
Barbosh et al. J Infrastruct Preserv Resil            (2024) 5:10  
https://doi.org/10.1186/s43065-024-00102-2

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Infrastructure
Preservation and Resilience

Automated crack identification in structures 
using acoustic waveforms and deep learning
Mohamed Barbosh1, Liangfu Ge1 and Ayan Sadhu1* 

Abstract 

Structural elements undergo multiple levels of damage at various locations due to environments and critical loading 
conditions. The level of damage and its location can be predicted using acoustic emission (AE) waveforms that are 
captured from the generation of inherent microcracks. Existing AE methods are reliant on the feature selection 
of the captured waveforms and may be subjective in nature. To automate this process, this paper proposes a deep-
learning model to predict the damage severity and its expected location using AE waveforms. The model is based 
on a densely connected convolutional neural network (CNN) that offers superior feature extraction and minimal train-
ing data requirements. Time-domain AE waveforms are used as inputs of the proposed model to automate the pro-
cess of predicting the severity of damage and identifying the expected location of the damage in structural elements. 
The proposed approach is validated using AE data collected from a concrete beam and a wooden beam and plate. 
The results show the capability of the proposed method for predicting the level of damage with an accuracy range 
of 92-95% and identifying the approximate location of damage with 90-100% accuracy. Thus, the proposed method 
serves as a robust technique for damage severity prediction and localization in civil structures.
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Introduction
Structural elements such as columns, beams, and slabs, 
comprised of different structural materials, are subjected 
to varying levels of damage during their operational time 
due to unexpected structural or environmental loads. In 
order to avoid any catastrophic failure, structural health 
monitoring (SHM) techniques can be applied to localize 
and detect the severity of damage in structures, assist-
ing the engineers and owners with safety enhancement 
and timely maintenance for structures. Acoustic emis-
sion (AE) is one of the powerful SHM methods that can 
identify damage in various structural materials due to 
its sensitivity to microcracks and its capability to track 

the initiation and propagation of cracks. AEs are elastic 
waves generated by the rapid release of energy that can 
be measured using an array of sensors mounted on the 
monitored system subjected to active damage. Typical AE 
parameters such as amplitude, duration, signal strength, 
etc., can be extracted and utilized to detect the damage 
in the inspected material [35]. However, these AE param-
eters may provide inaccurate or misleading information 
about the damage location and its severity due to the 
influence of background noise in the measured AE data. 
Therefore, special attention needs to be taken to the raw 
AE signal features in different structural materials to 
automate the process of damage identification. This study 
proposes a method to identify the approximate location 
and predict the severity of damage using a deep learning 
method augmented with the time series response of AE 
waveforms.

AE is a passive nondestructive testing approach [14, 15, 
43] that has been applied to monitor various engineer-
ing systems and materials, such as mechanical systems 
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[2, 10, 19], and [20] and structural materials [1, 7, 27, 
30, 40], and [42]. For example, Carnì et al. [11] proposed 
the AE analysis-based technique to monitor the crack 
initiation and propagation in concrete elements sub-
jected to static loads. The relationship between stress 
response and typical AE parameters was investigated 
using the applied method and used as a damage indica-
tor. Burud and Chandra Kishen 6 proposed an AE-based 
method to detect damage in concrete elements. The AE 
data collected from concrete beams were analyzed using 
the proposed method, and the b-value of the measured 
AE signal was extracted and then utilized to detect the 
fault pattern. In another study, Christensen et  al. [12] 
applied AE methodology and digital image correlation 
techniques to predict the internal crack and track the 
propagation of the crack in concrete slabs. Experimen-
tal studies were undertaken to evaluate AE activity and 
digital image correlation from concrete slabs under load-
ing testing. The results showed the capability of the com-
bined method to detect and track damage propagation in 
concrete elements.

Singh et al. [36] utilized AE parameters to predict the 
initiation and propagation of the damage in the rein-
forced concrete beam-column joints subjected to cyclic 
loading. This study investigated the relationship between 
some typical AE parameters and the initiation and propa-
gation of cracks and predicted the type of crack in con-
crete beam-column joints. The authors concluded that 
standard AE parameters can be considered to obtain 
some indicators about damage occurrence,however, they 
cannot identify the location of damage due to the change 
in wave velocity of AE waveforms. In another study, 
Tonelli et al. [39] studied the application of the AE tech-
nique to monitor a real-life concrete bridge under differ-
ent loading conditions. A real-life concrete bridge in Italy 
was monitored using an AE system where AE signals 
were analyzed to detect and classify damages in the mon-
itored bridge. It was concluded that the AE parameters 
analyses can provide helpful information on the damage 
present, predict damage level, and type in concrete ele-
ments. The authors mentioned that future works could 
be conducted on experimental specimens to verify the 
performance of the applied AE technique.

Machorro-Lopez et  al. [25] proposed a new method 
based on AE waveforms to evaluate the existing con-
dition of concrete beams under flexural loading tests. 
The proposed method employed continuous wavelet 
transforms on AE waveforms to determine the wavelet 
energy, which can be used to evaluate the health condi-
tion of the concrete beam. The performance of the pro-
posed method was validated using an experimental test 
to collect AE data from concrete beams. The authors 
concluded that the performance of the proposed method 

needs to be investigated using different structural ele-
ments and materials subjected to various damage sce-
narios. On the other hand, Noorsuhada [26] conducted 
a comprehensive review of AE methodologies that were 
applied to monitor damage in reinforced concrete struc-
tures subjected to fatigue. This study provided a detailed 
discussion on the application of AE parameters-based 
analyses that have been employed to detect and quantify 
fatigue damage in various concrete elements. The authors 
stated that the application of AE techniques to localize 
the damage in concrete structures is limited and needs to 
be investigated in the future.

The location of a crack in the monitored system sub-
jected to different levels of damage can be predicted by 
localizing the source of AE events. For example, Zhang 
et  al. [44] applied a new damage identification method 
based on AE data measured from a concrete beam. This 
method was applied to identify the location of the crack 
using the probability density field of AE data collected 
from a concrete beam. The results showed that the new 
method can predict the crack pattern and localize the 
damage with less error than conventional localization 
methods. The authors suggested that future work can be 
conducted on the applied method, considering different 
types of sensor layouts and investigating the relation-
ship between the probability density of AE events and 
the crack width. In another study, Ma et  al. [23] devel-
oped a method using AE data to monitor the concrete 
bridge and identify the internal cracks during the bearing 
replacement process. Traditional AE parameters such as 
counts and amplitude were analyzed to identify the ini-
tiation and propagation of cracks in the bridge during the 
bearing replacement, where analyzing the AE parameters 
was found to be able to capture the initiation and propa-
gation of the damage in concrete structures.

Recently, there has been an increase in the use of 
wood products as structural elements which brings high 
attention to the researchers to study the behaviour and 
durability of timber elements. Hu et al. [17] studied the 
vibrational characteristics of different types of wood ele-
ments under various environmental and loading condi-
tions using nondestructive testing. Four popular wood 
species were experimentally tested using hammer impact 
to investigate the effect of the wood types on fundamen-
tal frequency, dynamic modulus of elasticity, and static 
modulus of elasticity. The results showed a significant 
effect of the wood species on vibrational characteristics. 
In another paper, Hu and Zhang [18] used an AE-param-
eters-based method to study the failure process of a 
wood element subjected to tension load. An experimen-
tal test on southern yellow pine wood element was con-
ducted to investigate the effect of crack tip location on 
some AE parameters (i.e., amplitude, counts and energy). 
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The results showed that the initiation and propagation of 
cracks in the wood elements can be detected using the 
AE technique.

Barbosh et  al. [7] applied a feature selection method 
that integrates the decomposition of AE signal by empiri-
cal mode decomposition method and extracting damage 
indicator by Shannon Entropy to predict the approximate 
location of different fault scenarios in both wooden and 
concrete elements using AE waveforms. AE waveforms 
collected from experimental tests on wooden elements 
and full-scale concrete elements were utilized to verify 
the performance of the applied method as a damage 
detection and localization tool. In another study, Nasir 
et al. [28] provided a critical review of the application of 
the AE monitoring system in the field of wood and tim-
ber elements. The authors explained the concept, the per-
formance, and the real-life application of the AE method 
that is used to monitor wood and timber structures. 
Some challenges of the AE application were discussed, 
and some directions were provided for future studies in 
wooden structures. Also, the study explained the exist-
ing methods used to analyze AE data and stated the gaps 
in the current AE analysis methods. The authors recom-
mended that further studies be conducted to monitor the 
existing condition of large-scale timber structures using 
advanced signal-processing and artificial intelligence 
techniques. However, most of the above-mentioned stud-
ies have considered either traditional AE parameters or 
feature extraction methods to predict and localize the 
damage in concrete elements, which can provide inaccu-
rate damage localization due to the effect of noise in the 
measured data and time-consuming due to vast meas-
ured data and multiple manual processes.

Artificial Intelligence is a more powerful tool in data 
analysis than traditional techniques due to its capabilities 
of processing vast amounts of data, identifying intricate 
patterns, and making accurate predictions. For example, 
Das et  al. [13] analyzed AE parameters to classify the 
type of cracks (e.g., shear and tensile modes) in concrete 
structures using a Support Vector Machine (SVM) where 
some typical parameters such as RA values and Aver-
age frequency are used as input. Shimamoto et  al. [37] 
applied k-means clustering and random forest algorithms 
to evaluate the importance of some AE parameters to 
characterize the fracture behaviour of concrete elements 
where the authors concluded that among the AE parame-
ters examined, rise time and centroid frequency emerged 
as the most pivotal for gaining insights into compressive 
fracture processes in concrete structures. Jierula et  al. 
[21] used SVM to classify the source location of AE sig-
nals in three sensor groups. The experimental test was 
conducted on an in-service reinforced concrete col-
umn. Biswas et  al. [8] combined wavelet transform and 

Random Forest methods to detect the damage location 
and predict the type of damage in a steel frame structure 
using AE data.

Besides traditional machine learning approaches, 
Zhang et  al. [45] proposed a new method using time-
frequency features of AE signals as input into the deep 
learning methods to classify the type of damage in con-
crete structures. The results showed that the ResNet18 
provided higher accuracy over the other lightweight con-
volutional neural networks (CNNs) such as GoogleNet, 
EfficientNet-b0, and MobileNetV2. Lately, Barbosh et  al. 
[9] proposed a new approach to predict the presence and 
location of damage in structural elements by applying a 
CNN model to time-frequency images of AE waveforms 
measured from wooden and concrete structures. On 
the other hand, Mahajan and Banerjee 24 developed an 
AE source localization approach using an artificial neu-
ral network to identify the AE source zone in rail struc-
tures. AE signals measured from pencil lead break tests 
and actual damage in a rail were used to train and test 
the models. The results indicated that these deep-learn-
ing approaches are beneficial in real-time AE-based rail 
inspection. However, most of the aforementioned studies 
employed either a traditional machine learning approach 
for feature selection that might be inaccurate and sub-
jective or 2D training data, which is time-consuming to 
collect and annotate. There have been limited studies 
that used deep learning approaches on the time series 
response of AE waveforms to localize and predict the 
level of damage in wood and concrete structures.

DenseNets have attracted great attention in the field 
of audio processing and classification [31, 38], and [5] 
and bridge health monitoring [33], and Alfaz et  al. 3 in 
recent years owing to their exceptional ability to extract 
features, even under conditions with limited samples. For 
instance, Li et al. [22] suggested a DenseNet-based fully 
convolutional network (FCN) for automatic pixel-level 
detection for various types of damage on concrete struc-
ture surfaces. Similarly, using images captured from con-
crete structures, Qiao et  al. [33] introduced an instance 
segmentation algorithm for surface damage detection 
that combines DenseNet with an expectation-maximi-
zation attention unit (EMAU). In addition to applica-
tions in computer vision, a recent study by Wang et  al. 
[41] proposed an approach termed as SDI-DenseNet for 
structural damage detection by training on acceleration 
responses from the free decay of a frame structure. The 
above studies demonstrated the potential of DenseNet-
like networks for learning deep features in images and 
basic time series. However, for more complex time series 
like AE waveforms collected from concrete and wooden 
structures, the effectiveness of densely connected CNN 
architectures in damage detection has seldom been 
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reported and warrants further investigation. Moreover, 
most previous studies considered methods based on fea-
ture extraction or the traditional parameters of AE signal 
to identify the damage, which may require some manual 
process and involve time-consuming and computation-
intensive analysis. Regarding the gaps recognized from 
the literature review, this paper proposes AE waveform-
based method to predict the damage severity and poten-
tial location in concrete and wooden structures using an 
automated 1D adaptation of the densely connected CNN 
model, which is named AE-DenseNet without involving 
any manual process and multi-step analysis. Systematic 
experiments were conducted to verify the superiority of 
the proposed model in localizing and predicting the level 
of damage using the time series response of AE wave-
forms and without considering any typical AE param-
eters and feature extraction.

The paper is outlined as follows. The proposed method-
ology is presented first. Then, experimental studies using 
concrete and wooden elements are conducted to show 
the performance of the proposed method, and finally, the 
conclusions are drawn.

Methodology
This section gives a background of AE-DenseNet, which 
is a specially adapted network based on the concept 
of DenseNets. The input of AE-DenseNet is the time-
domain waveform signals, while the output is a one-hot 
vector indicating damage severity and location. Com-
pared to traditional 1D CNN methods, DenseNet has 
more efficient feature extraction and reusing, which 

facilitates the learning of complex patterns over time 
[41]. In the following subsections, the theoretical back-
ground and advantages of DenseNet are briefly described 
first, and then the design of AE-DenseNet and its appli-
cation to damage detection are introduced.

DenseNet
CNNs have been widely used in signal processing due to 
their outstanding capabilities of feature extraction. Such 
capabilities increase with the number of convolutional 
layers. However, as CNNs become increasingly deep, 
the input information may vanish during forward prop-
agation, while the gradients may vanish or explode dur-
ing backward propagation. Therefore, it is unreliable to 
extract features from complex signals only by increasing 
the depth of a standard CNN.

Although some architectures, such as Residual Net-
works (ResNets) [16] and Highway Networks [34], can 
solve the gradient vanishing/exploding problems by 
using skip connections, they require many more param-
eters than DenseNets. As shown in Fig.  1, to maximize 
the information flow between different layers, DenseN-
ets connect all layers directly with each other. Each layer 
acquires supplementary feature maps from previous lay-
ers and forwards its feature map to all subsequent layers. 
In this way, L (L+1)/2 connections are introduced in an 
L-layer network instead of L in traditional CNN archi-
tectures. Generally, the number of feature maps pro-
duced through the function  Hi is defined as growth rate 
k. In the dense block, all the feature maps are the same 
size and concatenated without down-sampling. The 

Fig. 1  A 4-layer dense block with a growth rate of k=4
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down-samplings are achieved by transition layers with 
pooling between dense blocks. In addition, to improve 
computational efficiency and model compactness, a com-
pression factor θ is introduced in DenseNets. 0 < θ ≤ 1 , 
indicating the percentage of feature maps to be reduced.

Proposed method: AE‑DenseNet
As shown in Fig. 2, the proposed AE-DenseNet has three 
dense blocks that are connected with two transition lay-
ers. Different from the original DenseNets, which were 
specially designed for image classification, the inputs of 
AE-DenseNet are time-domain waveform signals col-
lected from different AE sensors. Therefore, the pro-
posed AE-DenseNet is designed with less dense blocks, 
improving its applicability to limited training data. All 
the waveform signals are of the same length related to the 
settings in the AE acquisition system. The proposed AE-
DenseNet is an end-to-end damage detection model and 
has no requirement for conducting complex signal pre-
processing on the input signals. As for the outputs, the 
waveform signals are classified into various groups repre-
senting damage scenarios with different damage severity 
and locations. The damage severity is labeled as "Minor" 
or "Severe" according to the number of hits detected by 
AE sensors, while damage locations are annotated as 
"Damage Far" and "Damage Close" using the relative dis-
tance from the sensor.

The specific architecture of the proposed AE-
DenseNet is given in Table  1. The input signals are 
vectors in the size of (1, 5120), corresponding to the 
number of sample points per waveform. These vectors 
are first passed through a convolutional layer featuring 
a large filter to extract the preliminary signal patterns. 
In the forward propagation process, the feature maps 
are down-sampled by 25% every time passing through 
the transition layer, while the filter channels are com-
pressed to reduce the number of model parameters by 
introducing the compression factor  θ . According to 
previous experience,  θ = 0.5 is suggested to achieve a 
trade-off between parameter saving and performance. 
To avoid underfitting, the number of layers of Dense 

Blocks (denoted as L) is optimized by a random search 
strategy [4] and set to 6 for the classification of dam-
age location and damage severity. At the end of the net-
work, a global average pooling layer is placed after the 
last Dense Block, followed by a fully connected softmax 
classifier. As all the training data is labeled with one-
hot encoding, the categorical cross-entropy is chosen 
as the loss function.

The proposed AE-DenseNet employs the idea of 
dense connectivity from DenseNet that makes full use 
of training data. In particular, the fusion of feature 
maps between different layers greatly improves the 
utilization of information flow in the training. As all 
the fusions are essentially achieved through skip con-
nections, the proposed approach can learn both low-
level and high-level features of the input signals during 
training and has no requirement for signal preprocess-
ing. Given this, AE-DenseNet is suitable for automated 
damage detection using complex acoustic signals and 
limited datasets collected from large-scale structures. 
Fig. 3 presents the flowchart of the proposed method.

Fig. 2  The architecture of AE-DenseNet with three dense blocks

Table 1  The architecture of the proposed network for damage 
classification

Layers Settings Output Size

Input -- 1× 1× 5120

Convolution 1× 25Conv , strides = (1, 4) 24× 1× 1280

Dense Block (1) 1× 1Conv
1× 15Conv

× 6
96× 1× 1280

Transition Layer (1) 1× 1Conv
1× 4AveragePooling, strides = (1, 4)

48× 1× 1280

48× 1× 320

Dense Block (2)
[

1× 1Conv
1× 15Conv

]

× 6
120× 1× 320

Transition Layer (2) 1× 1Conv
1× 4AveragePooling, strides = (1, 4)

60× 1× 320

60× 1× 80

Dense Block (3)
[

1× 1Conv
1× 15Conv

]

× 6
132× 1× 80

Classification Layer GlobalAveragePooling

1× classnumberfullyconnected, softmax

classnumber
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Metrics for performance evaluation
Once the AE-DenseNet has been trained, metrics for 
the evaluation of model performance can be extracted 
from the confusion matrix. In this study, the preci-
sion and recall rates were used to assess the trained 
network. Precision, also known as positive predictive 
value, indicates the ability of the model to accurately 
identify positive examples and to minimize false posi-
tives, as shown below [29]:

where TP and FP are the true positive value and false 
positive value, respectively. Recall, also known as a true 
positive rate, measures the ability of the proposed net-
work to find all the positive examples. It is defined as [29]:

where FN is the false negative value.

Experimental study using large‑scale concrete 
beam
In order to comprehensively demonstrate the effective-
ness of the proposed approach, this study investigated 
two challenging applications, specifically focusing dam-
age detection on a large-scale reinforced concrete beam 
and a wooden board. This section provides details of 
the former experiment and an in-depth analysis of the 
implementation of AE-DenseNet.

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

Experimental setup
In order to show the performance of the proposed 
method to identify the zonal location and predict the 
damage severity, an experimental test was conducted 
to collect AE data from a large reinforced concrete (RC) 
beam. As illustrated in Fig.  4(a), the beam possesses 
dimensions of 2440 mm in length, 150 mm in width, 
and 350 mm in thickness. The structural design man-
dates shear-induced failure, with reinforcement bars 
strategically placed solely on the upper and lower fac-
ets of the beam. It is cast using a formulated concrete 
mixture incorporating Portland cement, fine aggregate, 
and coarse aggregate. Following this, the curing process 
involves enveloping the beam with wet burlap for 28 
days, culminating in a 28-day compressive strength of 
the concrete beam reaching 40 MPa. Fig. 4(b) illustrates 
the AE monitoring system deployed during the experi-
mental test to capture AE activity. This system employs 
four AE sensors, denoted as S1, S2, S3, and S4. These four 
MISTRAS PK6I have a 55 kHz resonant frequency, a 
35–65 kHz operating frequency range, and a peak sen-
sitivity of 106 dB, which can operate in a temperature 
range between -35 to 80°C Physical Acoustics Corpora-
tion (PAC) [32]. The four PK6I sensors are connected to a 
Micro-SHM data acquisition system (DAQ) with four AE 
channels with a frequency bandwidth of 5 kHz-1 MHz 
and a sampling rate of 10 Msamples/s using amplifica-
tion of 26 dB. This configuration was selected due to its 
capability to capture high-frequency AE data originating 
from micro-cracks in concrete. The Micro-SHM DAQ is 
linked to a computer unit for the purpose of transferring 

Fig. 3  Flowchart of the proposed damage detection framework
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the acquired AE data. This process is conducted by 
utilizing AEwin software, which is configured with a 
threshold set at 40 dB. An MTS machine is employed 
to impose a three-point flexural load on the beam at a 
loading rate of 3.5 mm/min, continuing until damage 
initiates and propagates throughout the beam. The ini-
tiation and propagation of damage are closely monitored 
throughout the test. Visual observations reveal minor 
damage occurring at the test’s outset, followed by the 
widening propagation of damage, indicating increased 
severity after a certain duration, as depicted in Fig. 4(c). 
Upon completion of the test and subsequent damage to 
the beam, the AE time series is acquired and stored on 
the computer for further analysis.

Data Preparation
For the concrete beam, the AE system continuously col-
lected AE waveforms generated within the concrete beam 

throughout the whole servo loading process, yielding a 
total of 1365 signal segments captured by four AE sensors. 
Given the limited amount of measured data, the proposed 
AE-DenseNet is evaluated through two classification tasks: 
identifying the approximate location and predicting the 
severity of the damage. In order to identify the expected 
location of the damage on the beam referring to the loca-
tion of the sensor mounted on the beam, the distance from 
the sensors to the damage is considered as the reference for 
damage localization where AE waveforms collected from 
S1 and S2 are labeled as "Damage Close" since the actual 
damage initiated and propagated at a distance ranges from 
20 to 90 cm from S1 and S2, while those from S3 and S4 are 
labeled as "Damage Far" since the actual damage initiated 
and propagated at a distance ranges from 120 to 200 cm 
from S3 and S4. Regarding damage severity, the AE wave-
forms are categorized as either "Minor" or "Severe" where 
this classification is determined through a combination 

Fig. 4  a Dimension of the beam, b AE monitoring system, and c Sensors placed on the beam and location of actual damage on the beam

Fig. 5  a Applied load curve and b AE activities collected from the four sensors placed on the beam during the loading process
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of visual monitoring conducted during the test and an 
assessment of the density and amplitude of the measured 
AE hits. The load-displacement curve of the beam is illus-
trated in Fig.  5(a). Notably, minor sudden changes were 
observed at the outset of the test, and a more pronounced 
alteration in continuity was evident at a specific point on 
the curve. These variations signify the initiation of dam-
age (minor damage at the beginning of the test) and the 
subsequent propagation and expansion of damage (severe 
damage), respectively. Fig. 5 (b) shows AE activities meas-
ured from four AE sensors placed on the beam during the 
loading process. In Fig. 5 (b), there is an interval between 
40-50 seconds where AE hits are absent, and this gap is 
a result of a temporary pause in the loading process dur-
ing the test. Observably, the density and amplitude of AE 
activities are initially low at the test’s outset, while the AE 
activities noticeably elevate at a certain time of the loading 
process (e.g., between 100-150 sec). This increase is attrib-
uted to the heightened level of damage, visually monitored 
throughout the test. Finally, the time series responses of 
these AE activities are acquired and labelled as severe dam-
age for the last 50 sec, and the rest of the AE waveforms 
are labeled as minor damage for damage localization and 
severity prediction process where the amount of AE wave-
forms are for both categories (i.e., minor and severe) is 
shown in Table 2.

Since only limited experimental data is available for 
training the proposed AE-DenseNet, data augmentation 
was conducted in this study as well. To preserve the dam-
aged features as much as possible, a strategy of random 
flipping was employed. The collected dataset was divided 
into the training set and validation set in a ratio of 9:1, and 
50% of the training set was flipped for data augmentation. 
The sample quantities of the collected dataset for all the 
categories are listed in Table 2.

Model Training and hyper‑parameter Optimization
Two distinct models are separately trained for the classi-
fication tasks of damage severity and damage location to 
enable a comprehensive discussion of the learning capa-
bility of the proposed network for different features. The 
models are trained for 150 epochs on a computer equipped 
with an RTX 3060 GPU. To improve the accuracy and effi-
ciency of the model, it is necessary to optimize the hyper-
parameters, including batch size, learning rate, and the 
layer number of the dense block, for the model architecture 

and training configurations. The key step of hyper-param-
eter optimization is to choose a good parameter combina-
tion � =

{

�(
1), �(2), ..., �(s)

}

 from a designated search space 
� . s represents the number of hyperparameters. L is the 
categorical cross-entropy function that is used to evaluate 
deep learning models on the validation set X (valid) . Then, 
the optimal combination �∗ can be expressed as

where A� represents the candidate model with the 
parameter combination � , X (train) is the dataset used for 
training A� , and x is a sample selected from the validation 
set.

To search the hyperparameters more efficiently, the 
random search strategy [4], which is both reasonably effi-
cient and simple, is applied in this study. The steps of the 
random search algorithm are as follows.

1)	 Define the range and distributions of hyperparam-
eters. The ranges of learning rate, batch size and layer 
number are set as {0.0004, 0.0005, …,0.0015,0.0016}, 
{4,6,8,10,12,14} and {6,8,10,12}, respectively.

2)	 Determine the number of iterations in a random 
search. The iteration number is set as 200 in this 
study. In each iteration, a combination of hyper-
parameters is randomly selected from the defined 
search space.

3)	 Train the proposed model using the selected param-
eter set and evaluate its performance with the func-
tion L.

4)	 Repeat steps 2 and 3 until the predetermined itera-
tion number is reached. Iterate until the budget and 
finally obtain the best combination �∗ for the model.

According to the optimization results, the final hyper-
parameters of AE-DenseNet are set as batch size = 8, 
learning rate = 0.0009, and layer number L = 6. To clarify 
the difference using different � , Fig. 6 presents the train-
ing loss and validation accuracy curves for various hyper-
parameter combinations. As seen in the figures, changes 
in batch size have minimal impact on the loss curves but 
significantly affect accuracy. Smaller batch sizes can hin-
der the model from learning common features in the sig-
nals, while larger batch sizes may cause the model to focus 
more on noise features. Conversely, an increase in the 
learning rate speeds up convergence to a lower loss, but 
beyond a certain point, it can decrease model accuracy.

Classification Results
With the best hyperparameter combination, the pro-
posed AE-DenseNet was trained with waveform data 

(3)�∗ ≈ arg min
�∈�

mean
x∈X(valid)

L

(

x; A�

(

X (train)
))

Table 2  Sample quantities of the collected dataset

Categories Damage Close Damage Far

Minor Severe Minor Severe

Quantities 412 531 247 175
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Fig. 6  Loss and accuracy curves from hyperparameter tuning (smoothed): a learning rate = 0.0009, L=6; b batch size = 8, L=6

Table 3  Confusion Matrix, Precision, and Recall rates of the classification results

Damage severity classification Damage location classification

Predicted labels Minor Severe Recall Predicted labels Damage Close Damage Far Recall

True labels True labels

Minor 59 6 0.908 Damage Close 91 3 0.968

Severe 3 67 0.957 Damage Far 7 34 0.829

Precision 0.952 0.918 -- Precision 0.929 0.919 --
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and applied to damage severity prediction and to iden-
tify the potential location of the damage. The location 
of the damage is identified with respect to the sensor 
location on the monitored beam by using the statement 
"damage close or far". For the two tasks, Table  3 tabu-
lates their confusion matrices and corresponding pre-
cision and recall rates. The confusion matrix provides 
a comprehensive summary of the model performance, 
including the true positives (TPs), true negatives (TNs), 
false positives (FPs), and false negatives (FNs), which are 
used to calculate precision and recall rates. The num-
bers in Table 3 listed in items of "Predicted labels" and 
"True labels" are the number of samples and represent 
the confusion matrix. Specifically, for the class "Minor," 
there are 59 TPs, 6 FPs, and 3 FNs. Then, the precision 
and recall can be calculated using Eqs. (1) and (2). For 
the prediction of damage severity, the precision rates for 
the classes "Minor" and "Severe" are 95.2% and 91.8%, 
respectively, while the recall rates for them are 90.8% 
and 95.7%. Regarding the classification of damage loca-
tions, the precision rates for the classes "Damage Close" 
and "Damage Far" are 92.9% and 91.9%, respectively, 
while the recall rates for them are 96.8% and 82.9%.

It should be noted that, in general, closer and more 
severe damages tend to have higher recognizability (recall) 
and identification precision. From the above results, close 
and severe damage cases show a higher recall rate; how-
ever, the precision rate of "Severe" damage presents even 
lower precision. Two reasons likely explain it:

1)	 The training data used in this study included 
instances with varying damage severity and differ-
ent damage locations. However, for some features 
of ultrasonic waveform signals, the "degree of dam-
age" and "location of damage" can be contradictory. 
For example, severe damage far from the sensor may 
exhibit similar amplitude characteristics as minor 
damage closer to the sensor.

2)	 The AE signals captured by the large-scale concrete 
beam during testing are highly complex, and the lim-
ited training set sample size prevents the model from 
reaching its full potential in performance.

Therefore, in the application of AE-based dam-
age detection, it is recommended to predict the dam-
age severity and the damage location separately while 
increasing the sample size for model training as much as 
possible.

Experimental study using a wooden beam
Experimental setup
In order to evaluate the performance of the pro-
posed method, a wooden beam is considered in the 

experimental study. The beam measures 61 cm in length 
and 3.8 cm in width and thickness. Two AE sensors 
labeled S1 and S2 are placed on the beam to acquire AE 
data, as shown in Fig. 7(a). The beam undergoes damage 
at three distinct locations: D1: damage near S1; D2, dam-
age near S2; and D3, damage at the center of the beam, 
as illustrated in Fig.  7(a and b). Damage is induced by 
simulating a hole using a drilling machine at these loca-
tions, while AE sensors collect AE data. The AE monitor-
ing system used to collect AE signals from the wooden 
beam in this experimental study is shown in Fig. 7(c). It 
contains two sensors, preamplifiers, decoupling boxes, a 
data acquisition (DAQ) system, and a computer. The sen-
sors have characteristic frequency bands ranging from 
20-450 kHz, where they are connected to preamplifiers 
with a gain ranging from 34 to 40 dB, coupled with plug-
in bandpass filters set between 2.5-2400 kHz. This config-
uration serves to amplify the AE signal effectively. Also, 
decoupling boxes are used to connect the preamplifiers 
with the DAQ system at one end to collect the AE signals 
and attach them with a direct current supply at the other 
end to power the AE sensors. The DAQ is connected to 
a computer to transfer the measured AE signals. With 
a sampling rate of 200 Msamples/s, the DAQ is suitable 
for capturing high-frequency AE data collected from the 
wooden structures. It is important to note that the sen-
sors used in this study operate at a sampling frequency of 
20 kHz.

Data preparation and model training
AE signals collected from sensor S1 placed on the wooden 
beam subjected to active damage are utilized to validate 
the performance of the proposed method as a damage 
classification tool. Fig. 8 illustrates the time history of AE 
signals measured from a wooden beam using S1 while 
damage is applied at locations D1, D2, and D3, as discussed 
in section "Experimental setup". It can be observed that 
the amplitude of AE signals collected from the beam 
when the beam is subjected to damage at D1 is higher than 
the amplitude of AE signals when the beam is damaged 
at locations D2 and D3. However, It is challenging to dif-
ferentiate between the amplitude of AE signals collected 
from the beam due to the damages at locations D2 and D3. 
This motivates us to employ the proposed AE-DenseNet 
method to classify the location of these damages using the 
time response of AE signals. In order to generate train-
ing, validation, and testing data, the data collected during 
the test is segmented using a sliding window method. The 
black rectangle shown in Fig. 8 represents the width of the 
sliding window to generate the segments that are used as 
input into the AE-DenseNet model.

1000 segments of AE signal for each damage loca-
tion with 3000 segments in total are generated and then 
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divided by a ratio of 7:2:1 to train, validate, and test the 
AE-DenseNet for damage identification. The param-
eter settings discussed in section "Model Training and 
hyper-parameter Optimization" are used in this section 
to simplify the training process. The expected location 
of damages (e.g., D1, D2, D3) on the beam is identified by 
referring to the location of sensor S1, where AE signals 

due to the damage at location D1 are labelled as "Damage 
Close" since the actual damage is applied at a distance 10 
cm from S1, damage at D2 are labelled as "Damage Far" 
since the damage is applied at a distance 30 cm from S1, 
and damage at D3 are labelled as "Damage Centred" since 
the damage is applied at the center of the beam with a 
distance 20 cm from S1, respectively.

Fig. 7  Experimental setup of the specimen a actual, b the schematic, and c the AE monitoring system

Fig. 8  Time history of the measured AE signals collected from the wooden beam using sensor S1 for damage at locations D1, D2, and D3, 
respectively



Page 12 of 15Barbosh et al. J Infrastruct Preserv Resil            (2024) 5:10 

Classification results
The confusion matrix and metrics of the classification 
results are presented in Table  4. It can be seen that the 
proposed method can classify the characteristics of AE 
waveforms collected from one sensor due to damage at 
different locations on the beam. It can be seen that the 
proposed AE-DenseNet has the capability to identify the 
expected damage locations using the time series response 
of AE signals collected from a single AE sensor (S1) with 
a high accuracy range between 98-100%. The results 
show the high performance and accuracy of the proposed 
approach to classify and identify the potential location 
of damage using the time series response of AE signals, 
making it a suitable and robust damage identification tool 
for structures.

Experimental study using a wooden plate
Experimental setup
In this section, an experimental test is undertaken to col-
lect AE signals from a wooden plate to verify the per-
formance and efficiency of the proposed approach. The 
dimensions of the plate are 1 m in length and width, with 
a thickness of 2 cm. Two sensors (S1 and S2) are placed 
at a certain position on the surface of the beam at the 
same distance from the edge, as shown in Fig. 9. The plate 
is subjected to damage at three different locations (e.g., 
location D1: damage near S1, location D2: damage near 
S2, and location D3: damage at the center of the plate) 
as shown in Fig.  9. The plate is damaged by creating a 
hole using a drilling machine at locations D1, D2, and D3, 
respectively. The AE signals collected from the wooden 
plate are acquired using the same AE monitoring system 
discussed in section "Experimental setup".

Data preparation and model training
In order to demonstrate the applicability of the pro-
posed approach to different structures further, AE signals 
induced by damage on a wooden plate are additionally 
analyzed in this section using the signals collected from 
one sensor S1.

Fig. 10 presents the time history of AE signals collected 
from a wooden plate using S1 caused by the damages at 

locations D1, D2, and D3 (as shown in Section "Experi-
mental setup"). It can be observed that even though 
the difference between the amplitude of AE signals for 
damage at D1 and D2 is visible, the amplitude of AE sig-
nals measured from the plate for damage at D2 and D3 
are very similar and are hard to distinguish. Given this, 
the performance of the proposed AE-DenseNet model 
in localizing these three types of damage is discussed 
in this section. A sliding window method is employed 
to select data segments randomly to obtain sufficient 
training data. The black rectangle in Fig.  10 represents 
the width of the sliding window, which corresponds to 
the input size of the AE-DenseNet. A total of 3000 seg-
ments (1000 segments of each damage location) are 
obtained and divided into the training set, validation 
set, and testing set by the ratio of 7:2:1. To simplify the 
training process, the parameter settings from section 
"Model Training and hyper-parameter Optimization" are 
maintained.

The identification of potential damage locations 
involves analyzing AE waveforms collected from the 
three damage scenarios (D1, D2, and D3), which is con-
sidered by referring to the location of sensor S1. For 
example, AE waveforms collected due to the damage 
at location D1 are labelled as "Damage Close" since the 
actual damage is generated at a distance of 17 cm from 
S1, AE waveforms collected due to the damage at D2 are 
labelled as "Damage Far" since the damage is generated 
at a distance of 82 cm from S1, and AE waveforms col-
lected due to the damage at D3 are labelled as "Damage 
Centred" since the damage is generated at the center of 
the plate with a distance of 46 cm from S1.

Table 4  Classification results of the expected location of 
damage on the wooden beam

Predicted labels Damage Close Damage Far Damage 
Centred

Recall
True labels

Damage Close 100 0 0 1.0

Damage Far 2 98 0 0.98

Damage Centred 1 0 99 0.99

Precision 0.971 1.0 1.0 --

Fig. 9  Experimental setup of the specimen
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Classification results
Table  5 presents the confusion matrix and metrics of 
the classification results. It can be seen that the pro-
posed method can differentiate between the characteris-
tics of AE waveforms collected from one sensor due to 
applying damage at different locations on the plate. It is 
evident that the proposed AE-DenseNet can identify 
the expected damage locations by using the time series 
response of AE signals collected by the same AE sensor 
(S1) with 99-100% accuracy. This demonstrates a signifi-
cant improvement compared to the authors’ previous 
study [7], in which the identification accuracy of damage 
at the center of the wooden board, based on Empirical 
Mode Decomposition, was approximately 86%. Moreo-
ver, the identification of the damage location on the wood 
plate using an images-based CNN model was conducted 
by Barbosh et  al. [9], and the results showed that the 
accuracy of the model was around 87.5%. The enhanced 
performance of the proposed approach indicates its 
superior capability in discerning subtle variations in 
waveform signals.

Conclusions
Acoustic emission (AE) method serves as a potent non-
destructive technique that has garnered significant atten-
tion for its efficacy in detecting and localizing damage 

in various structural materials, owing to its heightened 
sensitivity to microcracks. However, the process of dam-
age identification using AE waveforms collected from 
anisotropic materials such as wood and concrete requires 
experienced engineers due to its complicated charac-
teristics, which rely on the geometric shape, material 
uniformity, and effect of background noise. Therefore, 
damage detection and localization approaches based on 
the AE parameters and feature selection of the AE signal 
can be time-consuming and computationally intensive. 
In this study, the AE signal-based convolutional neural 
network (CNN) model is proposed to automate the pro-
cess of damage detection and localization in concrete and 
wood structures.

The severity of damage and its approximate loca-
tion are predicted using the automated AE-DenseNet 
model without considering any manual preprocess-
ing and without involving time-consuming muti-step 
analysis of the AE data. Experimental studies are con-
ducted using a large-scale concrete beam and wooden 
beam and plate to validate the performance of the 
proposed method as a damage severity prediction and 
localization technique. The extracted results showed 
the capability of the proposed method for predict-
ing the damage severity using AE waveforms collected 
from a concrete beam with recall rates between 0.91-
0.96. Moreover, the proposed method was able to 
identify the approximate location of damage in a con-
crete beam with recall rates ranging between 0.83-0.97 
and a wooden beam and plate with accuracy ranges 
between 98-100%, which makes it a suitable candidate 
for predicting the damage severity and identifying the 
expected location of damage in structural elements. 
The performance of the proposed method was com-
pared to other studies that used feature selection and 
image-based methods, where the proposed method 
showed higher accuracy and efficiency. The proposed 

Fig. 10  Time history of the measured AE signals collected from the plate using sensor S1 for damage at locations D1, D2, and D3, respectively

Table 5  Classification results of damage locations on the 
wooden plate

Predicted labels Damage Close Damage Far Damage 
Centred

Recall
True labels

Damage Close 100 0 0 1.0

Damage Far 0 100 0 1.0

Damage Centred 0 1 99 0.99

Precision 1.0 0.99 1.0 --
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method has been systematically validated through clas-
sification tasks regarding damage location and severity. 
Based on more detailed classifications, future studies 
can further identify the coordination of damage loca-
tion and provide better visualization of the damage in 
structural elements using AE waveforms.
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