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Abstract 

Background Our objective is to develop an algorithmic approach using predictive models to discriminate 
between common solid renal masses, including renal cell carcinoma [RCC] subtypes and renal oncocytoma [RO], 
using multiphase computed tomography [CT].

Methods We retrospectively analyzed a group of solid renal masses between January 2011 and January 2023 regard‑
ing the CT attenuation values using a multiphase multidetector CT and clinical parameters. Inclusion criteria included 
patients who had four phases of CT with a partial or radical nephrectomy. Exclusion criteria were patients with bipha‑
sic or one‑phase CT, poor imaging quality, patients under surveillance, radiofrequency ablation, or indeterminate 
pathology findings as oncocytic tumor variants. We divided our cohort into training and internal validation sets.

Results Our results revealed that a total of 467 cases, 351 patients assigned for the training cohort and 116 cases 
assigned for validation cohort. There is a significant difference between hypervascular clear RCC [CRCC and RO] 
and hypovascular chromophobe and papillary [ChRCC and PRCC] masses in both training and validation sets, 
AUC = 0.95, 0.98, respectively. The predictive model for differentiation between CRCC and RO showed AUC = 0.83, 0.85 
in both training and validation sets, respectively. At the same time, the discrimination of ChRCC from PRCC showed 
AUC = 0.94 in the training set and 0.93 in the validation cohort.

Conclusions Using the largest sample to our knowledge, we developed a three‑phase analytical approach to initiate 
a practical method to discriminate between different solid renal masses that can be used in daily clinical practice.
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Key points 

1. This study aims to differentiate between malignant and benign renal masses.
2. Computed tomography with new approach can solve this issue.
3. Multiphasic CT can predict malignant probability with high accuracy.

Keywords Carcinoma, Renal cell, Nomograms, Chromophobe, Papillary, Oncocytoma, Renal

Background
Universally, renal cell carcinoma [RCC] represents 
5% and 3% of all urological malignancies in men 
and women  [1]. The incidence of RCC diagnosis has 
increased since 1990 without clear, definite reasons. 
One of the reasons for such a rise is due to an increase 
in incidental detection by using imaging modalities, 
especially computed tomography [CT] [2]. The three 
commonest subtypes of RCC include clear cell [CRCC] 
[75–80%], papillary type [PRCC] [14–17%], and chro-
mophobe [ChRCC] [4–8%] [3]. There are established 
imaging features for RCC diagnosis, and some features 
may identify its subtypes. However, the current imag-
ing techniques still have controversy and weak accu-
racy in differentiating RCC from benign masses such 
as renal oncocytoma [RO], which arises from the col-
lecting duct and accounts for 3–5% of all solid renal 
masses [4–7].  The similarity of origin and pattern of 
enhancement between RCCs and ROs may contribute 
to the difficulty of this differentiation in the preopera-
tive stage. Therefore, the definite diagnosis is based on 
histopathologic analysis of the surgically removed mass 
rather than imaging [4].

Accordingly, preoperative imaging diagnosis is of spe-
cial importance to avoid unnecessary kidney resection 
or benign tumor. In the last few years, there has been a 
growing concept of less aggressive management, includ-
ing active surveillance for the small renal masses even 
if they were diagnosed as malignant because they could 
be low-grade RCCs with low potential morbidity [8, 9]. 
On the other hand, new treatment options such as target 
and immune therapy are developing for advanced cases 
[10].  For all those reasons, the characterization, stratifi-
cation of RCC subtypes, and their differentiation from 
benign RO have necessary implications in clinical prac-
tice. Therefore, there were many attempts to develop and 
enhance the imaging techniques to predict this differen-
tiation in the preoperative stage. Some studies utilized 
quantitative, and others used qualitative CT features for 
differentiation [11–13].

In the last few years, the introduction of machine learn-
ing and textural analysis to differentiate between RCC 
subtypes has had promising results [14–17]. However, 

due to the different techniques and multiple productions 
of different radiomics software, in addition to the need 
for highly expert individuals with different levels experi-
ence that produce wide variability in the utilized features, 
no standard methods could be achieved [18, 19].

Furthermore, other studies tried to develop multivari-
able predictive models to enhance the differentiation 
between RCC subtypes, and other studies included RO 
using different separate variables [20, 21]. However, these 
studies examined a small sample size with incomparable 
numbers of tumors at the different arms. Unlike previous 
studies, we included the largest sample size in different 
RCC subtypes and RO to our knowledge.

As a result, we intend to develop a stepwise analytical 
approach based on multiple predictive models, includ-
ing the best classifiers, by creating training and validation 
cohorts using multiphase CT parameters for the most 
common types of RCC and attempting to distinguish 
them from RO.

Methods
Patients
The institutional review board approved this retro-
spective study, and informed consent was waived. We 
searched our medical records from January 2011 to Janu-
ary 2023 for patients with proven pathology for various 
RCC subtypes and RO.

Patients with four phases of CT and a partial or radi-
cal nephrectomy met the inclusion criteria. Patients with 
biphasic or one-phase CT, poor imaging quality, patients 
under radiofrequency ablation, surveillance, or uncertain 
pathology results as an oncocytic tumor variant were 
excluded.

Finally, we identified 467 cases with the final diagnosis 
of RO and different subtypes of RCC.

CT Examinations
The examinations were carried out using a multidetec-
tor CT scanner with 64 parallel detector rows (Brilliance 
CT; Philips Medical Systems Nederland, Veenpluis 4–6, 
the Netherlands) and post-processing was carried out on 
a (Brilliance; Philips) workstation V3.01.5000. Patients 
were advised to refrain from eating or drinking for two 
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hours prior to the scan, and no oral contrast was admin-
istered. Intravenous contrast [100–120 ml nonionic con-
trast, concentration 300 mg/ml] was injected at a rate of 
4 ml/sec using a mechanical injector. During the non-
contrast and venous phases, patients were scanned from 
the diaphragm to the symphysis pubis, and during the 
arterial and delayed phases, they were scanned via the 
kidney region.

The scanning parameters were as follows: tube voltage, 
120 kVp (all phases); tube current, average 220 mA; slice 
thickness, 2.5 mm; reconstructed thickness, 5 mm; pitch, 
0.984; rotation period, 0.75  s. The four CT phases were 
non-contrast, arterial, venous, and delayed. The arterial 
phase was delayed by 25–40  s, the parenchymal phase 
by 85 s, and the delayed phase by 300–420 s. All patients 
had their scans reconstructed in the axial, sagittal, and 
coronal planes.

Image analysis
Attenuation values in Hounsfield units [HUs] and regions 
of interest [ROI] were measured entirely within the solid 
part of the mass, avoiding the periphery or any areas 
with calcification, cystic degeneration, or visible vas-
culature. In each CT phase, three ROIs with a range of 
[13–20 mm] were applied to each tumor, and one average 
value was obtained (Fig. 1). Variations in lesion enhance-
ment, or absolute enhancement [AE], were computed by 
subtracting the non-contrast phase’s attenuation value 
from the post-contrast phase’s attenuation value. Tumor 
size was calculated using the largest diameter in either 
the sagittal or coronal reformatted images. These meas-
urements were taken by consensus by two highly expe-
rienced radiologists [El-Diasty T and Shebel H] who had 
35 and 25 years of experience reporting genitourinary CT 
images, respectively]. The final pathology reports were 

Fig. 1 Axial scans of the abdomen of a case of renal cell carcinoma clear cell type (A–D), oncocytoma (E–H), chromophobe renal cell carcinoma 
(I–L), and papillary renal cell carcinoma (M‑P), with average attenuation values at non‑contrast, arterial, venous, and delayed phases
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not disclosed for them. They examined the scans at a cer-
tain workstation (Advantage Window 4.1; Philips).

Statistical analysis
Our outcome was tumor discrimination and validation. 
Our cohort was randomly divided into a training cohort 
and an internal validation cohort with a 75:25 ratio using 
random numbers. Age, size, gender, attenuation values, 
and AE of the tumors in four different CT phases were 
used as predictors. The mean and standard deviation 
were used as estimation points for continuous variables. 
For categorical variables, the frequency. The Shapiro–
Wilk test was used to determine the data’s normality. A 
Student t test was used to determine whether there was 
a significant difference between tumor types in terms of 
age, size, gender, and attenuation values. We developed 
three phases of analysis. The goal of phase I is tumor cat-
egorization into hypervascular and hypovascular groups 

by using longitudinal analysis for each study phase for 
all tumors. The odds ratio of association between tumor 
vascularity and the aforementioned predictors was then 
predicted using logistic analysis. Our goal in phases II 
and III was to distinguish between tumor types that 
belonged to each group, hypervascular or hypovascular. 
To identify the most significant combination for tumor 
characterization, stepwise variable selection was used. 
The area under the curve [AUC] was plotted and esti-
mated after determining the most significant independ-
ent predictors for each phase. The area under the curve 
and the odds ratio of the final version, with 95% con-
fidence intervals, are reported. For all statistical tests, a 
P value of less than 0.05 was considered statistically sig-
nificant. After determining the best classifiers for each 
phase of the analysis, a nomogram was created to provide 
a visual  predictive tool. Statistical analyses were carried 
out using the STATA/IC version 16.1 software package.

Table 1 Demographic distribution and CT parameters of the training cohort

Subtype (Number) (mean) (median) (SD) (max) (min)

Clear

 Age 147 53.7551 54 10.55098 83 18

 Sex 147 0.6326531 1 0.4837303 1 0

 Size 147 7.446939 7 3.218979 18 2

 artHU 147 122.1633 120 35.24572 239 62

 venousHU 147 101.2789 100 24.7668 190 55

 delayedHU 147 64.73469 64 14.59186 120 41

Oncocytoma

 Age 61 59.42623 60 10.3802 76 30

 Sex 61 0.442623 0 0.500819 1 0

 Size 61 6.740984 5.8 3.145864 16 3

 artHU 61 93.47541 96 22.28498 163 53

 venousHU 61 98.52459 95 21.84003 154 60

 delayedHU 61 63.2623 65 13.65272 115 40

Chromophore

 Age 92 51.3913 51 11.75478 81 22

 Sex 92 0.5543478 1 0.4997611 1 0

 Size 92 8.726087 8.55 3.65537 19 2.5

 artHU 92 73.17391 70 19.22716 125 35

 venousHU 92 75.19565 76.5 14.86883 110 47

 delayedHU 92 53.84783 53 11.44114 84 27

Papillary

 Age 51 53.45098 52 10.81538 79 31

 Sex 51 0.7254902 1 0.4507075 1 0

 Size 51 6.503922 6 2.762532 14 3

 artHU 51 45.60784 43 14.23106 83 21

 venousHU 51 61.84314 59 15.18074 114 40

 delayedHU 51 52.33333 50 12.80104 97 30
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Table 2 Demographic distribution and CT parameters of the validation cohort

Subtype number mean median SD max min

Chromophore

 Age 32 51.46875 52.5 11.13838 70 23

 Sex 32 0.5 0.5 0.5080005 1 0

 Size 32 9.034375 8.3 3.660302 16.5 4

 artHU 32 77.25 71 21.26788 125 45

 venousHU 32 79.59375 80 15.21642 119 37

 delayedHU 32 56.78125 54.5 12.24148 97 37

Clear

 Age 48 53.16667 52.5 10.90058 76 19

 Sex 48 0.7291667 1 0.4490929 1 0

 Size 48 8.7125 9 4.219793 21 2.5

 artHU 48 118.6042 124 27.21681 180 69

 venousHU 48 100.9792 101 19.75649 155 55

 delayedHU 48 63.83333 62 12.06954 90 35

Oncocytoma

 Age 20 56.25 59 14.60308 76 30

 Sex 20 0.6 1 0.5026247 1 0

 Size 20 6.155 5.85 1.499289 9.5 4

 artHU 20 95.5 99.5 25.01052 145 39

 venousHU 20 93.95 90 16.48436 141 78

 delayedHU 20 62.95 66.5 12.98775 83 45

 Papillary 

 Age 16 55.375 55.5 13.36101 76 32

 Sex 16 0.875 1 0.341565 1 0

 Size 16 6.58125 5.25 3.690026 17 2

 artHU 16 47.875 47 9.708244 66 30

 venousHU 16 58.3125 59 7.471892 70 42

 delayedHU 16 49.0625 45.5 10.66751 81 40

Fig. 2 A,B: A longitudinal analysis curve shows the significant difference in the attenuation mean of the different pattern of the renal masses, 
in the four phases of the CT study. B Spaghetti Time Plot curve shows the individualized renal masses attenuation enhancement pattern
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Results
Our results revealed a total of 467 cases were included in 
the final analysis, with 351 patients assigned to the train-
ing cohort [mean age, 54 + 11 years; 147 CRCC, 61 RO, 
92 ChRCC, and 51 PRCC] and 116 patients assigned to 
the internal validation cohort [mean age, 53 + 12  years; 
48 CRCC, 20 RO, 32 ChRCC, and 16 PRCC]. The demo-
graphic data, including the mass distribution, age, fre-
quency between genders, and the mean attenuation value 
regarding CT parameters in both training and validation 
cohorts, are illustrated in Tables 1 and 2.

We established three phases of analysis to build a prac-
tical approach that can be used in daily clinical practice.

Statistical analysis revealed that the attenuation means 
and the absolute means showed identical correlation and 
significance in all phases of analysis; therefore, the abso-
lute mean values were backward from analysis. To assess 
the generalization ability of the model, there were no sig-
nificant differences between both cohorts regarding age, 
size, sex, or mean attenuation values.

Phase I
Categorization based on tumor vascularity
We used longitudinal analysis to examine the enhance-
ment pattern in all tumor types, which revealed that 
CRCC and RO have higher significant enhancement 
values than ChRCC and PRCC in arterial, venous, and 
delayed phases, with p value [< 0.001] for all phases. 
Additionally, there is a significant difference in the non-
contrast phase, p value [0.004], Fig. 2 Therefore, we cat-
egorize the included masses into hypervascular and 
hypovascular groups.

Discrimination model and validation for hypervascular 
and hypovascular masses
Clinical predictor variables Age as a clinical predictor 
showed a significant difference between both groups, p 
value [0.009]. The mean age of the hypervascular masses 
was higher [55  years] compared with the hypovascu-
lar masses [52 years]. In contrast, sex and the size of the 
tumors did not show a significant difference between both 

groups, p value [0.781], and p value [0.075], respectively. 
Univariable analysis for the age showed a positive asso-
ciation with the hypervascular masses, with an odds ratio 
[1.02], and a p value [0.007].

Development and  validation of  the  final model of  phase 
I Multivariable logistic model for attenuation values in 
the four phases of the CT study showed that arterial and 
venous attenuation had a significant positive association 
with hypervascular masses. In contrast, non-contrast and 
delayed attenuations exhibit a significant negative asso-
ciation with tumor hypervascularity; the coefficient and P 
values are shown in Table 3. This model had a high AUC 
[0.94] for discrimination between renal masses based on 
vascularity pattern. Including age as the only clinically sig-
nificant predictor in the final model gives a higher AUC 
[0.95] for discrimination between both groups. The arte-
rial and venous attenuations had higher odds of predic-
tion (1.10 and 1.05, respectively). Applying this model to 
the validation cohort yields a higher AUC [0.98] for such 
discrimination Fig. 3. 

Phase II
Discrimination model and validation for hypervascular 
masses [CRCC Vs. RO]
Renal oncocytoma and CRCC were involved in this 
group. Univariable logistic analysis of the above predic-
tors revealed age, sex, size, non-contrast, and arterial and 
delayed attenuations were significantly associated with 
the tumor types. In contrast, venous attenuations showed 
no significant association Table 4. While age and delayed 
attenuations had a negative association with CRCC, 
the remaining predictors showed a positive relation-
ship with CRCC. Further multivariable analysis to build 
the best model included the above significant predictors 
revealed; the size had no longer significant correlation; 
thus, it was excluded from this model. For clinical predic-
tors including age and sex, the AUC was [0.67]. However, 
the combination of these predictors [age and sex] with 
the significant attenuation predictors, [non-contrast, 
arterial, and delayed HU] produced the best final model 

Table 3 Significant predictors used to categorize the masses into hypervascular and hypovascular groups

Vascularity Coefficient Std. Err Z P-value [95% Conf. Interval]

artHU 0.0941883 0.0134332 7.01 0.000 0.0678598 0.1205168

nocontrastHU − 0.1852756 0.0390239 − 4.75 0.000 − 0.261761 − 0.1087902

age 0.0470496 0.0168577 2.79 0.005 0.0140092 0.08009

venousHU 0.0480014 0.0147197 3.26 0.001 0.0191512 0.0768515

delayedHU − 0.0540809 0.0213912 − 2.53 0.011 0.0191512 − 0.0121549

_cons − 3.600522 1.717373 − 2.10 0.036 − 6.966512 − 0.2345319



Page 7 of 12Shebel et al. Egypt J Radiol Nucl Med          (2024) 55:138  

describing the data, with an AUC value of [0.83] in the 
training set and [0.85] in the validation cohort Fig. 4.

Phase III
Discrimination model and validation for hypovascular 
masses [ChRCC Vs. PRCC]
Regarding hypovascular masses, while age, sex, non-
contrast, and venous attenuation showed no significant 
differences between tumor subtypes, size, arterial, and 
delayed attenuation showed a significant association 
between both subtypes  Table  5. Both size and arterial 
attenuation revealed positive associations with ChRCC; 

delayed attenuation showed a negative association. The 
multivariable analysis revealed that the above three pre-
dictors showed the best model for tumor type discrimi-
nation for this group, with a high AUC value of 0.94 and 
0.93 in the training and validation cohorts, respectively 
Fig. 5.

For each phase of the analysis, a nomogram chart was 
created using the best classifiers predictors as a primar-
ily graphical tool Figs. 3, 4, and 5. Finally, we developed 
a diagram describing the core analysis of the above three 
phases, illustrating the significant predictors in each 

Fig. 3 A,B, and C: A AUC of the training cohort with accuracy = 0.95 for discrimination between hypervascular and hypovascular groups. B AUC 
of the validation cohort with accuracy = 0.98 for discrimination between hypervascular and hypovascular groups. C Nomogram using the significant 
predictors that can classify between both groups

Table 4 Significant predictors used to discriminate between hypervascular masses [CRCC Vs. RO]

hypotumor Coefficient Std.Err Z P-value [95% Conf. Interval]

artHU 0.0534177 0.0102644 5.20 0.000 0.0332999 0.0735355

delayedHU − 0.0712916 0.0187747 − 3.80 0.000 − 0.10808939 − 0.0344938

Age − 0.0602021 0.0197716 − 3.04 0.002 − 0.0989537 − 0.0214505

Sex 1.009846 0.3809394 2.65 0.008 0.2632182 1.756473

nocontrastHU 0.0827004 0.0365006 2.27 0.023 0.0111605 0.1542402

_cons 0.0472721 1.739649 − 0.03 0.978 − 3.362376 3.456921
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phase and the best classifiers used for tumor discrimina-
tion Fig. 6.

Discussion
Both radiologists and clinicians struggle with the diag-
nosis of solid benign kidney tumors without fat content. 
As a result, many surgeries are unnecessary [22]. Mak-
ing the diagnosis and characterization of such masses is 
a difficult day-to-day task in clinical practice, especially 
given the increased incidence of discovering such masses 
presumably related to the growth in the use of cross-sec-
tional imaging, especially CT.

Our study demonstrated a significant difference in 
tumor vascularity between the investigated renal masses. 

Longitudinal analysis showed that CRCC had the strong-
est enhancement and rapid washout, followed by RO, and 
both were significantly higher in vascularity than ChRCC 
and PRCC in all phases of the study (p value = 0.01). 
Multivariable analysis showed the best predictors were 
arterial and venous attenuations, which were positively 
associated with CRCC and RO, while non-contrast and 
delayed attenuations were negatively associated with 
them. The most significant clinical predictor for such 
discrimination was the age p value [0.009]. The mean age 
value was higher in CRCC and RO when compared with 
ChRCC and PRCC.

Based on these findings, we created our first model, 
which produced high accuracy with AUC values of 
0.95 and 0.98 in the training and validation cohorts, 

Fig. 4 A,B, and C: A AUC of the training cohort with accuracy = 0.83 for discrimination between hypervascular masses including CRCCC and RO. B 
AUC of the validation cohort with accuracy = 0.85 for discrimination between hypervascular masses including CRCCC and RO. C Nomogram using 
the significant predictors that can classify between two types of masses

Table 5 Significant predictors used to discriminate between hypovascular masses [ChRCC Vs. PRCC]

hypotumor Coefficient Std.Err Z P-value  [95% Conf. Interval]

artHU 0.1729865 0.0315355 5.49 0.000 0.111178 0.2347949

delayedHU − 0.1121923 0.0314759 − 3.56 0.000 − 0.1738839 − 0.0505007

Size 0.2166496 0.0938781 2.31 0.021 0.0326519 0.4006472

_cons − 5.170288 1.680627 − 3.08 0.002 − 8.464256 − 1.876321
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Fig. 5 A, B: A AUC of the training cohort with accuracy = 0.94 for discrimination between hypovascular masses including ChRCC and PRCC. B AUC 
of the validation cohort with accuracy = 0.93 for discrimination between hypovascular masses including ChRCC and PRCC. C Nomogram using 
the significant predictors that can classify between two types of masses

Fig. 6 Diagram describes the best predictors and classifiers for each phase of tumor discrimination
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respectively. As a result, we begin the first step of our 
strategy by classifying our sample into two groups: 
hypovascular masses, which include ChRCC and 
PRCC, and hypervascular masses, that include CRCC 
and RO. As a result, we created our first nomogram for 
this type of discriminating using the aforementioned 
predictors.

Different researchers in the literature agreed with 
our findings and confirmed the pattern of substan-
tial enhancement linked to CRCC and RO, whereas 
PRCC has the weakest enhancement and ChRCC has 
an intermediate pattern [12, 23–25]. As a result, our 
classification of these tumors, which includes RO, is a 
trustworthy method.

The second step of our approach is to discriminate 
between CRCC and RO. Many CT features other than 
enhancement have been suggested to be related to RO, 
such as the central stellate scar, and segmental enhance-
ment inversion [SEI] [26–29]. However, both features 
are not diagnostic for RO or distinguishable from other 
subtypes of RCC [30–35]. For these reasons, we rely on 
the degree of enhancement and the significant clinical 
predictors to build our second model.

Our results demonstrated the size, and venous 
attenuation showed no significant association for such 
discrimination. Older age is associated with renal onco-
cytoma compared with CRCC, while sex, non-contrast, 
and arterial HU were positively associated with CRCC. 
The male gender had twice the odds of being associ-
ated with CRCCC compared with the RO. Combining 
age and sex with CT attenuation other than venous 
phase produced the best model. AUC values of [0.83] 
in the training set and [0.85] in the validation cohort 
represent the total accuracy of this model at this stage. 
Therefore, we developed the second Nomogram for this 
phase using the above significant predictors.

Our analysis is in good agreement with the litera-
ture in many points, seventh decade is a peak incidence 
period associated with RO compared with other types 
of RCC [25]. Although the reported variable degree of 
enhancement of RO is based on many studies, RO seems 
to show a strong enhancement like CRCC, with less 
washout when compared with CRCC [20, 25–27]. How-
ever, the current results are not in complete agreement 
with Pano et al. [36], who examined a small sample size 
of RO, just 13 cases against 84 cases of different types 
of RCC, of which 52 were clear cell and 25 were low-
grade, including papillary and chromophobe RCCs. They 
reported that there is no significant difference between 
the mean enhancement of all types of RCC and RO in 
the corticomedullary phase. Additionally, RO showed 
higher enhancement in the nephrographic and excretory 
phases than RCC, including CRCC. These discrepancies 

are likely due to the small sample size used for RO and 
other subtypes of RCC, making the statistical significance 
assessment not appropriate or reliable. Additionally, they 
considered PRCC and ChRCC as one low-grading group, 
which is not reliable due to the significant enhancement 
difference between PRCC and ChRCC. Furthermore, 
they did not indicate how many cases for each subtype 
they had.

On the other hand, Pierorazio et  al. [37] with simi-
lar sample size to Pano et  al. agreed with our results as 
reported CRCC and RO had the higher peaks of enhance-
ment especially in the corticomedullary and nephro-
graphic phases, respectively, compared with PRCC and 
ChRCC. Moreover, other studies are supporting our 
results and concluded that CRCC and RO had the highest 
enhancement changes compared with ChRCC and PRCC 
and the last has the least degree of enhancement [11, 38].

Separating ChRCC and PRCC is the third phase in our 
methodology. During this phase, only size, arterial, and 
delayed attenuations represent the best classifier, with 
AUC values of 0.94 and 0.93 in the validation and train-
ing cohorts, respectively. Size and vascular attenuations 
had a favorable correlation with ChRCC. On the other 
hand, delayed attenuations demonstrated a favorable 
correlation with PRCC. These patterns of enhancement 
suggest that PRCC has almost progressive enhancement, 
particularly when contrasted to ChRCC in the delayed 
phase. Widespread agreement on this pattern of PRCC 
enhancement has been found in the literature [11, 25, 
38–41], confirming our findings and giving a clear expla-
nation for the high AUC [94%].

The present study has some limitations. First, due to 
its retrospective nature, it could have a selection bias; 
however, this study design provided us with this large 
number in each category. Secondly, being a single-center 
study, this necessitates being implemented for validation 
with a multicenter project, preferably a prospective study 
design. Third, this study does not include low fat angio-
myolipoma which has a low incidence in our target sam-
ple make it unsuitable for statistical analysis which favors 
multicenter study.

Conclusion
In conclusion, this study presents a new and simple ana-
lytical approach using a large sample size of RCC sub-
types and RO based on MDCT findings and clinical 
parameters and indicates that the provided models can 
differentiate between RCC and RO with multiphase anal-
ysis with high accuracy.  Furthermore, the radiologists 
can simply apply the provided algorithm Fig.  6 during 
the daily practice to enhance the interpretation accu-
racy regarding the subtype discrimination. Additionally, 
these results can present additional insights and future 
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recommendations for research work, taking into con-
sideration the current apply of radiomics features and 
machine learning models [42–44].
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