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Abstract 

The increasing availability of mobile devices with wireless communications capabilities 
has stimulated the growth of indoor positioning services. Indoor positioning is used to 
locate, in real time, devices’ positions for easy access. The indoor positioning, however, 
is challenging compared to outdoor positioning due to the large number of obstacles. 
Global positioning system is ideal for outdoor localization but fails in indoor environ-
ments with limited space. Recent development of the Internet of Things (IoT) has 
brought forth portable and cost-effective wireless technologies that can be used for 
indoor positioning. In this work, an adaptive trilateration algorithm based on received 
signal strength indicator (RSSI) was proposed. To assess the positioning accuracy of 
the proposed algorithm, Bluetooth Low Energy (BLE), Wi-Fi (IEEE 802.11n), ZigBee and 
LoRaWAN IoT technologies were used. Results show that the error performance is 
improved by 4% in BLE, 17% in ZigBee, 22% in Wi-Fi and 33% in LoRaWAN when com-
pared to the existing related work.
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Introduction
The demand for precise navigation and positioning systems is becoming stronger and 
fierce due to ever-emerging applications of location-aware computing. The exist-
ing systems like Global National Satellite System (GNSS) that use signals transmitted 
in the Gigahertz region of the radio-frequency spectrum are highly challenged to pro-
vide accurate position estimates due to multipath propagation of signals [1]. The inte-
gration of GNSS and Inertial Navigation System (INS) has the potential of combating 
strong interference. However, the urban indoor environments are becoming increasingly 
complex, with reflecting and diffracting metal surfaces which make it extra challeng-
ing for users to achieve normal high-precision positioning through GNSS–INS indoors 
[2]. Recent development of machine learning and Internet of Things (IoT) have evolved 
the robot’s platforms by giving them individual intelligence to self-operate in indoor 
environments [3]. The new applications of robots are used in warehouses, retail and 
manufacturing industries for items sorting, delivering and management. Warehouses 
and industries are filled with repeatable, process-oriented, and error-prone operations. 
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Robotics and automation can take over the repetitive tasks (picking, receiving, putting-
away) from humans to achieve more consistent, accurate, and productive warehouse 
operations [4, 5] . It is therefore important for robots to know where they are in order 
to perform even more position-efficient tasks. Automated robots can navigate on the 
warehouse floor freely by avoiding obstacles and walking on the shortest path between 
two points. They can also be used in hospitals to perform high-risk activities like deliv-
ery of medicines during pandemics like COVID-19. Likewise, for obstacle avoidance, 
ultrasonic sensor modules and preloaded intelligence are used [6]. The radio-frequency 
identification (RFID) scanner is used to identify and verify destination and recalibrate 
position of the robot on a path by detecting other locations on the given path [7]. The 
accuracy of sophisticated satellite and ultrasonic-based positioning systems currently 
available are limited to line of sight in indoor environments [4]. Therefore, a high-pre-
cision adaptive algorithm is desired for complex indoor environments. The desire has 
increased in recent years due to the developments in machine-to-machine interfaces 
and IoT. Through IoT, new low-cost gadgets and wearables have been developed. These 
include Bluetooth Low Energy (BLE) beacons capable of being integrated into robots 
or devices in warehouses or supermarkets for easy localization. Also, there have been 
developments of Wi-Fi, ZigBee and LoRaWAN wireless technologies, which can be used 
for indoor localization with minimal hardware configurations [8]. Therefore, develop-
ment of machine-to-machine interfaces and IoT form important features of current and 
future high-accuracy positioning systems [9–11]. The contribution of this paper is two-
fold: first, improving position accuracy by coupling the trilateration algorithm with the 
circle expansion stage; second, increasing efficiency by using IoT-based communication 
technologies to locate objects in indoor environments.

The rest of the paper is organized as follows: The “Related work” section discusses the 
related literature. “Materials and methods” section details the development of the pro-
posed adaptive trilateration algorithm. “Results and Discussion” section presents and 
discusses the results relative to the existing literature, and “Conclusion” section con-
cludes the paper.

Related works
Due to multipath fading in an indoor environment, which is constantly changing, dif-
ferent algorithms have been developed to fit a particular environment. These changes 
in the indoor environment are inevitable and decrease the overall accuracy of the devel-
oped indoor positioning algorithms [12]. Several indoor positioning systems have been 
developed based on different wireless technologies. Wireless sensor networks (WSNs) 
using ZigBee technology have been well researched and used for indoor positioning sys-
tems using low power, low memory and low computation devices [13–16, 2]. However, 
there are limited works on adaptive indoor positioning algorithms capable of self-oper-
ating robots and industrial automation [17].

A novel 3D adaptive algorithm for WSN was presented in [18]. The algorithm works 
by initially connecting all non-anchor nodes to anchor nodes and then forming initial 
smaller groups. At the end, the nodes measure and correct positioning error between 
the non-anchor node (the missing/disconnected non-anchor node from the group) and 
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anchor node when changes in environment occur. This is successfully done by maintain-
ing neighbor tables between the nodes.

The fading nature of channel propagation for WSN was tested in [19]. The authors 
proposed a third-order lognormal path-loss model for indoor adaptive positioning algo-
rithm. The algorithm builds and updates the table using received signal strength indica-
tor (RSSI) received in fixed nodes in different environment conditions. In the locating 
phase, the algorithm chooses the best approximation from the table. The algorithm 
shows a good relationship between fading channel and node position by giving an aver-
age accuracy of 75% compared to other algorithms. Nevertheless, the authors showed 
that the estimated error close to the wall/obstacle was greater compared to the position 
in the middle of the room. This is because of multipath on positions close to obstacles. 
The maximum error achieved was 0.35 m in 10× 8.8 square meter area. The position 
error depends on the room size and positions picked for analysis.

The authors in [20] used received signal strength to estimate the node distances in 
WSN assuming line of sight (LOS). For a highly changing environment, however, non-
existence of LOS could lead to higher positioning error. The authors in [21] presented a 
localization algorithm based on RSSI ranging scoped which uses fixed parameters in the 
propagation model to reduce RSSI ranging error. The proposed algorithm, however, cre-
ates a one-to-one mapping of RSSI values and distance scope of the parameters and also 
involves matrix inversions to estimate the unknown coordinates. This renders the algo-
rithm to be complex and less appropriate for highly populated indoor environments. The 
algorithm uses distance optimization and centroid core triangulation techniques. The 
algorithm is optimized to fixed obstacles and provides uncertainty to moving obstacles. 
The authors in [1] proposed an improved robust adaptive algorithm using ultra-wide-
band (UWB) and microelectromechanical System (MEMS) positioning systems. How-
ever, the proposed UWB–MEMS method is easily affected by NLOS errors in indoor 
environments, which result in low positioning accuracy.

The authors in [11] presented a self-adaptive algorithm using multi-objective optimi-
zation for Wi-Fi positioning. The algorithm works by comparing the actual results from 
the empirical model with the test results by measuring position error. At any particular 
moment, the algorithm with less position error is used to present overall results. There-
fore, the position accuracy is still an open problem because the current measurements 
are still prone to multipath even though the previous tests ran with good results. In [22], 
the authors developed a robust trilateration algorithm for indoor positioning systems. 
The authors used the tags and readers arrangement presented in [20] to obtain posi-
tion estimates with the assumptions that RSSI pattern distribution is the same in all 
regions. This technique is adaptive to changes in the indoor environment but prone to 
errors in the actual estimation of expansion/reduction factor of the intersecting regions. 
It was shown in [23, 24, 19, 15, 11] that the adaptive algorithms strongly depend on the 
information stored at training phase (at the offline phase, where by the required pre-
information are recorded). This adds memory and power requirements in order to attain 
accurate position estimation [4, 17, 14].

To address the challenge, this work proposed an adaptive trilateration algorithm 
using a circle expansion method. The algorithm uses an improved trilateration method 
and RSSI-distance techniques for positioning and navigation in an indoor factory 
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environment. This work expands on the work of [8] by introducing the adaptive circle-
expansion stage in the basic trilateration algorithm. The intention is to increase the 
accuracy of the distance estimation of the target node using reference nodes in the RSSI-
based trilateration algorithm. The IoT wireless technologies like BLE, Wi-Fi, ZigBee and 
LoRaWAN are used to evaluate the accuracy error performance of the proposed indoor 
positioning system. This work uses the RSSI data set which is available online.1 A com-
parison of existing adaptive RSSI-based indoor positioning algorithms was performed to 
obtain the estimation capability in distance error performance. The distance error per-
formance, in meters, was assessed using the PYTHON® simulation platform.

Materials and methods
RSSI–distance relationship

The RSSI-based positioning is suitable for large-scale applications due to its advantages 
of low cost and high accuracy. However, it suffers from low stability because RSSI is eas-
ily blocked and easily interfered with objects and environmental effects. The RSSI is usu-
ally unstable even in a well-controlled indoor scenario due to multipath fading. Authors 
in [25] conducted an experiment on RSSI–distance relationship, and the results are 
shown in Fig. 1. The experiment was set with the beacon (sender) being 1m away and 
facing directly to the mobile device (receiver). The results show that RSSI varies vigor-
ously from -80dB to -61dB. Hence, the authors had to remove the outliers of the RSSI 
before processing. This work adopts the single direction outlier removal technique used 
in [25]. The single direction outlier removal is applied to the RSSI, for the reason that 
RSSI tends to decline due to indoor multipath fading. The outliers of RSSI need to be 
removed before any further process. Nevertheless, authors in [26] conducted an experi-
ment using Wi-Fi sniffer and found that strong signal had higher confidence than weaker 
ones in target position estimation, and hence, removing outliers becomes a straightfor-
ward exercise.

Fig. 1  Sample RSSI values in 1 m distance [25]

1  https://​github.​com/​pspac​hos/​RSSID​ataset.

https://github.com/pspachos/RSSIDataset
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The proposed adaptive algorithm uses the RSSI distribution characteristics in finding the 
best distances for position estimation. This is done by sorting and choosing the largest RSSI 
values for distance estimation. The log-normal indoor propagation model is used to model 
the indoor propagation based on RSSI as in [27]. This model is represented as (1):

where PL(d0) is the path loss value for a reference distance d0, η is the path loss expo-
nent, and Xσ is a Gaussian random variable with zero mean and variance, σ 2 , that mod-
els the random variation of the RSSI value.

Proposed adaptive trilateration algorithm

Trilateration algorithm uses RSSI measurements to estimate the distance between the 
tag (targeted node) and reader (reference node) [28]. The distances between reference 
locations and the target location can be considered as the radii of many circles with 
centers at every reference location. Hence, the target location is the intersection of all 
the sphere surfaces. This work adopts the tags’ distance relations derived in [22].

Figure 2, adopted from the work of [22], describes the arrangement of the reference 
nodes (A, B and C) and targeted node (T1) in a simplified fashion. The reference sensor 
nodes are located at the corners of the triangular area. This method only requires three 
reference nodes for trilateration. Node A(x1,y1) and B(x2,y2) are used to get the x value, 
while C(x3,y3) and A(x1,y1) are used to get the y value; hence, (x, y) . The distances among 
sensor nodes/readers (d1, d2 and d3) are obtained using a log-distance path loss model to 
convert RSSI values to distances from the previous process.

Adopting the values x1 = 0, x2 = u, x3 = 0, y1 = 0, y2 = 0, y3 = v gives:

(1)PRX [dB] = PL(d0)− 10.η. log10
d

d0
+ Xσ , d > d0

(2)x =
u2 +

(

d21 − d22
)

2u

(3)y =
v2 +

(

d21 − d23
)

2v

Fig. 2  Tags and readers arrangement [22]
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The received signal power is affected by propagation loss and is sensitive to channel inter-
ference, attenuation, reflection, fading and shadowing [20]. The position of the tag is prone 
to error in this way because the intersection point is affected by the RSS value. Due to the 
interference, multipath and noise, the three circles may not intersect with a common point 
as shown in Fig. 3. The two circles A and B are intersecting at a point but circle C is not. The 
same can be seen in Fig. 4 where all three circles are not intersecting at a common point 
either, so in that case increasing the number of anchors could give better results.

To ensure that the three circles always intersect at a common point for accurate read-
ings, this work proposes an adaptive algorithm which makes use of geometry theories for 
accurate positioning estimation (Fig. 5). The algorithm includes a circle expansion method 
to check whether the three circles intersect (Fig. 6). Figure 6 summarizes flow of activities 
in the circle expansion algorithm. It is assumed that the RSSI distribution is the same on all 
tags/nodes regions.

To check whether three circles intersect normal circles properties are used. If the distance 
obtained from RSSI measurement is d1, d2 and d3 for circles 1, 2 and 3, respectively, then 
the following rules are used to check whether there is an intersection as described in Fig. 6.

If two circles intersect, then the distance between their center points should be 
smaller than the sum of their respective radii. If there is no intersection, the radius of 

(4)
r1 + r2 > d1

r3 + r2 > d2

r1 + r3 > d3

Fig. 3  Intersection of two circles A and B [20]

Fig. 4  No common intersection [20]
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the smallest RSSI-distance is increased by factor m , then the trilateration algorithm is 
performed again to get the position. The process is repeated until the three circles give 
accurate estimates. Hence, the target location is the intersection of all the sphere sur-
faces as shown in Fig. 7.

The value of m is adjusted as described in the work of [22]. It is always positive and is 
estimated as the minimum value between the three equations as shown in (5).

Environmental modeling

To evaluate the performance of each wireless technology, two environments were 
built as described in [8]. The first environment was selected to be a typical research 

(5)m = min







d1 − r1 − r2

d2 − r2 − r3

d3 − r2 − r1







Fig. 5  Proposed adaptive positioning algorithm
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laboratory with dimensions 10.8m× 7.3m . The environment was selected due to the 
large size with large numbers of equipment, computers, Wi-Fi and BLE devices that 
could impose interference, mimicking a noisy environment for experimenting. The 
second selected environment had dimensions of 5.6m× 5.9m representing a small 
meeting room. The second environment was a perfect testing area as it demonstrated 
conditions contrasting those in the first environment. The second environment had 
much smaller space that contained only tables and chairs. No equipment, devices or 
computers were present in the environment that could cause significant interference 
in the area, creating a low-noise environment for testing. The parameters used for 
environment 1 and environment 2 are shown in Tables 1 and 2, respectively.

Fig. 6  Circle expansion method

Fig. 7  The reduced intersection point of the circles A, B and C
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To set up for the experiments of the two environments, the arrangement in Fig. 8 
was set up. The right-angle triangle was created between the nodes. The distances 
of the triangle, d, between nodes A, B and C were set to be equal. The experiments 
used three selected distances for testing at 1, 3 and 5 m. The receiver was set to one 
of three positions: in the center between nodes A and B (D1), in the center between 
nodes A and C (D2) and in the centroid of the triangle (D3). The target locations are 
given in Table 3. The three distances were tested using the different wireless technolo-
gies, Wi-Fi, BLE, ZigBee and LoRaWAN, while keeping the same arrangement and 
adjusted target positions D1, D2 and D3.

Table 1  Parameters used in environment 1

Wi-Fi BLE ZigBee LoRaWAN

η 2.013 2.511 2.261 1.246

Xσ  − 49.990  − 75.540  − 51.100  − 31.380

Table 2  Parameters used in environment 2

Wi-Fi BLE ZigBee LoRaWAN

η 2.162 2.271 1.653 0.519

Xσ  − 45.730  − 75.480  − 51.010  − 33.440

Fig. 8  Experimental setup [8]

Table 3  Targets location at given distances

Location (m) Test points coordinates

D1 (m) D2 (m) D3 (m)

1 (1/2,0) (1/2, 1/2) (2/3, 1/3)

3 (3/2,0) (3/2, 3/2) (2, 1)

5 (5/2,0) (5/2, 5/2) (10/3, 5/3)
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The theoretical propagation models were developed and simulated in PYTHON using 
(1) and the parameters given in Tables 1 and 2. The channel models were developed for 
each wireless technology using the publicly available RSSI dataset.2 Nine tests were done 
for each wireless technology based on varying the distances in Table 3. In each of the 
tests, the location of all the nodes was recorded along with the measured RSSI values. 
The measured RSSI values were used to approximate the position of the receiver with 
respect to reference nodes.

To evaluate the accuracy of the wireless technologies used, the mean-squared error 
(MSE) of the actual and approximate distance was used. The MSE is measured as:

where n is the number of nodes. x and y are the actual and xi and yi are the estimated 
coordinates of the target node.

The results were then passed to Microsoft Excel for further data analysis. The MSE in 
each environment were estimated and analyzed. To demonstrate adaptation, the devel-
oped algorithm has to show smaller MSE compared to the basic RSSI algorithm with 
respect to environment changes.

Results and discussion
The accuracy evaluation between the wireless technologies, based on minimum MSE 
given in (6), was performed. The results for environment 1 and environment 2 are shown 
in Tables 4 and 5, respectively. Likewise, Table 6 presents the overall error performance 
for each environment.

In Environment 1, the BLE produced an error of 0.666 meters while in Environ-
ment 2 it was 0.773 meters. Using the proposed adaptive circle expansion method, 

(6)MSE =
1

n

∑n

1

√

(x − xi)
2 +

(

y− yi
)2

Table 4  MSE values with distances in environment 1

Distance(m) Test point Actual coordinates 
(m)

Error (m)

M N BLE Wi-Fi LoRaWAN ZigBee

1 D1 0.5000 0.0000 0.1321 0.1325 0.3250 0.3390

D2 0.5000 0.5000 0.0005 0.0005 0.2955 0.3312

D3 0.6667 0.3333 0.1792 0.9316 0.4535 1.7652

Average 0.1039 0.3548 0.3580 0.8118
3 D1 1.5000 0.0000 1.4993 2.0832 0.1294 0.8879

D2 1.5000 1.5000 0.0019 0.0018 0.0011 0.7184

D3 2.0000 1.0000 0.7056 0.4511 0.7356 0.5024

Average 0.7356 0.8453 0.2887 0.7029
5 D1 2.5000 0.0000 2.3983 1.3020 1.6235 0.1399

D2 2.5000 2.5000 0.0024 0.0011 0.3130 0.0018

D3 3.3333 1.6667 1.0766 0.9561 1.1772 1.3564

Average 1.1591 0.7530 1.0379 0.4993

2  https://​github.​com/​pspac​hos/​RSSID​ataset.

https://github.com/pspachos/RSSIDataset
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LoRaWAN has demonstrated to have the best error performance in Environment 1 
with 0.562 meters. However, its overall performance of 0.793 meters is the worst of 
the four technologies. Wi-Fi has demonstrated to be the second-best technology in 
Environment 1 with 0.651 meters and the best technology in Environment 2 with 
0.384 meters. The overall performance of Wi-Fi still places it to the first place with 
0.517 meters. ZigBee is the least performing in Environment 1 with 0.671 meters and 
third in Environment 2 with 0.811 meters. It is also demonstrated to be the third best 
in overall performance with 0.741 meters.

Environment 1 has a better advantage to LoRaWAN technology whose signals could 
travel farther distances with less obstructions, reflections and diffractions. In Envi-
ronment 2, the LoRaWAN deteriorates due to an increased number of objects in the 
room. It is also observed that Wi-Fi has the best performance in both environments at 
all distances of 1, 3 and 5 meters at test points D2, because of lower amount of inter-
ference. However, at the edges of the triangle as shown in Fig.  8, the devices expe-
rienced high interference levels hence degrading the estimation accuracy. Figure  9 
compares the overall performance of the proposed method with the existing work 
done by (Sadowski and Spacho, 2018). It is observed that the proposed method out-
performs the existing method, in terms of the estimation accuracy, by 4% in BLE, 17% 
in ZigBee, 22% in Wi-Fi, and 33% in LoRaWAN.

Table 5  MSE values with distances in environment 2

Distance(m) Test point Actual coordinates 
(m)

Error (m)

M N BLE Wi-Fi LoRaWAN ZigBee

1 D1 0.5000 0.0000 0.4998 0.1420 0.5000 0.4998

D2 0.5000 0.5000 0.7593 0.0131 0.0004 0.0501

D3 0.6667 0.3333 0.2357 0.0657 0.2358 0.2355

Average 0.4983 0.0736 0.2454 0.2618
3 D1 1.5000 0.0000 1.4998 0.2455 1.4990 1.3829

D2 1.5000 1.5000 0.0019 0.4813 0.0002 0.0010

D3 2.0000 1.0000 0.7067 0.9992 2.6789 0.9304

Average 0.7361 0.5753 1.3927 0.7714
5 D1 2.5000 0.0000 2.2334 0.4965 2.4986 1.1639

D2 2.5000 2.5000 0.0016 0.2235 0.0018 1.5782

D3 3.3333 1.6667 1.0160 0.7874 1.8097 1.4564

Average 1.0836 0.5024 1.4367 1.3995

Table 6  Average position error (m)

Wireless technology Environment 1 Environment 2 Overall

BLE 0.666 0.773 0.719

Wi-Fi 0.651 0.384 0.517

LoRaWAN 0.562 1.025 0.793

ZigBee 0.671 0.811 0.741
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In this study, the inclusion of the adaptation stage in the trilateration algorithm has 
revealed useful insights. Overall, it is observed that error performance improves for 
Wi-Fi and BLE wireless technologies. The Wi-Fi produces the best estimates with an 
average error of 0.517 meters. However, the Wi-Fi devices use main power which brings 
the challenge of power consumption for battery-powered devices. On the other hand, 
BLE has the second highest accuracy with an average error of 0.719 meters. The BLE 
beacon is the system that also consumes the least amount of power, but it has the low-
est transmission range for all the tested devices. In addition, due to the low current 
draw of BLE, rechargeable batteries could be used in order to power the device, which 
could reduce the overall system’s cost. The major disadvantage of using BLE is that it 
would not be suitable for covering a large area due to its poor transmission range, and 
therefore, additional devices would be required. It is also observed that LoRaWAN 
could be a cost-effective technology due to long-range capability needing fewer nodes. 
However, its high-power consumption brings a challenge compared to BLE technology. 
The experimental results confirm that despite the better average error performance of 
Wi-Fi technology, BLE could be the best choice due to its portability and battery power-
ing ability. The Wi-Fi and LoRaWAN, however, are ideal for medium and longer ranges, 
respectively.

Conclusion
It has been shown that modeling an indoor environment is challenging, especially in the 
presence of walls, furniture, electronic devices and movement of people and objects in 
small confined spaces. This forces indoor positioning systems to be specific for a given 
environment and hence lacks proper standards. This research work presents an adap-
tive trilateration algorithm for RSSI-based indoor positioning systems. The proposed 
algorithm adapts the changes in different environments by adjusting the estimated dis-
tances of the intersecting circles representing the signal coverage of the communicating 
devices. IoT communication technologies including Wi-Fi, BLE, ZigBee and LoRaWAN 
were used to provide interconnections with each other and form WSN, which could 
facilitate the indoor positioning process. Results show that accuracy was improved by 
4% in BLE, 17% in ZigBee, 22% in Wi-Fi, and 33% in LoRaWAN, compared to the exist-
ing related literature. These results have shown that improved position accuracy could 
be obtained if the trilateration is coupled with the adaptive circle expansion stage. 
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Likewise, the results have given further insights on the selection of the indoor position-
ing algorithms.
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