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Abstract

Background: Hepatocellular carcinoma is the most common primary liver malignancy, with the highest incidence
in the developing world, including Egypt. Hepatocellular carcinoma is usually diagnosed in the terminal stage of
the disease because of the low sensitivity of the available screening tests. During the process of carcinogenesis, the
cellular metabolism is altered to allow cancer cells to adapt to the hypoxic environment and therefore increase
anabolic synthesis and survival and avoid the apoptotic death signals. These changes in metabolic status can be
tracked by metabolomics analysis.

Main body: Metabolomics is a comprehensive approach for identifying metabolic signatures towards the
screening, prediction, and earlier diagnosis of hepatocellular carcinoma with greater efficiency than the
conventional diagnostic biomarker. The identification of metabolic changes associated with hepatocellular
carcinoma is essential to the understanding of disease pathophysiology and enables better monitoring of high-risk
individuals. However, due to the complexity of the metabolic pathways associated with hepatocellular carcinoma,
the details of these perturbations are still not adequately characterized. The current status of biomarkers for
hepatocellular carcinoma and their insufficiencies and metabolic pathways linked to hepatocellular carcinogenesis
are briefly addressed in this mini-review. The review focused on the significantly changed metabolites and
pathways associated with hepatocellular carcinoma such as phospholipids, bile acids, amino acids, reactive oxygen
species metabolism, and the metabolic changes related to energy production in a cancer cell. The review briefly
discusses the sensitivity of metabolomics in the prediction and prognosis of hepatocellular carcinoma and the
effect of coexisting multiple etiologies of the disease.

Conclusions: Metabolomics profiling is a potentially promising tool for better predicting, diagnosis, and prognosis
of hepatocellular carcinoma.
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Background

Hepatocellular carcinoma and deficiencies in current
diagnostic procedures

Hepatocellular carcinoma (HCC) is the third deadliest
cancer worldwide, with a 5-year survival rate of about 10%
[1, 2]. HCCs are the result of preexisting long-term cirrho-
sis in 90% of cases, and patients with hepatic cirrhosis are
at high risk for developing HCC [1]. HCC has emerged as
the fastest-rising cause of cancer-related death in many
western countries, including the USA [1, 2], with a more
severe and aggressive course in rural areas of Asia and
sub-Saharan Africa [3]. Egypt is the first most populated
country in the Arab world and the second in Africa, with
more than 100 million inhabitants. Egypt has the highest
incidence and prevalence of HCV infection rate, a major
predisposing factor for HCC development [4, 5]. The lack
of early detection of HCC results from the inaccuracy of
existing HCC screening markers. Alpha-fetoprotein (AFP)
remains the principal tumor marker for HCC with many
advantages of being an easy, inexpensive, and reproducible
blood test, although its sensitivity and predictive values of
HCC range from 25 to 65% [6]. Forty percent of HCC pa-
tients have normal levels of AFP, and AFP may be high in
HCC-free patients [7-9]. Only 20% of HCC patients at an
early stage have high levels of AFP [10]. The American
Association of Study for Liver Diseases (AASLD) pointed
to the unreliability of AFP in accurately screening for
HCC and excluded AFP as a diagnostic modality for HCC
[7, 8]. To overcome the suboptimal performance of
current serum markers, AFP, des-gamma-
carboxyprothrombin, and lectin-bound AFP (AFP-L3),
glypican-3, osteopontin, and high c-met expression had
been hypothesized as alternative markers and had shown
additional value [7-9].

However, one of the pitfalls of these HCC biomarkers
is that clinicians cannot rely on them alone. Studies have
shown that even combined with AFP, sensitivity to HCC
remains low, in particular for lesions <3 cm [11, 12].
Current serum markers do not play an essential role in
determining prognosis and response to HCC treatment;
instead, the Barcelona Clinic Liver Cancer Staging Sys-
tem (BCLC) and Milan criteria are widely used to pre-
dict the prognosis for HCC [11, 12]. Serum markers can
be used as an adjuvant to monitor the prognosis of
HCC, and high levels of AFP predict poor survival in
HCC patients treated with liver transplant [11]. The
Cancer of the Liver Italian Program (CLIP) score is the
most widely used and best validated to monitor the
prognosis and recurrence of HCC integrate AFP (> 400
ng/ml) with Child-Pugh class, tumor morphology, and
portal vein thrombosis [11, 12].

Despite the magnetic resonance imaging (MRI) and
computed tomography (CT) of the liver nowadays offer
better accuracy in HCC diagnosis, these diagnostic
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modalities are still economically expensive and inaccess-
ible to many areas suffering from the high HCC mortal-
ity rate [10, 13, 14]. Lastly, the role of liver biopsy in the
diagnosis of HCC has been weakened over time as it an
invasive procedure that carries the risk of tumor seeding
and other serious complication as bleeding and infec-
tion. Whereas liver biopsy is a sensitive test in the diag-
nosis of HCC, it only detects the latter stages of the
disease [15, 16]. Thus, it is quite clear that to improve
the early detection of HCC, a more accurate screening
and diagnostic test are required to overcome the limita-
tion of the current modalities [15]. Biomarkers are bio-
chemical substances that can be measured for the
purpose of detecting or predicting physiological or
pathological processes in response to various diagnostic
or therapeutic procedures [16]. The importance of meta-
bolomics studies and the current status of some poten-
tial biomarkers of HCC are discussed in the following
sections.

Main text

Metabolomics as a cancer biomarker discovery tool
Metabolomics is the comprehensive identification of all
small metabolites of less than 1.5 kDa in molecular
weight in a tissue sample. A metabolomics study can be
carried on varieties of samples such as plasma, serum,
urine, feces, tumor cells, and normal tissue. Two analyt-
ical platforms are used in the metabolomics field, the
nuclear magnetic resonance (NMR) spectroscopy and
the mass spectrometry (MS) coupled with different sep-
aration instruments, such as the liquid chromatography
(LC), the gas chromatography (GC), and the capillary
electrophoresis. These advanced tools can detect metab-
olites of a diverse array of carbohydrates, lipids, amino
acids, and nucleotides [16]. Metabolomics platforms are
thus considered translationally optimal methods with a
strong potential for clinical implementation as they fa-
cilitate rapid identification of diagnostic and prognostic
markers and drug target pathways in the new drug dis-
covery researches [17].

Metabolomics screening studies are commonly designed
to identify potential biomarkers of cancer [18-23]. As
chronic liver cirrhosis and HCC usually disrupt the nor-
mal metabolic pathways [24, 25], metabolomics that de-
tects changes in the metabolic pathways related to
carcinogenesis would serve in discovering new HCC bio-
markers [15, 26]. Numerous published HCC metabolo-
mics studies demonstrated the pathways involved in
hepatic carcinogenesis and detected metabolites with po-
tential use as biomarkers for HCC and cirrhosis [27, 28].
Among these pathways are the metabolic pathway of
amino acid, glycerophospholipid, bile acid, acylcarnitine,
oxidative stress, and -oxidation of fatty acids [16, 26].
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Significant metabolic changes in cancer cell

Biochemical knowledge and understanding of tumor me-
tabolism are critical for detecting metabolic markers for
any cancer. In cancer cells, glycolysis in a tumor be-
comes the source of substrates for the pentose-
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phosphate pathway for nucleotide synthesis instead of
providing energy in the form of adenosine triphosphate
(ATP). As a result, the proliferation and growth of the
tumor cells occur at the expense of energy generation
[29, 30]. The Warburg phenomenon (Fig. 1) describes
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Fig. 1 Warburg effect in cancer cell metabolism: Glycolysis terminates with lactate production and secretion despite the presence of oxygen. TCA
cycle enzymes shift glucose carbon towards the pentose-phosphate pathway, which produces ribose for nucleotides and NADPH for reductive
biosynthesis; the hexosamine pathway to maintain glutathione levels, and methylation reactions, and glycerol synthesis for the production of
complex lipids. GLUT glucose transporter, MCT monocarboxylate transporter, MPC mitochondrial pyruvate carrier, glucose-6P glucose-6-
phosphate, fructose-6P fructose-6-phosphate, fructose-1,6-biP fructose-1,6-bisphosphate, DHAP dihydroxyacetone-phosphate, GA3P
glyceraldehyde-3-phosphate, 3PG 3-phosphoglycerate, acetyl-CoA acetyl coenzyme-A, a-KG a-ketoglutarate, Succ-CoA succinyl-CoA, OAA
oxaloacetate, NAD+ oxidized nicotinamide adenine dinucleotide, NADH, H+ reduced nicotinamide adenine dinucleotide. With modification
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how glycolysis ends with lactate production and secre-
tion, although in the aerobic state and the recycling of
NADH to NAD+, cellular carbon loss occurs upon lac-
tate release [32, 33]. Thus, disruption of the tricarboxylic
acid (TCA) cycle enzymes shifts glucose carbon towards
the pentose-phosphate pathway, which produces ribose
for nucleotides and anabolic synthesis [34]. It also pro-
duces NADPH for reductive biosynthesis necessary for
glutathione, nucleotides, methylation reactions, glycerol
synthesis, and complex lipids [35]. The hypoxic tumor
with a low-nutrient microenvironment drives the cellular
metabolism towards alternate carbon sources such as lac-
tate acetate and lipids to maintain energy production and
anabolic synthesis [36-38]. With the disruption of the
TCA cycle, the mitochondrial function upregulates to-
wards anabolic biosynthesis and the de novo fatty acid
biosynthesis [39, 40]. The carbon from the catabolism of
glutamine is imported into the mitochondria and used to
maintain mitochondrial membrane potential [41] and for
the anabolic synthesis of proteins and nucleotides [42].

Metabolomics in the study of hepatocellular carcinoma
HCC-induced metabolic disturbances include fatty acid oxi-
dation and ketone biosynthesis, citric acid cycle, phospho-
lipid and sphingolipid metabolism, and amino acid and bile
acid metabolism [43]. The initiation and development of tu-
mors are associated with tremendous metabolic change that
requires large amounts of energy and substrates for the bio-
synthesis of different cellular components such as nucleotide
and lipid and protein [44]. Liver cirrhosis is a pathological
process that results from chronic liver injury and is charac-
terized by hepatocyte regeneration nodules and peripheral fi-
brosis. Liver cirrhosis usually precedes the development of
HCC and is considered as a precancerous risk factor as most
HCCs are associated with liver cirrhosis [45].

Alteration in the metabolic process from carbohydrate
metabolism to lipid and amino acid metabolism was as-
sociated with increases in the severity of inflammation in
cirrhosis by different metabolites such as D-glucose and
D-mannitol. These metabolites were also observed in the
early precancerous changes in HCC, which account for
the relationship between chronic inflammation and
HCC pathogenesis [46]. Several metabolomics studies
have associated imbalances of the branched-chain amino
acids (BCAA) valine, isoleucine, and leucine metabolism
at the beginning of HCC. Significant variations of glu-
tamic acid, citric acid, lactic acid, phenylalanine, tyro-
sine, tryptophan, and aspartate are also related to the
carcinogenesis of HCC [47-49].

Significantly changed metabolites and pathways in HCC
Glycerophospholipids

Liver cirrhosis and HCC are associated with a profound
change in the metabolism of fatty acids.
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Glycerophosphocholine, phosphatidylcholine, choline,
and phosphorylethanolamine increased significantly in
HCC compared to cirrhosis. An increase in phosphat-
idylcholine in the low-grade HCC compared to cirrhosis
indicated possible deregulation of glycerophospholipid
metabolism in the early development of HCC [28].
These phospholipids also exhibited a direct, positive re-
lationship to tumor burden. The finding of a higher level
of phosphatidylcholine, a component of the plasma
membrane, reflects the increased demand for plasma
membrane synthesis by the growing tumor [16].

Lysophospholipids, free fatty acids, and acylcarnitines
Several HCC metabolomics studies detected significant
variations in lysophosphatidylcholines (LPC) [50-54].
Other lipids are significantly altered in HCC and cirrho-
sis such as free fatty acids (FFA), very-long-chain fatty
acids, and acylcarnitines [25, 55]. Downregulated LPCs
(14:0), LPC (20:3), LPC (22:6), very-long-chain fatty acids
(24:0), and FFA (24:1) were observed, and all of these
metabolites show a trend of being lower in HCC than
cirrhosis [50]. LPC glycerophospholipids are the building
blocks of the cell membranes. The increase in these me-
tabolites indicates the metabolic demand of the growing
malignant tumor. LPCs are also major lipids bound to
human albumin [55]. As decreased serum albumin is a
manifestation of liver cirrhosis and liver cancer, thus, el-
evations of systemic LPCs might be due to the lack of al-
bumin binding sites resulting in increased circulating
levels of these metabolites [56]. The previous metabolo-
mics study reported a decrease in the level of acylcarni-
tines and bile acids in HCC against cirrhosis with a
more significant decrease as tumor burden increased.
Stage II and III HCC had a reduced concentration of
these metabolites compared with stage 1 of disease me-
tabolites [53]. The downregulation of these lipids meta-
bolomics profile in HCC compared to cirrhosis reflects
the cancer Warburg effect with a metabolic shift from
the TCA cycle and mitochondrial B-oxidation to more
reliance on glycolysis for energy production [57]. To
bear (-oxidation in the mitochondrial matrix, the free
fatty acid acyl-CoA has to react with cytosolic carnitine
via the CPT shuttle system to form acylcarnitines. Acyl-
carnitines can penetrate the inner mitochondrial mem-
brane to allow CPT enzymes to liberate fatty acyl-CoA
allowing B-oxidation to ensue. The decrease in acylcarni-
tines concentration in HCC in relation to cirrhosis sug-
gests a decrease in CPT1-mediated formation of these
compounds from FFA and carnitine [57].

Sphingolipids

The upregulation of signaling molecules, sphingosine,
and sphingosine-1-phosphate (S1P) stimulate the pro-
gression of many cancers, and metabolomics identified
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sphingosine as a typically upregulated metabolite in
HCC compared to cirrhosis [58—60]. Sphingosine is pro-
duced via acid ceramidase activity on ceramide. Cera-
mides have apoptotic effects, whereas S1P is an anti-
apoptotic and angiogenic molecule [61].

This cellular turnover control mechanism is known as
the sphingosine rheostat, and acid ceramidase is a
modulator of cell death homeostasis. Higher S1P in
HCC may also reflect an increased sphingosine kinase
activity. The anti-tumor effect of the selective S1P kinase
inhibitor was observed in HCC xenografts suggesting
that S1P may act as a promoter of HCC progression.
Thus, increase acid ceramidase activity results in in-
creased sphingosine and may lead to increased produc-
tion of a large amount of SIP via sphingosine kinase
that promotes a microenvironment favorable to HCC
initiation [62].

Bile acids

Bile acids are synthesized in the liver and play a central
role in fatty acid digestion and absorption. Increase bile
acid levels in HCC could be due to obstruction of the
bile duct by HCC invasion that interferes with their
transfer to the small intestine resulting in insufficient di-
gestion and absorption of fats and accumulation of bile
acids and lipids in the hepatic tumor [63]. The majority
of metabolomics studies which compared HCC to cir-
rhosis did not detect any significant bile acid expression.
However, a decreasing tendency was observed for all bile
acid metabolites, with a significant negative correlation
between these bile acid levels and tumor growth has
been observed [51, 52]. Bile acid downregulation in
HCC may reflect a metabolic shift from B-oxidation and
reduction in the de novo bile acid production caused by
the obliteration of healthy hepatocytes during chronic
liver disease [60].

Oxidative stress and metabolism
Metabolomics studies have revealed the pathways of re-
active oxygen species, and the y-glutamyl peptides are
significantly associated with HCC. A metabolomics study
of HCV and HBV viral hepatitis, liver cirrhosis, and
HCV-associated HCC patients revealed notably signifi-
cant variations in y-glutamyl expression among these
groups [64]. No differences in y-glutamyl peptides ex-
pression were observed between HCC and cirrhosis. On
the other hand, HCC and cirrhosis showed significant al-
terations in the expression of y-glutamyl compared to ei-
ther viral hepatitis or normal healthy controls [64].
y-Glutamyl peptides are precursors of glutathione, the
main antioxidant compound primarily synthesized in the
liver. An increase in y-glutamyl peptides in HCC and
cirrhosis indicates oxidative stress and liver dysfunction,
secondary to the increased demands for these precursors
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to combat this deteriorating process [65, 66]. y-Glutamyl
peptides are produced in a free form by the action of
gamma-glutamyl transpeptidase (GGT) on glutathione.
GGT is an enzyme marker for liver disease and used to
assess the severity of liver dysfunction. Excessive break-
down of glutathione may explain the relative increase in
y-glutamyl peptide level in cirrhosis and the impaired
oxidative stress neutralization commonly observed in
HCC [65, 66].

Amino acid metabolites

The expression profiles of amino acids in HCC and ad-
vanced liver cirrhosis showed significant increases in the
amino acids valine, glutamine, and glutamate in HCC
relative to cirrhosis and a decrease in the amino acid lac-
tate, alanine, leucine, glutamate, and glutamine in HCC
versus cirrhosis [28]. The increased amino acids in HCC
relative to cirrhosis are consistent in many studies asso-
ciating elevated amino acids and the enzymes respon-
sible for their production in the process of
carcinogenesis [67-70]. In one large-scale metabolomics
analysis of 60 cancer cell lines, glycine consistently up-
regulated in cancer cells [67]. Amino acids are glycolytic
enzyme activators, and serine acts as an activator of
pyruvate kinase M2 [71], a cancer isoform of the glyco-
lytic enzyme pyruvate kinase responsible for the conver-
sion of phosphoenolpyruvic acid (PEP) to pyruvate.
Serine, glycine, and aspartate are significantly upregu-
lated metabolites in HCC compared to cirrhosis [72].
Analysis of HBV-associated HCC showed a strong up-
regulation of serine, alanine, glycine, cysteine, aspartic
acid, methionine, tyrosine, tryptophan, and phenylalan-
ine. The upregulation of such amino acids in HCC could
be due to their turnover in rapidly dividing tumor cells
along with impaired amino acid utilization [72].

Etiological metabolomics differences

HCC is associated with various etiologies such as viral
hepatitis, alcoholic cirrhosis, non-alcoholic fatty liver
disease, and other environmental toxic etiology [56].
Most of the metabolomics studies focused on the meta-
bolomics signature of a single etiology. Such an ap-
proach ignores the difference in the metabolomics
expression pattern of numerous etiologies when coexist-
ing with HCC. The metabolomics expression patterns of
HCV cirrhosis-associated HCC and HBV cirrhosis-
associated HCC revealed a reduction in LPC expression
in HBV cirrhosis-associated HCC patients than the
HCV-associated HCC. In cirrhosis, a significant eleva-
tion of bile acids, bilirubin and biliverdin, acylcarnitines,
and downregulation of glycerophospholipids was also
observed. Such findings suggested that these metabolites
could serve as markers for the insult that triggers cirrho-
sis. The trend of progressive downregulation of LPCs
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from viral hepatitis to cirrhosis until it reaches its lowest
level with the development of HCC may indicate a sub-
stantial cell death that occurs during cirrhosis. These
changes result in diminished LPCs levels, followed by a
subsequent massive consumption of residual LPCs by
the growing HCC that further exhausts the LPC reser-
voir [54]. At the molecular and cellular levels, the down-
regulation of LPCs in HCC may reflect their anti-tumor
effect, the ability to induce apoptosis, their anti-invasive
effects, and sensitization of the malignant cells to various
anti-cancer drugs [54].

Sensitivity and specificity of metabolomics in HCC
diagnosis

In a metabolomics profile analysis, the biostatistician pri-
marily applies several complicated statistical tests, for
example, the principal component analysis, orthogonal
projection to latent structures, the random forest
machine-learning algorithm, or receiver operating char-
acteristic (ROC) curve class prediction analyses. The re-
ported sensitivity, specificity, and area under the curve
values reflect the accuracy of metabolomics in distin-
guishing HCC from other conditions. Compared with
AFP, metabolomics had been regarded as a highly accur-
ate diagnostic method, with a clear demarcation between
HCC patients and healthy controls or cirrhosis with
greater class prediction power [16]. The potential
standardization of metabolomics as a high-throughput
clinical diagnostic platform with a big data biomarker
would avoid the drew backs of depending on a single
metabolite alteration that might not have the proper
sensitivity and specificity for diagnosing HCC [56].

Limitation of the result achieved from the metabolomics
studies

The metabolomics challenges are primarily concerned
with the following aspects. (1) Technical limitations due
to a large number of metabolites exceeding single-
analysis processing capability [16]. (2) Since metabolo-
mics data analysis typically depends on big data, studies
with a small database may lead to false-negative or false-
positive results [16]. (3) Despite the alteration in the me-
tabolites generally encountered in HCC metabolomic
studies, yet a uniform consensus regarding the shifts of
the involved metabolite expression in HCC versus cir-
rhosis had not been achieved, not need to mention
sometimes shows contradictory expression patterns [27,
28, 51, 54]. (4) The marked variation in demographic
and clinical characteristic in these metabolomics studies,
for example, the mass index, how HCC was diagnosed
and staged, whether staged according to the Barcelona
staging criteria, or the TNM classification, or imaging
and histopathology, MELD scores for HCC, and the
Child-Pugh for HCC or cirrhosis. Lack of control of

Page 6 of 8

such parameters in these studies is likely contributed to
the conflicting universal metabolomics alterations in
HCC versus cirrhosis among these studies and further
confounded the interpretation of these metabolomics
trends [50, 53, 60, 73, 74]. (5) The lack of stress on HCC
versus cirrhosis comparison rather than focusing on the
metabolomics profile differences between HCC versus
healthy control [27, 28, 50-54, 60, 64, 75]. These compari-
sons explain the altered pathways during hepato-
carcinogenesis; nevertheless, the majority of primary liver
cancer occurs in preexisting cirrhosis. Thus, the metabolo-
mics comparison between HCC and cirrhosis is more clin-
ically instructive and potentially translational [27, 60].

Conclusions

Metabolomics is a powerful analytical tool that can be
applied to identify sensitive and specific biomarkers for
HCC in a noninvasive way at the early stage and to
evaluate the efficacy of treatment and prognosis. The
translational applicability of metabolomics is highlighted
by its capability to process high volumes of patient spec-
imens and interpret metabolic expression profiles
through robust, validated, and automated software [16].
New biomarker discovery in HCC is still a complicated
issue because of the inhomogeneity of the clinical symp-
toms of cancer and the different pathological changes
that could result from potential morbid factors, such as
cirrhosis, chronic inflammation, and fatty liver disease.
High-throughput metabolomics approaches have trans-
formed the HCC approach and allowed many metabo-
lites to be examined simultaneously, thus providing
valuable information for HCC biomarker discovery. Fur-
thermore, metabolomics has significantly increased and
enabled the recording of early biochemical changes oc-
curring at different stages of the disease and, therefore,
increases the opportunities to detect predictive bio-
markers for early interventions [57].

Metabolomics can provide an inclusive metabolic pro-
file of the therapeutic response and prognosis to various
therapeutic modalities used to treat HCC, such as con-
ventional chemotherapy, target therapy by small mol-
ecule inhibitors, and the natural products used in
alternative medicine. These can predict the response and
risk of tumor recurrence [15, 76]. As technological ad-
vances have brought metabolomics into the spotlight,
metabolomics holds promise as a novel disease screening
and diagnostic modality that, through characterization of
a patient’s global metabolic profile, can be a more so-
phisticated and comprehensive manner to accurately
predict the presence of disease [16].
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