 2.22 Å, 2.33 Å), (TYR1023, GLN64,
GLU66, LEU1018: 2.81 Å, 2.19 Å, 2.54 Å, 2.33 Å),
(GLN64, GLU66: 2.31 Å, 2.34 Å), (ARG55, GLN64,
ALA1108: 2.16 Å, 2.97 Å, 2.81 Å), and (ARG55,
TYR1023, GLN64, LEU101: 2.64 Å, 2.88 Å, 2.24 Å, 2.49
Å) respectively. From Table 10 also, it is likely to verify
among the compounds that the increase in the amount
of halogen bond interactions and the type would result
in the lowering of binding free energy, which indicates a
higher degree of the spontaneity of the interactions,
which is also evidenced by the absence of halogen in
compound 11 despite having two conventional hydrogen
bond as (compound 1), the observed high binding affin-
ity in compounds 1, 2, 7, and 21 could be attributed to
fluorine. Also, compounds 2, 7, and 21 form key conven-
tional hydrogen bond with the carbonyl of the carba-
mate core and the fluorine of the phenyl ring on the
phthalazin core in which they both act as a hydrogen



Fig. 7 2-D interaction type (a) and H-bond molecular interaction (b) between Ligand 21 and the target
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acceptor, and this entail relevance of such functional
group. Figure 7 depicts the hydrogen bond interaction
formed between the compound 21 and the target. The
hydrogen bond interaction formed between ligand 21
with the highest binding affinity of − 8.9 kcal/mol sug-
gests that the observed biological activity is not obtained
by chance since it forms the most stable complex and as
such, it can be utilized as a model compound for im-
proving anti-dengue activity of the phthalazinone
derivatives.

5 Conclusion
The present study targeted to produce a highly predict-
ive MLR-GFA model capable of revealing the structural
requirements for the experimental pIC50 of phthalazi-
none derivatives against dengue virus; the results from
the acceptably validated model showed that the pIC50 of
the studied molecules against dengue virus is determined
by the descriptors ATS6e, AATSC6m, GATS2v, VR1_
Dzv, and SpMax3_Bhv. The molecular docking simula-
tion study reveals that among the studied compounds,
compound 21 had the best binding energy (− 8.9 kcal/
mol) and the binding energy of all the studied com-
pounds correspond with their dengue virus inhibitory
activity (pIC50) and the most common interaction
formed with the amino acid in all the studied compound
with the receptor are hydrogen and hydrophobic interac-
tions; the presence of fluorine has a significant effect as
observed in those with better activity (pIC50). The infor-
mation provided by the QSAR model may simplify fur-
ther design of novel and highly potent dengue virus
inhibitors. The studies also revealed that the compounds
docked well with the targets suggesting that the ligands
are efficacious in the treatment of DNV-2 infection.
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