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Abstract

Background: This research provides a comprehensive analysis of QSAR modeling performed on 25 aryl sulfonamide
derivatives to predict their effective concentration (EC50) against H5N1 influenza A virus by using some numerical
information derived from structural and chemical features (descriptors) of the compounds to generate a statistically
significant model. Subsequently, the molecular docking simulations were done so as to determine the binding modes
of some potent ligands in the dataset with the M2 proton channel protein of the H5N1 influenza A virus as the target.

Results: In building the QSAR model, the genetic algorithm task was employed in the variable selection of the
descriptors which are used to form the multi-linear regression equation. The model with descriptors, RDF100m, nO,
and RDF45p, showed satisfactory internal and external validation parameters (R2train = 0.72963, R2adjusted = 0.67169, Q2

cv

= 0.598, R2pred ¼ 0.67295, R2test = 0.6860) which passed the model criteria of acceptability. Docking simulation results of
the more potent compounds (ligands 2, 3, and 8) revealed the formation of hydrophobic and hydrogen bonds with
the binding pockets of M2 protein of influenza A virus.

Conclusion: The results in this study can help to advance the research in designing (in silico design) and synthesis of
more potent aryl sulfonamides derivatives against H5N1 influenza virus.

Keywords: Genetic algorithm, Multi-linear regression, Model, Binding score, Hydrogen bond

1 Background
Influenza infection is one of the most commonly known
acute viral respiratory disease, which is usually spread by
the influenza virus. The influenza infection is also called
flu, and there are three (3) key types of the influenza
virus namely, A, B, and C which are also classified into
different subtypes. The circulating seasonal viruses pres-
ently are influenza A (H1N1, H3N2) and influenza B vi-
ruses [1]. The European Centre for Disease Prevention
and Control (ECDPC) in 2019 published a surveillance
report on influenza virus characterization which summa-
rizes the percentage of influenza virus detections in the
WHO European Region. The report shows that the
cumulative detections have increased from 18,049 to

197,027, with type A (99.1%) prevailing over type B
(0.9%) viruses, unlike the 2017–2018 season when type
B predominated over type A at the beginning of the sea-
son [2]. The monthly risk evaluation of influenza at the
human-animal boundary published by the World Health
Organization in 2019 showed that several influenza
A(H5Nx) subtypes continue to be detected in birds in
Africa, Europe, and Asia. In addition, the WHO reported
that there are over 860 reported cases of humans in-
fected by the H5N1 virus, and 50% among them are
dead since 2003, also establishing that H5N1 virus has
higher death rate when compared with other influenza
A virus subtypes [1]. There are two (2) main classes of
anti-influenza which battles with influenza pandemic
and epidemic. However, rimantadine and amantadine
are M2 proton channel inhibitors that inhibit uncoating
of virus-related ribonucleoprotein [3].
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The development of more newly potent compounds is
very expensive or high-price trial and it is time-
consuming. Computational chemistry techniques such as
computer-aided drug design (CADD) might save time and
reduce the cost of synthesis of the new potent drugs [4].
Ligand-based drug design used quantitative structure-
activity relationship (QSAR) approach in designing new
compounds from the best statistical model containing
some structural features in numerical data (molecular de-
scriptors) which predicts the properties of the compound
such as activity, toxicity [5]. The molecular docking simu-
lation is also commonly employed in structure-based drug
design (SBDD) which predicts ligand’s conformation and
interactions with the active pocket of a protein or enzyme
(receptor). This study focused on combining both molecu-
lar docking approach and QSAR modeling method to the
assessment of 25 aryl sulfonamide derivatives as a novel of
H5N1 inhibitors.

2 Methods
2.1 Computer hardware and software
Dell computer system, with processor properties of Intel ®
Core i3-6100U CPU Dual @ 2.30 GHz, 12 GB (RAM), was
used to carry out this computational study. The software
packages installed includes Spartan 14 V 1.1.2 developed
by Wavefunction Inc., Material studio software V.8.0, PyRx
virtual screening tool, Discovery Studio Visualizer V.
16.1.0, Chemdraw Ultra software V. 12.0.2, PADEL-
Descriptor V2.20, Microsoft Excel 2013 version, and
some DTC lab softwares.

2.2 QSAR analysis
2.2.1 Collection of dataset and optimization
Twenty-five (25) already synthesized aryl sulfonamides de-
rivatives together with their tested activity concentrations on
H5N1 virus were obtained from the literature [3]. The activ-
ity concentrations was measured as the concentration that
effectively inhibited the virus plaque formation by 50%
(EC50) in μM. The H5N1 inhibitory concentration values of
these molecules were further converted to the negative loga-
rithmic scale (pEC50 = EC50/10

6) in order to reduce skew-
ness in the activity values [4]. The chemical structures of the
aryl sulfonamide derivatives along with their observed loga-
rithmic effective concentration were shown in Table 1.
The molecular structures of the aryl sulfonamide ana-

logs showed above were properly drawn using Chem-
Draw Ultra level software V12.0.2, then saved in (*cdx
format). Subsequently, the structures were exported to
Spartan 14 software so as to compute their equilibrium
geometries at ground state with density functional
(DFT/B3LYP/6-31G**) in vacuum, starting from the ini-
tial molecular geometry [6]. In principle, geometry
optimization is an iterative process whereby the energy
and its first derivative with respect to all geometrical

Table 1 Chemical structures of aryl sulfonamides analogs with
their respective EC50 values in μM
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coordinates are calculated from a guess geometry or
starting geometry, then used the information to project
new geometry. Thus, the process continues until the
lowest energy or optimized structure of the molecule is
achieved.

2.2.2 Descriptors computation and data normalization
The twenty-five (25) optimized structures from Spar-
tan 14 were accordingly saved as SDF format, and
then exported to PaDEL descriptors software which is
a product of Pharmaceutical Data Exploration Labora-
tory, developed by Yap Chun Wai [6]. This software
allows QSAR users to compute diverse molecular de-
scriptors and fingerprints of a molecule, including
electrostatic, topological, spatial, autocorrelation, geo-
metrical, constitutional, and thermodynamic descrip-
tors [7]. Data normalization is a technique often
applied as part of data preparation and the goal of
the normalization is to change the values of numeric
columns in the dataset to a common scale, without
distorting differences in the ranges of values scaling
from 0 to 1 [8].

2.2.3 Data pretreatment and division
PaDEL descriptor output in MS Excel sheet was sub-
jected to the variable reduction method so as to elimin-
ate constant and highly inter-correlated descriptors
based on user-specified variance and correlation coeffi-
cient cutoff values using Data Pretreatment GUI 1.2,
downloaded from Drug Theoretics and Cheminformatics
(DTC) Laboratory website. In order to establish a ra-
tional selection of training set and test set, the Dataset
Division GUI 1.0 software was used by engaging
Kennard-Stone’s algorithm division technique [4].

2.2.4 QSAR model generation
In this research, a Small Dataset Modeler version
1.0.0 tool downloaded from the DTC website; https://
dtclab.webs.com/software-tools was used to generate a
multi-linear regression model (MLR) based on the
genetic algorithm technique in variable selection. This
tool is very helpful in performing QSAR modeling, es-
pecially for small datasets. It employs an exhaustive
double cross-validation approach and a set of optimal
model selection techniques including consensus pre-
dictions for performing the small dataset QSAR mod-
eling [9].

2.2.5 Internal validation
The QSAR model generated was internally validated
using cross-validation technique. In essence, this tech-
nique provides adequate information about the predict-
ive reliability of the QSAR equation. The leave-one-out
cross-validation technique was adopted in this research

and the cross-validated Q2
cv was evaluated based on ex-

pression (4) below [10, 11].

Q2cv ¼ 1−

P
Y −Y pred

� �2

P
Y−Y tr
� �2

" #

ð1Þ

where Y tr is the average observed the concentration of
training set, Y is the observed concentration, and Ypred is
the predicted concentration in the training set respectively.
The squared correlation coefficient (R2) was determined

for the comparison between the predicted concentration
by the QSAR equation and observed concentrations from
the experiment. Furthermore, the R2 values are propor-
tional to the number of descriptors in the model which is
not reliable in determining the predictive response of the
model. As such, R2 is adjusted which is defined as in;

R2adj ¼ R2−p n−1ð Þ
n−pþ 1

ð2Þ

where p is the number of the descriptor in the equa-
tion and n is number of compounds in the training set.
The numerical changes between the R2 and R2

adj are
less than 0.3 which shows that the number of descriptors
used in the QSAR model is acceptable and vice versa
[12]. In addition, it is important to note that good R2

values are not enough measures for validating the model.
Therefore, more parameters must be established to point
out the predictive capability of the models. The cross-
validated Q2

cv is ordinarily smaller than the R2 value of
the QSAR model because of its diagnostic means of
evaluating the predictive power of the model [13].

2.2.6 External validation
The optimal combination of the training set and test
data (i.e., Compd ID, descriptor matrix, and response)
was subjected to MLRplusValidation 1.3 program to in-
ternally and externally validate the model generated in-
cluding the cross-validation method (leave-one-out) and
test set validation based on model acceptable criteria.
The following statistical features of the test set were pro-
posed by Golbraikh and Tropsha for a robust QSAR
model with good predictive potential [7].

a. R2pred > 0.6
b. r2−r20

r2 < 0.1
c. 0.85 < k < 1.15 or 0.85 < k′ < 1.15

where r2 is the squared correlation coefficient between
the observed and predicted activities, r20 is the squared
correlation coefficient between the predicted and ob-
served activities, and k and k′ are the regression slopes
passing through the origin.
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R2
pred ¼ 1−

P
Ypredtest−Y obstestð Þ2

P
Yobstest−�Y training
� �2 ð3Þ

where Ypredtest and Y obstest are the predicted and ob-
served activity of test set compounds respectively.
�Y training is the average values of observed activity of the
training set compounds

2.2.7 Development of applicability domain (AD)
The applicability domain (AD) of the developed model
is defined as the chemical space of compound structure
and response where the model predictions are highly re-
liable. This method is used to detect structural and re-
sponse outliers from the test set and training set
respectively [10, 14]. The leverage approach of determin-
ing the applicability domain also known as Williams plot
was obtained by plotting a scatter plot of standardized
residual and leverage values of both training set and test
set. By definition, leverage value is determined based on
Eq. (4) [15].

Leverage ið Þ ¼ X ið Þ xTx
� �−1

X ið Þ ð4Þ
where X(i) represents the vector of descriptors of com-

pound (i), X represents the descriptors matrix, and xT

represents matrix transpose of X.
The threshold leverage (F*) is given by the equation:

F� ¼ 3∙ mþ 1ð Þ
p

ð5Þ

where p is the number of molecules in the training set
and m is the number of molecular descriptors used in the
model. In addition, compounds with higher leverage scores
which are greater than threshold leverage (i > F*) tend to
have unreliable predictions. However, compounds whose
leverage scores are less than the threshold score (i < F*)
and the standardized residuals are not greater than ± 3α (3

standard deviation units) are said to fall within the
applicability domain. Similarly, the Euclidean ap-
proach of the applicability domain was also deter-
mined based on mean distance scores computed by
the Euclidean distance. As such, the Uzairu plot was
determined by plotting the standardized residuals
against normalized mean distance scores whose
ranges are from 0 to 1. The normalized mean dis-
tance score for training set ranges from 0 which is
for least diverse, and 1 which is for the most diverse
training set. However, the normalized mean distance
score for test compounds with scores outside the
range of 0 to 1 is regarded as outliers which imply
that the compounds are outside the applicability do-
main [11].

2.3 In silico docking study
The optimized structures of compounds with the best
activity were saved in PDB format (Protein Data
Bank), and then docked with the NMR structure of
H5N1 virus M2 protein with PDB ID: 2KQT. The
docking simulation was carried out using Auto Dock
wizard of PyRx virtual screening tool [16, 17]. Subse-
quently, the docking results were visualized using the
Discovery Studio Visualizer v16.1.0.15350 to study the
kind of interactions in the stable complex formed.
Figure 1 shows 3D structures of the ligand and target
respectively.

3 Result
3.1 In silico QSAR analysis
Based on the genetic algorithm of the descriptors, a
multi-linear regression model was developed containing
three (3) optimum descriptors using Small Dataset Mod-
eler. The selected MLR-GA model is:

Fig. 1 3D prepared structures of the ligand and target
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pEC50 ¼ 7:24226 þ=−0:25716ð Þ −1:06444 þ=−0:35124ð Þ

nO−1:70267 þ=−0:49153ð Þ RDF45p−2:15972 þ=−0:44155ð Þ

RDF100m

ð6Þ

Ntrain = 18, SEE = 0.50331, R2
train = 0.72963, R2

adjusted

= 0.67169, PRESS = 3.54655, F = 12.59335, Q2
cv = 0.598,

average rm
2
(LOO) = 0.49284, Δrm

2
(LOO) = 0.107, Ntest =

7, R2
pred ¼ 0.67295, R2

test = 0.6860

From the above model (Eq. (6)), it can be deduced
that the three (3) most significant descriptors includes
- number of oxygen atoms (nO), radial distribution
function − 045/weighted by relative polarizabil-
ities (RDF45p), and radial distribution function − 100/
weighted by relative mass (RDF100m). Table 2 pro-
vides a detailed description of the descriptors in the
model. The value of R2

train = 0.72963 and R2
test =

0.6860 confirms the good extrapolation between the
training set and test set respectively. In addition, the
QSAR model is robust because of the small difference
between R2 and Q2

cv (< 0.5%).
The plot of predicted pEC50 against experimental pEC50

values is displayed in Figs. 2, 3, 4, and 5. Visibly, it could

be seen that the values of the test sets are in close agree-
ment with the training set values.

3.2 In silico molecular docking
Table 6 summarizes the docking output from PyRx
virtual screening and discovery studio visualizer show-
ing the binding affinity scores, distance, and inter-
action chemistry from the ligand to the receptor or
vice versa. Figures 6a–d, 7a–d, 8a–d, and 9a–d
showed ligand’s conformation as well as the kind of
interaction at molecular level including the hydrogen
and hydrophobic interaction types with the active
pockets of the M2 proteins of H5N1 influenza virus
A in 3D and 2D respectively.

4 Discussion
The key step of building a statistically significant
QSAR model is obtaining descriptors that are a por-
trayal of changes in the structural feature of the com-
pounds. The structural descriptors of all compounds
were generated using PaDEL software as stated earl-
ier. A total sum of 1875 descriptors was generated in
MS Excel (.csv) format, and the result was exported
to a DTC lab software for the normalization and pre-
treatment process. In the pretreatment process, non-

Table 2 Definition of the descriptors in the selected QSAR model

Descriptor Java class Descriptor Description Class Contribution

Atom count descriptor nO Number of oxygen atoms 2D Negative

RDF descriptor RDF45p Radial distribution function − 045/weighted by relative polarizabilities 3D Negative

RDF descriptor RDF100m Radial distribution function − 100/weighted by relative mass 3D Negative

Fig. 2 The plot of predicted against effective concentration (experimental)
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informative and highly inter-correlated descriptors
with correlation cutoff greater than 0.7 were removed.
The pretreated data were divided into the training set
and test set based on Kennard-Stone permutation,
where 70% of the dataset (18 compounds) are the
training set and the remaining 30% (7 compounds)
are the test set. The modeling statistical parameters
of the selected model have passed the acceptability
criteria proposed by Golbraikh and Tropsha as shown
in Table 3. The regression statistics (Table 4) show p
value and t values of the model which suggests that
the coefficients of the descriptors are statistically sig-
nificant at 95% confidence interval.
Furthermore, the QSAR model was assessed based on

the multi-collinearity among the descriptors by computing

the variation inflation factor (VIF) of the three (3) descrip-
tors, which can be computed using the equation:

VIF ¼ 1−R2
� �−1 ð7Þ

where R represents the correlation coefficient of the
regression between variables in the model. VIF values
corresponding to unity depict no inter-correlation
among each variable, or if the VIF scores range between
1 and 5, the model is acceptable and stable. But, if the
VIF scores are larger than 10, it means that the model in
question is unstable and unacceptable [18]. Tables 5
and 6 show the correlation matrix and VIF scores of
the descriptors used in forming the selected model. It
could be observed that there is no inter-correlation

Fig. 3 The scatter plot of standardized residual versus experimental EC50

Fig. 4 The scatter plot of standardized residuals and leverages (Williams plot)
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Fig. 5 The scatter plot of standardized residuals and normalized mean distance (Uzairu’s plot)

Fig. 6 3D and 2D major interactions in complex 2 (− 5.55 kcal/mol)
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among the descriptors since correlation coefficients
are less than 0.5 and VIF scores are not greater than
1 for the three (3) descriptors in the model. The scat-
ter plot of standardized residual versus experimental
EC50 (Fig. 3) revealed an unsystematic scattering of
data points above and below the baseline of zero data
point of standardized residual which signifies the
non-existence of systematic error [13]. The scatter
plot of standardized residuals against leverage scores
also known as Williams plot revealed two (2) re-
sponse outliers (compounds 2 and 23). This is be-
cause there leverage scores are greater than the
threshold leverage score of (F*) of 0.66, which may be
due to the changes in substitution arrangement of the
substituent in the dataset. However, the remaining com-
pounds whose leverage scores are less than the threshold
score are said to be within the applicability domain of
square area of ± 3. Also, the Uzairu plot showed that all
compounds fall within the chemical space of the model
which confirmed its predictive capabilities.
In silico docking was conducted on the most active

compounds (Comp 2, 3, and 8) with solid-state NMR
structure of H5N1 virus M2 protein (target) so as to

study the structure-binding relationship of the complex
formed. The result showed a binding score of − 5.55
kcal/mol for complex 2, − 5.35 kcal/mol for complex 3,
and − 5.22 kcal/mol for complex 8. Ligand 2 formed
four (4) hydrogen bond interactions where the thio-
phene moiety and cyano side chain fill into hydrogen
pocket of M2 protein target. The sulfur in thiophene of
ligand 2 formed H-bond with HIS37 (2.4406 A°), oxy-
gen of sulfonyl (SO2) serves as H-acceptor in forming
H-bond with HIS37 at bond distance of 2.0507 A°,
while C-terminal segment of 3081 amino acid residue
formed two (2) H-bonds with nitrogen of cyano group
and fluoro substituent of benzene ring at distances of
2.2368 A° and 2.4815 A° respectively. Also, the sulfur in
sulfonyl group of ligand 2 formed two (2) Π-sulfur
interaction with C-terminal segment of HIS37 (4.53254
A°) and D-terminal of HIS37 (5.88837 A°), while sulfur
of thiophene moiety also formed Π-sulfur interaction
with A-terminal segment of HIS137 at bond distance of
4.42545 A°. Amide-π stacked hydrophobic interaction
type was formed between the amide group and deloca-
lized electrons of thiophene ring (ligand 2) at distance
4.2498 A°, also π-orbitals of thiophene fill into

Fig. 7 3D and 2D major residual interactions in complex 3 (− 5.35 kcal/mol)
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hydrophobic pocket of complex 3 with the alkyl group
of ILE122 (5.35147 A°). Similarly, ligand 3 formed four
(4) hydrogen bond interaction; fluoro substituent of
benzene ring served as H-acceptor which interact with
A-terminal of GLY34 (2.38373 A°) to form the hydro-
gen bond. The nitrogen of cyano side chain also formed
H-bond with C-terminal segment of 3081 amino acid
residue of M2-protein of the H5N1 influenza virus,
while sulfur of thiophene moiety and oxygen of the sul-
fonyl group formed two hydrogen bond interactions
with B-terminal of HIS37 and D-terminal of HIS37 at
distances of 2.38373 A° and 2.03319 A° respectively. In
addition, hydrophobic interaction of amide-π stacked
type was formed between the amide group of ILE33
and GLY34 (4.23582 A°) with delocalized Π-electron
ring of thiophene. Other interactions in complex 3 in-
cludes halogen (fluorine) interaction between fluoro
substituent and ALA30 (2.81242 A°); sulfur-X inter-
action between sulfur of the sulfonyl group and HIS37

(3.2736 A°); three (3) Π-sulfur interaction between sul-
fur and A: HIS37 (5.86369 A°), D: HIS37 (4.58675 A°),
and B: HIS37 (4.34348 A°). Ligand 8 formed only one
conventional hydrogen bond with A: HIS37 at bond
distance of 2.59672 A°, where oxygen of the sulfonyl
group was serving as the H-acceptor. Also, C–H
(sigma) interacts with B-terminal segment of HIS37 to
form Π-sigma interaction at distance of 3.9007 A°. Π-
sulfur interaction was formed between sulfur of thio-
phene moiety and sulfonyl group with B: HIS37
(4.30161 A°) and C: HIS37 (5.97967 A°) respectively.
The presence of hydrophobic and conventional hydro-
gen bond interaction type in the stable complexes de-
picts that these ligands (2, 3, and 8) are more potent
inhibitors of HN51 influenza virus. Hence, their bind-
ing affinity is higher than that of standard drug (aman-
tadine complex) with binding score of − 4.8 kcal/mol,
and it formed only four (3) major interaction with the
receptor in which three (3) are hydrophobic at different

Fig. 8 3D and 2D major interactions in complex 8 (− 5.25 kcal/mol)
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bond distances. The nitrogen of N–H in the amanta-
dine interact with the D-terminal of GLY34 (3.79824
A°) to formed carbon–hydrogen bond interaction, and
also the hydrogen formed unfavorable donor–donor
interaction as shown in Fig. 9a–d. Furthermore, the
molecular docking results in this study are in agree-
ment with Yu et al.’s [3] findings.

5 Conclusion
The present research attempted to use quantitative
structure-activity relationship (QSAR) and molecular
docking simulations as in silico modeling techniques.
The MLR model with molecular descriptors,
RDF100m, nO, and RDF45p, obtained from the gen-
etic algorithm task was accepted based on the QSAR
model acceptability criteria. The statistical metrics of
the descriptors showed that the model is robust and
statistically significant. Molecular docking results fur-
ther revealed the binding modes existing in the stable

Fig. 9 3D and 2D major interaction in amantadine complex (− 4.8 kcal/mol)

Table 3 Golbraikh and Tropsha acceptable model criteria

Parameter Threshold score Model score

Q2
cv Q2

cv > 0.5 0.598

R2train R2train > 0.6 0.729

R2test R2test > 0.6 0.672

jr20−r2 00 j jr20−r2 00 j < 0.3 0.019

k 0.85 < k < 1.15 1.032

k′ 0.85 < k′ < 1.15 0.967

(r2 − r0
2)/r2 (r2 − r0

2)/r2 < 0.1 0.018

(r2 − r′0
2)/r2 (r2 − r′0

2)/r2 < 0.1 0.098

Table 4 Regression statistics of the descriptors

Parameters Coefficients Standard error t Stat p value

Intercept 7.242262 0.257164 28.16201 9.97E-14

RDF100m − 2.15972 0.441555 − 4.89118 0.000238

nO − 1.06444 0.351236 − 3.03057 0.00899

RDF45p − 1.70267 0.49153 − 3.46402 0.003797
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complex formed between the best ligands with higher
activity and the solid-state NMR structure of H5N1
virus M2 protein as the receptor. In addition, the
binding affinity scores − 5.55 kcal/mol for complex 2,
− 5.35 kcal/mol for complex 3, and − 5.22 kcal/mol
for complex 8 are higher than standard drug (amanta-
dine). The outcome of this investigation can help to
further the research and development of more potent
derivatives of aryl sulfonamides as H5N1 influenza
virus inhibitors

Table 5 Correlation matrix and VIF of the descriptors

Descriptors RDF100m nO RDF45p VIF

RDF100m 1 − 0.01095 − 0.384 1.17361

nO 1 0.084783 1.007796

RDF45p 1 1.181966

Table 6 Binding scores, bond interaction type, and distance of the complexes formed

Name Binding score
(kcal/mol)

Distance
(A°)

Type From From chemistry To To chemistry

Complex 2 − 5.55 2.4406 Conventional hydrogen bond A: HIS37 H-donor LIGAND 2: S H-acceptor

2.0507 Conventional hydrogen bond C: HIS37 H-donor LIGAND 2:
O

H-acceptor

2.2368 Conventional hydrogen bond C: 3081 H-donor LIGAND 2:
N

H-acceptor

2.4815 Conventional hydrogen bond;
halogen (fluorine)

C: 3081 H-donor; halogen
acceptor

LIGAND 2: F H-acceptor;
halogen

4.53254 Π-sulfur LIGAND 2:S Sulfur C: HIS37 Π-orbitals

5.88837 Π-sulfur LIGAND 2:S Sulfur D: HIS37 Π-orbitals

4.42545 Π-sulfur LIGAND 2:S Sulfur A: HIS37 Π-orbitals

4.2498 Hydrophobic: amide-π
stacked type

A:ILE33: C, O;
GLY34:N

Amide LIGAND: S Π-orbitals

Complex 3 − 5.35 2.96974 Conventional hydrogen
bond; halogen (fluorine)

A: GLY34 H-donor; halogen
acceptor

LIGAND 3: F H-acceptor;
halogen

2.38373 Conventional hydrogen
bond

B: HIS37 H-donor LIGAND 3: S H-acceptor

2.2347 Conventional hydrogen
bond

C: 3081 H-donor LIGAND 3:
N

H-acceptor

2.03319 Conventional hydrogen
bond

D: HIS37 H-donor LIGAND 3:
O

H-acceptor

2.81242 Halogen (fluorine) A: ALA30: O Halogen acceptor LIGAND: F Halogen

3.2736 Sulfur-X LIGAND 3:S Sulfur B:HIS37 O, N, S

5.86369 Π-sulfur LIGAND 3:S Sulfur A: HIS37 Π-orbitals

4.58675 Π-sulfur LIGAND 3:S Sulfur D:HIS37 Π-orbitals

4.34348 Π-sulfur LIGAND 3:S Sulfur B: HIS37 Π-orbitals

4.23582 Hydrophobic: amide-π
stacked type

B: ILE33: C, O;
GLY34: N

Amide LIGAND: 3 Π-orbitals

5.28628 Hydrophobic: Π-alkyl LIGAND: 3 Π-orbitals B: ILE33 Alkyl

Complex 8 − 5.22 2.59672 Conventional hydrogen
bond

A: HIS37 H-donor LIGAND 8:
O

H-acceptor

3.96007 Π-sigma LIGAND 8: C C–H B: HIS37 Π-orbitals

4.30161 Π-sulfur LIGAND 8:S Sulfur B: HIS37 Π-orbitals

5.97967 Π-sulfur LIGAND 8:S Sulfur C: HIS37 Π-orbitals

3.76195 Hydrophobic Π-π stacked LIGAND 8 Π-orbitals LIGAND 8

Amantadine complex
(standard drug)

− 4.8 3.79824 Carbon–hydrogen bond D: GLY34: CA H-acceptor Amantadine H-acceptor

5.03056 Hydrophobic (Π-alkyl) B: HIS37 Alkyl Amantadine Alkyl

5.3256 Hydrophobic(Π-alkyl) C: HIS37 Alkyl Amantadine Alkyl

5.03507 Hydrophobic(Π-alkyl) C: HIS37 Alkyl Amantadine Alkyl
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