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Abstract 

Background  In normal circumstances, AT secretes anti-inflammatory adipokines (AAKs) which regulates lipid 
metabolism, insulin sensitivity, vascular hemostasis, and angiogenesis. However, during obesity AT dysfunction occurs 
and leads to microvascular imbalance and secretes several pro-inflammatory adipokines (PAKs), thereby favoring ath-
erogenic dyslipidemia and insulin resistance. Literature suggests decreased levels of circulating AAKs and increased 
levels of PAKs in obesity-linked disorders. Importantly, AAKs have been reported to play a vital role in obesity-linked 
metabolic disorders mainly insulin resistance, type-2 diabetes mellitus and coronary heart diseases. Interestingly, AAKs 
counteract the microvascular imbalance in AT and exert cardioprotection via several signaling pathways such as PI3-
AKT/PKB pathway. Although literature reviews have presented a number of investigations detailing specific pathways 
involved in obesity-linked disorders, literature concerning AT dysfunction and AAKs remains sketchy. In view of the 
above, in the present contribution an effort has been made to provide an insight on the AT dysfunction and role of 
AAKs in modulating the obesity and obesity-linked atherogenesis and insulin resistance.

Main body  “Obesity-linked insulin resistance”, “obesity-linked cardiometabolic disease”, “anti-inflammatory adi-
pokines”, “pro-inflammatory adipokines”, “adipose tissue dysfunction” and “obesity-linked microvascular dysfunction” 
are the keywords used for searching article. Google scholar, Google, Pubmed and Scopus were used as search engines 
for the articles.

Conclusions  This review offers an overview on the pathophysiology of obesity, management of obesity-linked 
disorders, and areas in need of attention such as novel therapeutic adipokines and their possible future perspectives 
as therapeutic agents.

Keywords  Adipokines, Adipose tissue dysfunction, Anti-inflammatory adipokines, Atherogenic dyslipidemia, Insulin 
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Background
The outrage of obesity and its metabolic disorders is 
a major problem worldwide [1], and it is the cause of a 
higher premature death rate [2].  World Health Organi-
zation  (WHO)  estimated over 1.9 billion adults and 
older are overweight, out of which 650 million adults 
were obese in 2016.  It is estimated that about 13%  of 
the total world’s adult populations (11% men and 15% of 
women)  were reported to be obese in 2016.  The preva-
lence of obesity had tripled between 1975 and 2016 [3]. 
Obesity has a devastating effect on the vascular system 
creating adverse conditions that favor coronary artery 
disease  (CAD).  During obese state, the risk of various 
microvascular diseases such as hypertension, atheroscle-
rosis, and myocardial infarction (MI)  increases dramati-
cally [4] and has been declared a major cause of death in 
both developed and developing nations in the twenty-
first century [5]. Childhood obesity is one of the alarm-
ing concerns putting children and adolescents in poor 
health risk. As per the Centers for Disease Control and 
Prevention (CDC), the prevalence of obesity was 19.3% 

and affected about 14.4 million children and adoles-
cents in the USA. Obesity prevalence was 13.4% among 
2-  to 5-year-olds, 20.3%  among 6-  to 11-year-olds, and 
21.2% among 12- to 19-year-olds [6]. Therefore, obesity is 
not only a health hazard for the elderly but also children. 
Adipose tissue (AT) plays a vital role in the development 
of inflammation that contributes to the development of 
cardiometabolic risks in obesity [7, 8]. Abdominal obe-
sity is one of the primary risk factors which is associ-
ated with blood-lipid disorders, inflammation, insulin 
resistance or type 2 diabetes  mellitus  (T2DM),  thereby 
increasing cardiovascular morbidity [9].  Persons hav-
ing abdominal obesity or with a central deposition of 
AT are highly susceptible to cardiovascular morbidity 
and mortality, including stroke, congestive heart fail-
ure and MI [10, 11]. Adipokines are generally produced 
by AT and involve different mechanisms such as energy 
homeostasis, metabolism, thermogenesis, reproduc-
tion, and immunity [12].  There are two different types 
of adipokine produced by fat tissue.  The pro-inflamma-
tory adipokines  (PAKs) include resistin, leptin, tumor 
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necrosis factor α  (TNF-α),  etc.,  are produced in higher 
quantity during obese state. The anti-inflammatory adi-
pokines  (AAKs) are adiponectin, omentin-1, secreted 
frizzled-related protein 5 (Sfrp5),  and a few members 
of C1q/TNF-related protein  (CTRP)  family.  These adi-
pokines have a close link to inflammation and car-
diovascular health  via  paracrine effects or by affecting 
endothelial function [12, 13]. During obesity, expression 
of PAKs is upregulated while of AAKs is downregu-
lated. The presence of higher levels of AAKs is presumed 
to have protective action against obesity and associated 
damage and may play a crucial role in the management of 
obesity-linked cardiometabolic complications. Therefore, 
in this review we offer an overview on the pathophysiol-
ogy of obesity, management of obesity-linked disorders, 
and areas in need of attention such as novel therapeutic 
adipokines and their future perspectives.

Main text
Microvascular dysfunction in adipose tissue during obesity
AT undergoes several biochemical changes that are 
involved in pathophysiology in the development of 
cardiometabolic disease  (CMD).  AT is known as the 
biological reservoir of energy  (caloric).  Adipocytes are 
the primary cell type responsible for the storage of excess 
calorie as triglyceride  (TG)  in the cellular lipid droplet 
without causing lipotoxicity to other cells.  They expand 
to accommodate TG within the adipocyte [14].

Effects of expansion of fat in the microvascular system 
of adipose tissue
AT is composed of adipocytes, and other cell types, such 
as lymphocytes, macrophages, fibroblasts, and vascular 
cells [8].  AT expands and stores lipids in response to 
chronic excess caloric conditions [15], playing a vital role 
in appropriate angiogenesis, vascular and extracellular 
matrix (ECM) remodeling [16]. AT expands through the 
combination of adipocyte hypertrophy of pre-existing 
cells and hyperplasia [17]. Adipocyte hyperplasia permits 
healthy expansion of AT, while adipocyte hypertrophy 
without hyperplasia leads to lipid overload, causing 
adipocyte dysfunctions, resulting in cell death, initiation 
of AT inflammation and dysfunction followed by number 
of steps which leads to the development of insulin 
resistance and atherogenic dyslipidemia [18].

In obesity, adipocyte size gets increased, but there is 
no such concomitant increase in microvascular capillary 
density. Therefore, the demand for critical nutrients 
such as oxygen, glucose, and lipids could not be fulfilled 
due to insufficient capillary density [19], and hence, a 
group of adipocytes is cut off from the main supply to 
the vasculature, and initiates inflammatory processes 
[20]. AT has dense microvessels to maintain the tissue 

perfusion and nutrient supply adequately.  It is believed 
that responsiveness of these microvessels is altered 
during obesity thereby having a significant impact 
on metabolism as well as nutrient transfer leading to 
insufficient AT perfusion and resulting in AT hypoxia.

Immune cell infiltration in AT dysfunction
Hypertrophic adipocyte  necrosis  (HAN)  is a 
consequence of AT expansion;  HAN contributes to 
the infiltration of macrophages in AT [21], thereby 
increasing the numbers of T cells, B cells, macrophages, 
neutrophils, and the mast cells.  Anti-inflammatory 
cytokines interleukin  (IL)-10 and transforming growth 
factor beta (TGF-β) are also released by M2 macrophage 
and T regulatory cells (Treg), which increases the insulin 
sensitivity and inhibits AT inflammation and dysfunction 
[22].  In lean AT mass conditions, macrophages in AT 
express CD206  (CD206 +)  but CD11c  (CD11c-)  are 
not expressed, whereas, in obese tissue macrophages 
express CD11c (CD11c +) but not CD206 (CD206-) [23]. 
CD11c + is also known as M1 polarized, and it is believed 
to be the contributor to inflammation and metabolic 
dysfunction of AT in obesity. Polarization of M1 increases 
the production of hypoxia-inducible factor 1α  (HIF1-α) 
[24], which upregulates pro-inflammatory cytokines such 
as interleukin-6  (IL-6), tumor necrosis factor-α  (TNF-
α)  and monocyte chemoattractant protein-1  (MCP-
1).  These cytokines damage the microvessels.  Damages 
to the AT arterioles lead to the dysregulation of the AT 
microcirculation [24, 25].

Other mechanisms involved in the progression of AT 
inflammation are endoplasmic reticulum (ER) stress and 
oxidative stress. Obesity induces ER stress in AT and liver 
tissues.  Nutrients such as lipids and cytokines trigger 
the inflammatory kinases, e.g., c-Jun amino-terminal 
kinase  (JNK), nuclear factor kappa-β(NF-kβ), inhibitor 
of kinase-β  (IKK-β)  at the molecular and cellular levels 
[26]. During ER stress, a complex response called 
unfolded protein response (UPR) takes place to maintain 
the functional integrity of the organelles through three 
major signaling molecules namely inositol-requiring 
enzyme 1  (IRE-1), PKR-like endoplasmic reticulum 
kinase  (PERK)  and activating transcription factor 
6  (ATF6) [27].  The presence of ER stress activates JNK 
and IKK, which regulates the production of inflammatory 
cytokines including TNF-α. Exposure to TNF-α induces 
ER stress, and ER stress itself increases the expression of 
TNF-α resulting in more general inflammatory responses 
[28].  Similarly, reactive oxygen species  (ROS)  emerges 
from the mitochondria and/or ER and activates JNK and 
IKK, eventually, more ER stress, blocks insulin action and 
produces more ROS and causes broader inflammatory 
responses due to oxidative stress. The outcomes of 
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oxidative stress in metabolic diseases are directly 
linked to diabetic complications through endothelial 
dysfunction [29].  In oxidative stress and insulin 
resistance, inflammatory pathways such as NF-kβ and 
JNK are activated in adipocytes, muscle cells, and impair 
insulin secretion in pancreatic β-cells [30]. In T2DM, 
β-cells synthesize and secrete insulin continuously due to 
its activation associated with unresolved hyperglycemia, 
thereby causing cellular stress that induces deterioration 
and apoptosis of β-cells [31].

In the obese state, the number of adipose tissue  
macrophages  (ATMs)  present in AT plays a critical  
role in the progression of metabolic dysfunction. ER  
stress has been shown to suppress M2 polarization of 
macrophages in obesity [32].  M2 macrophages usu-
ally generate anti-inflammatory cytokines IL-10 and 
IL-1 decoy receptors.  M2 polarization results in 
increased production of  “arginase”, an enzyme which 
blocks inducible nitric oxide synthase  (iNOS)  activ-
ity and competes with the arginine, a substrate required 
for nitric oxide  (NO)  production [33]. M2 polarization 
occurs  via  activation of Signal Transducer and Activa-
tor of Transcription 3 (STAT3) and STAT6 pathways by 
IL-4/13 and IL-10 secreted by T helper 2 (TH2) cells. On 
the other hand during ER stress, pro-inflammatory 
cytokines such as IFN-γ, TNF-α or Toll-like recep-
tors  (TLR)  are released resulting in M1 polarization. 
AT is dominated by M1 macrophages and inflammatory 
pathways like NF-kβ and STAT1 are activated which sup-
presses the M2 polarization and resulting production of 
pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β 
and consequently AT inflammation [34].

In AT dysfunction, M1 macrophages form aggregates 
around the necrotic lipid droplets that are formed as 
a result of adipocyte lipolysis [35].  After adipocyte 
lipolysis, the leukocyte aggregates are shared with mast 
cells, CD4 + and CD8 + T cells.  In AT, CD4 + TH  cells 
include Treg, TH1, and TH2 and CD8 + T regulates 
local inflammation through the cytokine secretion 
which is involved in the differentiation and polarization 
of macrophages [36]. Polarization of M1 macrophages 
stimulates the inflammatory cytokine production and 
increased infiltration of pro-inflammatory CD8 + T 
and shifts towards higher CD8 + T/CD4 + ratio [36]. 
In this condition, infiltration and accumulation of T 
cells (CD8 + , and TH1 CD4 + T) leads to loss of Treg 
anti-inflammatory cells followed by induction of B 
cells, natural killer (NK) cells, Type-1 natural killer 
(NKT) cells, eosinophils, neutrophils, and mast cells 
[37]. These cells helps in the progress of atherosclerotic 
progression through the release of pro-inflammatory 
cytokines including TNF-α, leptin, IL-6, resistin, etc. M1 
macrophages are immunoreactive to oxidized low density 

lipids (oxLDL) resulting from lipolysis in adipocytes. The 
accumulation and retention of LDL within the artery 
walls is mediated by interaction between apolipoprotein 
B-100 and proteoglycan binding and undergoes oxidation 
and enzymatic modification and produces oxLDL 
[38].  Accumulation of oxLDL triggers inflammatory 
response and activates cells within arterial intima and 
induces the expression of inflammatory cytokines, 
chemokines and adhesion molecules.  The adhesion 
molecules then adhere monocytes to endothelium 
and migrate to arterial intima [39].  Failure to remove 
accumulated oxLDL by scavenger receptors results in 
cholesterol droplets available to cytosol and transform 
these macrophages into foam cells, an early characteristic 
of atherosclerosis [40].

Fatty acid metabolism is regulated by peroxisome 
proliferator-activated receptor (PPAR) and liver X 
receptor (LXR). These two regulate fatty acid metabolism 
transcriptionally.  PPAR controls fatty acid degradation, 
whereas LXR regulates the synthesis of fatty acid by 
activating sterol regulatory element-binding protein-1c 
[41]. Despite their opposite action in lipid metabolism, 
PPAR and LXR enjoy some common features and 
have anti-atherosclerotic effects.  PPAR controls the 
cholesterol efflux in foam cell macrophages through the 
LXR-dependent  ATP-binding cassette  (ABC)  pathway 
and activation of PPAR inhibitors foam cell formation 
and thereby atherosclerosis [42, 43].  Activation of 
the LXR upregulates the expression of ABCA1 and 
ABCG1  and accelerates reverse transport of cholesterol 
[44]. Activation of LXR also increases the expression 
of ABCG5 and ABCG8 in the intestine tissue, which 
regulates the absorption of cholesterol and protects 
against atherosclerosis [45].  Similar action is seen with 
PPAR activation in rats and mice [46].  Both LXR and 
PPAR facilitate the movement of cholesterol from 
peripheral cells to the feces and are called reverse 
transport cholesterol.

In obesity, oxLDL is recognized by toll-like receptor-4 
(TLR-4)  and plays a critical role in development of 
atherogenesis. Activation of TLR-4 enhances lipid uptake 
by macrophage thus develops foam cells [47].  Polarized 
M1 stimulates TLR-3, TLR-4 or TLR-9 and upregulates 
the expression of scavenger receptor A,  macrophage 
receptor with collagenous structure (MARCO) and lectin 
like low-density lipoprotein receptor-1  (LOX-1), hence 
enhancing foam cell formation [48].

Role of obesity in alteration of vascular structure 
and function of AT
The link between obesity and vascular endothelial 
growth factors  (VEGF) is crucial in the development of 
hypertension and atherosclerosis [8].  During obesity, 
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VEGF secretion increases in an insulin-dependent 
manner [49]. VEGF levels also rise during the expansion 
of vascular adipose tissue  (VAT) [50, 51]. VEGF-A 
improves vascularization and turns white adipose 
tissue  (WAT)  to brown adipose tissue  (BAT).  This is 
associated with an increase in energy expenditure and 
attenuates diet-induced metabolic effects such as insulin 
resistance and hepatic steatosis [51, 52]. On the contrary, 
in obesity, adipocytes restrict deletion of VEGF-A 
resulting in limited AT vascularization thereby higher AT 
inflammation and systemic metabolic dysfunction [4, 53]. 
HIF1-α is the key regulator of VEGF expression, which 
gets upregulated in AT expansion during obesity [53].

Fat expansion outgrows the blood supply due to defi-
cient angiogenesis and prompt ischemia, hypoxia, necro-
sis, and inflammation within the adipose milieu [54]. The 
individuals with obesity develop capillary dropout and 
suffer a deficiency of vascularization, mainly in visceral 
fat; the ensuing consequences are inflammation and 
metabolic dysfunction [24, 55].  A marked difference 
is also observed in genetic transcription of visceral fat 
and subcutaneous fat in the obese state in comparison 
to lean state [24]. For instance a gene Angiopoietin-like 
4 (ANGPTL4)is mainly expressed in AT [56], secreted by 
adipocytes and is known to possess pro-angiogenic effect 
and has been studied thoroughly due to its inhibitory 
effect on lipoprotein lipase, an enzyme which is responsi-
ble for TG metabolism, and responsible for the triglyceri-
demia when overexpressed [57, 58].

Circulating leukocyte recruitment in the endothe-
lium represents the pathophysiology of  macrovascular 
and microvascular diseases [59].  Under normal circum-
stances, endothelium does not bind/interact with circu-
lating leukocytes. Various adhesion molecules including 
selectins and cellular adhesion molecules  (CAMs)  are 
expressed in the luminal surface of endothelial cell during 
the early stage of endothelial dysfunction and these mol-
ecules act as receptors for glycoconjugates and integrins 
which are present in the circulating leukocytes [60]. Tra-
ditionally, it has been believed that prolonged exposure 
of the vascular endothelium to elevated circulating levels 
of metabolites or inflammatory mediators, such as glu-
cose, free fatty acids  (FFAs), oxLDL, and cytokines, and 
endothelial dysfunction occurs by perturbing endothe-
lial cell homeostasis [61].  However, as the research 
progressed over the periods of time, recent research 
emphasizes the role of AT and unbalanced secretion of 
mediators by adipocytes in obesity as major causes of 
endothelial dysfunction [62]. AT dysfunction leads to the 
activation of inflammatory signals that directly or indi-
rectly act from white adipocytes and actively contributes 
to the circulating milieu and induces vascular dysfunc-
tion [63].

Under normal physiologic conditions, the type I 
transmembrane glycoprotein vascular cell adhesion 
molecule-1  (VCAM-1)  expression is absent or very 
low, however, its expression can be triggered by 
cytokines such as TNF-α [60] and the role of VCAM-1 
on atherosclerosis is well explained in animal as well as 
in human study[64, 65].  Apart from CAM expression, 
endothelium dysfunction causes loss of endothelial 
NO (eNO). Consequences of loss eNO are hypertension 
to several associated complications, including increased 
endothelial adhesion molecules expression which 
further leads to development of atherosclerosis [66]. NO 
possess anti-inflammatory effect and the effect is mainly 
based on the inhibition of the leukocyte–endothelial 
interactions.  NO exert the anti-inflammatory effect 
by inhibiting exocytosis of Weibel Palade bodies and 
reducing NF-kβ expression [67].

Endothelial dysfunction is an early marker of 
cardiovascular disease  (CVD), healthy endothelium is 
actively capable of inhibiting the pro-atherogenic process 
by NO pathway. AT express numbers of PAK including 
leptin, resistin, TNF-α, as well as AAK including 
adiponectin, Sfrp5, CTRPs, etc., respectively.  ATMs 
are responsible for the production of these adipokines. 
Adhesion molecules such as P-selectin, E-selectin, and 
intracellular adhesion molecule  (ICAM-1)  are highly 
expressed in AT. Leukocyte recruitment, rolling and 
MCP-1 are increased with the adhesion molecule 
expression and promotes leukocyte transmigration and 
integrins, which increases the adherences to the intima 
[7].  In this condition phagocytosis of LDL particles by 
monocytes leads to formation of foam cells and develops 
a fatty streak followed by plaques. These plaques are very 
prone to rupture followed by thrombus formation which 
subsequently favors the occlusion of artery and infarction 
occurs. PAK modulates smooth muscle cell constriction, 
proliferation and migration.  PAK also hampers the 
release of AAK from AT [68, 69]. TNF-α, IL-6 inhibits the 
expression and release of AAKs. PAKs like leptin, at high 
concentration, promote adhesion and transmigration 
of monocytes through the derived capillary endothelial 
cells  (AT-ECs) [70].  Leptin upregulates the expression 
of MCP-1 and increases the production of endothelial 
ROS and JNK activity and also enhances the DNA 
binding activities of redox-sensitive transcription factors 
NF-kβ and activator protein-1(AP-1) [71]. Resistin also 
directly injures endothelium by increasing production 
and expression of adhesion molecule VCAM-1 and 
MCP-1  via  endothelin-1 by endothelial cells [72]. 
During endothelial dysfunction circulating levels of 
AAKs are decreased.  AAKs, e.g.,  adiponectin, exert 
anti-inflammatory effect on endothelial cells and inhibit 
TNF-α thereby reducing the expression of adhesion 
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molecules and other inflammatory cytokines [73]. 
Therefore, the balance between AAKs and PAKs plays 
an important role in the development and progression of 
atherosclerosis.

Another most important harmful effect of obesity is 
arterial stiffness. Arterial stiffness is structural and func-
tional changes in the intimal, medial and adventitial lay-
ers of the vasculature. In stiff arteries, the propagation 
of pulse wave is faster and due to increased velocity, 
an altered hemodynamic changes especially increased 
central systolic blood pressure and pulse pressure are 
observed which have an negative impact on myocardium 
due to increased left ventricular afterload and decreased 
coronary blood flow [74]. Arterial stiffness is considered 
one of the valuable risk factors for the CHD.

In obesity metabolic changes in AT result in altered 
secretion of hormones and cytokines such as  TNF-α, 
IL-6, leptin, resistin, adiponectin, etc. Increased levels 
of adipocyte derived cytokines impairs the insulin 
sensitivity and enhances the recruitment and activation 
of pro-inflammatory immune cells in the vasculature 
which contribute in the development of arterial stiffness 
[75].

Obesity‑induced fibrosis and remodeling of adipose tissue
Adipocytes in AT are encircled by ECM. ECM proteins 
provide mechanical support and regulate adipogenesis 
and lipid droplet growth. In the obese state, ECM 
undergoes modification to accommodate the adipocytes. 
In obesity, a rapid expansion of AT leads to ECM 
remodeling and thereby persistent hypoxia, which 
activates HIF1-α [76]. In obese state, there is 30–40% 
lower blood flow to AT, 44% lower capillary density 
and 58% lower VEGF growth [77]. Pre-adipocytes and 
mature adipocytes usually generate a substantial amount 
of macrophage migration inhibition factor (MIF). 
Expression levels of MIF are positively correlated with 
Body mass index (BMI) of an individual [78].

In obesity AT hypoxia leads macrophage infiltration to 
that hypoxic area of AT. Hypoxia activates macrophage, 
and subsequently activation of HIF1-α occurs which 
then inhibits differentiation of pre-adipocyte thus 
fibrosis of AT. Hypoxia also inhibits differentiation of 
adipocytes from pre-adipocytes [24]. Leptin signaling 
controls the inhibition of pre-adipocyte differentiation 
[79]. Pre-adipocyte shows higher expression of PAKs 
than the adipocytes. It is considered that, one per 
cent hypoxia is sufficient to enhance the significant 
release of VEGF, IL-6, and PAI-1 from pre-adipocytes; 
however, the hypoxic value stands for adipocyte is one 
and half of that of pre-adipocytes [80]. Under hypoxic 
conditions, adipocytes express HIF1-α and recruit HIF-1 
protein [24]. Adiponectin and leptin secretion are very 

sensitive to hypoxic conditions of adipocytes. Hypoxia 
also modulates major inflammatory secretion of major 
inflammatory adipokines such as IL-6, MIF (macrophage 
migratory inhibitory factor), VEGF, serum amyloid A and 
matrix metallopeptidase 2 (MMP-2) and adiponectin 
[24]. Endotrophin, a compound generated during the 
cleavage of α3 subunit of collagen VI (COL 6), secreted by 
adipocytes promotes AT fibrosis and systemic metabolic 
dysfunction [81].

Obesity‑linked atherogenic dyslipidemia and insulin 
resistance
Atherogenic dyslipidemia and insulin resistance are the 
two main manifestations of CMD linked to obesity. The 
genetic component responsible for obesity and insu-
lin resistance has not yet been completely understood. 
Vascular inflammation and diabetes are common phe-
nomena in obesity [82].  Metabolic products like lipids, 
hormones, and cytokines formed as a result of obesity-
related biochemical processes are also responsible for 
insulin resistance and metabolic dysfunction.  Insulin 
resistance hinders the insulin signaling pathways in 
muscles, endothelial cells and AT [83]. The mecha-
nisms started with PAKs or metabolic excess including 
TNF-α, endothelin-1, FFA or ER stress which exhibit 
ser/Thr phosphorylation of insulin receptor substrate 
1(IRS1) and cause insulin resistance. Dysregulation of 
insulin signaling associated with numerous disorders 
such as dyslipidemia, hypertension, cardiovascular dis-
ease, stroke, etc. In insulin resistance, acute and chronic 
inflammation plays a dynamic role and also provides 
information about the role of diets, physiological stress 
and obesity. Inflammatory cytokines like IL-6, TNF-α 
stimulates lipolysis and generates free fatty acid from 
TGs during obesity. One of the main reasons for insulin 
resistance and T2DM is due to heterologous and feed-
back inhibition of insulin signaling which is mediated by 
phosphorylation of IRS1. Pro-inflammatory cytokines 
including IL-6 and TNF-α are produced from AT during 
obesity. TNF-α promotes serine phosphorylation of ISR1 
and IRS2 and is closely associated with insulin resist-
ance [26]. TNFα plays an active role in insulin resistance 
because of its ability to bind IRS1 and IRS2 thereby phos-
phorylates serine residue and inhibits insulin stimulated 
tyrosine phosphorylation [84]. Tyrosine phosphorylation 
at specific sites on receptor substrates are very important 
for glucose uptake, lipogenesis, and glycogen and protein 
synthesis, as well as for stimulation of cell growth [85]. 
Phosphorylation of serine residue of the insulin substrate 
interferes with the tyrosine phosphorylation by decreas-
ing the binding of insulin receptors or degradation of 
IRS1(Fig. 1) [86].
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Ubiquitin-mediated degradation of IRS1 and IRS2 is 
another mechanism which promote cytokine induced 
insulin resistance and have contribution in diabetes as 
well as in β cells dysfunctioning. Suppressor of cytokine 
signaling (SOCS)  1 and 3 are proteins which bind to 
distinct domains of insulin receptor and plays important 
role in insulin receptor mediated phosphorylation 
of IRS1 and IRS2.  SOCS1 overexpression in the liver 
inhibits IRS2 tyrosine phosphorylation and SOCS3 
overexpression decreases tyrosine phosphorylation in 
both IRS1 and IRS2 [87].  Resistin and leptin increase 
the expression of SOCS1/3 in liver which causes insulin 
resistance and upregulates the key regulator for the 
production of fatty acid synthesis and sterol regulatory 

element-binding protein 1c (SREBP-1c) expression. Thus, 
SOCS1 and SOCS3 are linked to inflammation, metabolic 
stress, insulin resistance and glucose intolerance.

Mitochondria is the major site of lipid degradation 
and plays an important role in metabolic health as 
mitochondrial dysfunction is associated with the ageing 
process as well as metabolic disorders [88].Maintenance 
of the intracellular redox environment  (RE)  is 
crucial in order to carry out cellular vital functions 
[89].  Mitochondria maintains intracellular RE and 
constitutes subcellular compartments with peroxisomes, 
the area for lipid degradation [90]. Fatty acids  (FAs) are 
degraded by β-oxidation and its rate depends upon 
demand such as increased work and ATP utilization 

Fig. 1  Inflammatory adipokines suppress insulin signaling resulting in insulin resistance. IRS1/2 phosphorylated on specific tyrosine residues 
activates the phosphatidyl inositol 3-kinase (PI3K)-AKT/protein kinase B (PKB) pathway and Ras-mitogen-activated protein kinase (MAPK) pathway. 
PI3K-AKT signaling pathway regulates metabolic processes such as glucose uptake(muscle and adipocytes), glycogen synthesis (muscle and liver), 
protein synthesis(muscle and liver), and gluconeogenesis (liver). Inflammatory signals, TNF-a, IL-6, Leptin and saturated free fatty acid, activate 
inhibitory molecules such as SOCS and JNK to suppress insulin signaling resulting in insulin resistance. PI3K-dependent PDK1 activation is negatively 
regulated by phospholipid phosphatases such as phosphatase and tensin homolog (PTEN) that degrade PIP3 [86]. doi: 10.3389/fendo.2013.00071, 
Reproduced with permission Frontiers in Endocrinology)
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proceeds faster oxidative phosphorylation (OxPhos) and 
tricarboxylic acid (TCA) cycle activity.

Lipids are usually presented as albumin bound FAs 
by AT or by coronary vascular endothelial lipoprotein 
lipase as a catabolized very low density lipid (VLDL) 
complex. Long-chain FA (LCFA)transport occurs 
across sarcolemma through the carrier such as, fatty 
acid transporter protein 1(FATP1); plasma membrane-
associated fatty acid-binding protein (FABP); long-chain 
fatty acid transporter (LCFAT); plasma membrane 
sodium-dependent carnitine transporter (OCTN2); 
fatty acid translocase CD36(FAT/CD36).  Similarly in 
mitochondria, carnitine palmitoyltransferase 1(CPT1); 
carnitine acylcarnitine translocase (CACT).

LCFA when enters the cell, it forms thioesters with  
coenzyme A  (CoA)  and are oxidized in the mitochon-
dria  via  β-oxidation or forms triacylglycerol  (TAG) 
via esterification. TAG is stored in the form of lipid drop-
lets. Activation of LCFA occurs by long-chain acyl-CoA 
synthetase in mitochondrial outer membrane.  However, 
mitochondrial inner membrane limits the entry of acyl-
CoAs. The transporter protein CPT1 plays an important 
role and converts long-chain acyl CoA to long-chain 
acylcarnitine, which is subsequently entered into the 
mitochondria [91].

A prominent theory states that the relation between 
the FA oxidation and insulin resistance.  It suggests that 
muscle insulin resistance occurs due to the impaired 
mitochondrial uptake and fatty acid oxidation [92].  It 
explains that long-chain acyl-CoA derived from lipids 
or intramuscular triacylglycerol  (IMTG) are diverted 
away from CPT1, the mitochondrial enzyme responsible 
for first and essential step in β-oxidation of LCFA.  On 
the contrary, it is moved towards the synthesis of 
signaling intermediates such as diacylglycerol (DAG) and 
ceramide.  Accumulation of these and other lipid 
molecules engaged stress activated serine kinases which 
interfere with insulin signal transduction[93, 94].

Dyslipidemia is a disorder in the contents of lipids, 
where cholesterol and TGs are the key factors that play 
a crucial role in the development of atherosclerosis. 
Atherogenic dyslipidemia is characterized by an elevated 
level of TG, and lower levels of high-density lipid 
cholesterol  (HDL-C).  The link between dyslipidemia, 
obesity and atherosclerosis have been studied thoroughly 
by many researchers.  The formation of atherogenesis 
is influenced by diverse adipokines.  Atherogenesis is 
not only about deposition of fat into the arterial wall 
but the role of the adaptive and innate immune system 
have to be considered [95].  Atherogenesis starts in 
the specific site where endothelium is submitted to 
shear stress clearly at aortic root, aortic arch, superior 
mesenteric artery, and renal arteries [96]. In this position, 

endothelial dysfunction and permeability of the intimal 
layer occurs which favors the migration of LDL particles 
to sub-endothelial space [97]. In the presence of leptin, 
TNF-α, endothelial dysfunction and transmigration 
of LDL particles get worse.  Here, LDL particles are 
oxidized  (oxLDL), which can be positively related to 
MCP-1 level. The presence of MCP-1, IL-6, leptin and 
TNF-α increases the expression of adhesion molecules 
such as  VCAM-1 and ICAM-1 in endothelium and 
enhances leukocyte transmigration. Under the influence 
of MCP-1 monocytes are developed into macrophage 
and phagocytes oxLDL and turn into foam cells [98]. IL-6 
is produced by smooth muscle cells  (SMC)  under the 
influence of angiotensin-II. IL-6 and MCP-1 increase the 
recruitment and proliferation of SMC and extracellular 
matrix to form a fibrous cap around the necrotic lipid 
core.  In the presence of matrix metalloproteinases and 
prothrombotic molecules, MCP-1 and leptin help in 
rupturing the plaque formed and thrombus formation 
[96]. The atherosclerotic plaque thus formed causes 
occlusion of the coronary artery, thereby reducing the 
blood supply to the heart.  Due to complete blockage of 
the coronary artery, the heart muscle does not get enough 
supply of oxygen and starts to die causing ischemia and 
eventually MI.

Although the treatment regime for the treatment 
of LDL cholesterol, blood pressure and glycemia have 
improved, atherogenic dyslipidemia remains as a silent 
killer due to being underdiagnosed and undertreated 
in clinical practice [99]. Atherogenic dyslipidemia is 
commonly associated with CVD, T2DM and contributes 
both macrovascular as well as microvascular residual 
risks. To reduce the residual risks of patients with 
atherogenic dyslipidemia, a residual risk reduction 
initiative was established to address this clinical issue. In 
2014, a meeting with European experts in CVD and lipid 
was convened in Paris, France, to discuss atherogenic 
dyslipidemia, lipid and its associated CV risks. They 
concluded that elevated levels of LDL-c have greater risk 
for CV than low LDL-c and could be treated with statins. 
However, even after treating with statins some patients 
have abnormal lipid profiles especially with elevated 
levels of TGs, low levels of HDL-c which presents 
residual CV risk. Therefore, it was recommended to 
measure the levels of TGs and HDL-c to manage the 
overall residual CV risk. They recommended use of statin 
along with other lipid lowering drugs such as fenofibrate 
to achieve clinical benefits [100, 101]. Therefore, to 
counter atherogenic dyslipidemia along with proper 
diagnosis statin-combination therapy is recommended 
to get more clinical benefit patients with residual risk. 
However, this is not a proper treatment regime that can 
be completely safe and effective, therefore researchers 
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focus on new drugs with more efficacy and ensuring the 
effectiveness is still awaiting in atherogenic dyslipidemia. 
Since adipokines levels change during dyslipidemia 
and AAKs have been reported to have anti-atherogenic 
effects, it would be interesting to see the adipokines’ role 
as a marker and therapeutic agent in treating atherogenic 
dyslipidemia in the near future.

Adipokines in atherogenic dyslipidemia and insulin 
resistance
Adipokines came to attention when the leptin, an AT 
specific adipokine, proved to be an important regulator 
for food intake and energy expenditure [102].  Since 
the discovery of leptin, new adipokine attracted the 
attention of researchers due to its utter responses 
between CVDs, obesity and metabolic disorder. This new 
adipokine plays numerous roles in the microcirculation 
of  AT and affects target organs through autocrine, 
paracrine or endocrine pathways [103].  Adipokines 
are being classified according to their beneficial and 
harmful effect on the body.  The beneficial effects of 
adipokines are cardioprotection, promoting endothelial 
function, angiogenesis, and  insulin-sensitizing effect, 
whereas harmful effects include atherosclerosis, insulin 
resistance and inflammation [104]. The beneficial action 
of the adipokines are mostly exerted by AAKs, whereas 
PAKs are responsible for the deleterious effect. A list of 
preclinical and clinical studies of the AAKs are listed in 
Tables 1 and 2

It is important to know that the former effects are 
exerted by AAKs whereas later by PAKs, whereas 
many adipokines function are yet to be reported.  Most 
of the adipokines are derived from either VAT and 
subcutaneous adipose tissue (SAT) [51, 105].  Although 
there are numbers of AAKs and PAKs that act directly 
and indirectly on metabolic health of humans, in this 
article the adipokines which are actively and mostly 
found to be associated with atherogenic dyslipidemia 
and insulin resistance are considered for discussion. The 
PAKs are upregulated during obesity and can promote 
obesity-linked CMDs. Most of the PAKs that researchers 
think to be involved with the metabolic diseases are 
leptin, TNFα, IL-6 and resistin. Alternatively there are 
AAKs that are thought to be useful in the prevention or 
therapeutic intervention of the metabolic diseases are 
adiponectin, omentin-1, some members of CTRP family 
and Sfrp5. The level of these PAKs and AAKs changes 
in metabolic complications; therefore, function and 
therapeutic intervention of the adipokines/or with the 
adipokines can be a game changer in the management 
or therapeutic prospects and their potential utility as a 
biological marker in the management of CMDs.

Pro‑inflammatory adipokines (PAKs)
Tumor necrosis factor (TNF‑α)
TNF-α is secreted from myeloid cells  via  activation of 
mitogen-activated protein kinase  (MAPK)  and NFkB 
signaling and responsible for secretion of other inflam-
matory cytokines, e.g., IL-1 and IL-6 [106]. It is the first 
WAT-derived PAKs reported to involve in initiation and 
progression of insulin resistance [26]. TNF-α are released 
by AT-resident macrophages and found to be overex-
pressed in obese animals AT [107]. It was observed that 
mice lacking TNF-α or its receptor are resistant to the 
development of insulin resistance [108]. TNF-α is higher 
in AT in obese human subject and positively correlated 
with insulin resistance[109, 110]. Long term treatment of 
anti-TNF-α inhibitor treatment patients with metabolic 
syndrome reported to be improved in fasting blood sugar 
and increased adiponectin levels[111]. TNF-α is involved 
in phosphorylation of IRS-1 receptors and has direct 
negative inference in the insulin signaling pathway [112]. 
TNF-α also affects the adipocyte differentiation and lipid 
metabolism, thereby indirectly induces insulin resist-
ance. TNF-α increases hepatic glucose production due to 
its action in promoting lipid metabolism and secretion of 
free FA [113]. TNF-α hinders the conversion of pre-adi-
pocyte to mature adipocytes through the downregulation 
of adipogenic genes such as peroxisome proliferator-acti-
vated receptor gamma  (PPAR-γ)  and CCAAT/enhancer 
binding protein  (C/EBP)  thus leads to expansion of AT 
mass [114]. TNF-α also activates NF-κβ genes and down-
regulates mRNA levels of adiponectin [115, 116]. How-
ever, the effect on immune response of TNF-α is mainly 
due to the enhancing secretion of other cytokines, such 
as IL-6, rather than direct effect [117].

Leptin
Leptin is 16-kd protein and was identified in obese gene 
(ob)of ob/ob mice [118]. Leptin is AT specific adipokines 
that regulates appetite, energy expenditure, behavior 
and glucose metabolism [119]. Mice lack of leptin shows 
hyperphagia, obesity, and insulin resistance.  However, 
delivery of leptin in ob/ob mice reverses the conditions 
[120]. When leptin is injected to ob/ob mice, it has mul-
tiple beneficial effects in health such as reduction in food 
intake, body mass, increased it has shown rapid reduc-
tion in food intake, body mass, increased energy expendi-
ture and restored euglycemia [121].  However, leptin is 
positively correlated with AT mass, obesity and increased 
levels of leptin does not have any expected decrease in 
food intake, signifying that leptin resistance occurs dur-
ing obesity [120]. In normal circumstances, leptin medi-
ates its anorexic actions in hypothalamus, by binding 
to the leptin receptor b  (LRb)  and through the activa-
tion of janus kinase 2/ Signal transducer and activator 



Page 10 of 28Roy et al. The Egyptian Heart Journal           (2023) 75:24 

Table 1  Preclinical evidence of anti-inflammatory adipokines in insulin resistance and atherogenic dyslipidemia

Adipokines In-vitro model/in-vivo model Administration mode Action or application type References

Adiponectin Bovine aortic endothelial cells – Adiponectin has vascular action and 
stimulate the production of NO therefore 
causes vasodilation; possess anti-atherogenic 
properties

[105]

Rabbit Renal artery Treatment with Adiponectin decreases the 
atherosclerotic plaque size

[106]

Human aortic endothelial cells, human 
monocyte cell line

– Adiponectin level is correlated with CAD risk [107]

Human aortic endothelial cells – Adiponectin modulates the inflammatory 
response of endothelial cells via NF-kβ 
signaling through a cAMP-dependent pathway

[108]

Human umbilical vein endothelial cells – Protection of endothelial monolayer from 
angiotensin II, or TNF-induced hyper-
permeability, modulation of microtubule 
and cytoskeleton stability via a cAMP/ PKA 
signaling cascade

[105]

HUVECs – Suppression of endothelial cell apoptosis, 
vascular protective activities

[110]

Ob/ob mice, ApoE-deficient Mice – Globular adiponectin (gAd) enhances fatty acid 
oxidation, ameliorate insulin resistance and 
atherosclerosis

[111]

Ob mice, wild type mice Subcutaneous injection Adiponectin replacement therapy attenuates 
myocardial damage in leptin-deficient mice

[112]

High-fat apolipoprotein E-deficient 
(ApoE − / −) mice

Via tail vein Suppress oxidative stress, lipid production. 
Administration of adiponectin reduces 
atherosclerotic lesions formation size and rate 
in the aorta and reduces TC, TG, and LDL-c 
levels

[113]

Rats Tail vein injection Adiponectin alleviate the coronary no-reflow 
injury in T2DM rats by protecting endothelium 
and improving microcirculation

[114]

Adiponectin knockout mice or wild type mice – Adiponectin protects hearts from cardiac 
ischemia/reperfusion injury via inhibition of 
iNOS and nicotinamide adenine dinucleotide 
phosphate-oxidase protein expression and 
resultant oxidative/nitrative stress

[115]

C57BL/6 mice Intraperitoneal injection Adiponectin activates AMPK pathway, 
regulates glucose metabolism and insulin 
sensitivity in vitro and in vivo

[116]

. PPAR-γ + /– mice Intraperitoneal injection In insulin resistance the levels of adiponectin 
is decreased. Replenishment of adiponectin 
improves insulin sensitivity and diminishes 
diabetes

[117]

Adiponectin-deficient (APN-KO) mice Adiponectin protects the heart from ischemia–
reperfusion injury via AMPK- and COX-2–
dependent mechanisms

[118]

Omentin-1 Cardiomyocyte – In T2D, omentin-1 level is decreased and 
Omentin-1 act as cardioprotective adipokine

[119]

Wistar rats – Omentin induces endothelium-dependent 
vaso-relaxation in rat isolated aorta 
via endothelium-derived NO through 
phosphorylation of eNOS

[120]

Wistar Rats – Omentin -1 level is modulated by AT during 
diabetes. Increased omentin-1 level interferes 
with the glucose metabolism pathway by 
stimulating phosphorylation of Akt in muscle 
tissue

[121]
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Table 1  (continued)

Adipokines In-vitro model/in-vivo model Administration mode Action or application type References

Wistar rats, Cultured vascular smooth muscle 
cells

– Omentin demonstrates anti-inflammatory 
effects, inhibits TNF-α induced VCAM. Omentin 
inhibits TNF-α-induced VCAM-1 expression via 
preventing the activation of p38 and JNK

[122]

Wistar Rats Subcutaneous Omentin-1 reduces blood pressure in rats via 
production of NO. Other anti-inflammatory 
adipokines such as adiponectin is increased 
following omentin-1 administration

[123]

Human Epicardial tissue – Circulating and epicardial AT-derived 
omentin-1 level decreased with patients with 
CAD

[124]

Human monocyte-derived macrophages, 
human aortic smooth muscle cells (HASMCs), 
and aortic lesions of Apoe-/- mice

Omentin-1 promotes anti-inflammatory M2 
phenotype during differentiation of human 
monocytes into macrophages
Omentin-1 suppresses oxidized low-density 
lipoprotein-induced foam cell formation. 
Omentin-1 levels were markedly reduced 
in coronary endothelium and epicardial fat 
but increased in plasma and atheromatous 
plaques (macrophages/SMCs) in CAD patients 
compared with non-CAD patients

[125]

Thoracic aortas of C57BL/6 mice – Omentin-1 reversed impaired endothelial-
dependent relaxations (EDR) in mouse aortas. 
Omentin-1 treatment reverses elevated ER 
stress markers, oxidative stress and reduction 
of NO production. Omentin-1 protects against 
high glucose-induced vascular endothelial 
dysfunction through inhibiting ER stress and 
oxidative stress and increasing NO production 
via activation of AMPK/PPAR-δ pathway

[126]

Apolipoprotein E-deficient (apoE-KO) mice – Omentin-1 act as anti-atherogenic adipokine 
that directly affects the phenotypes of 
macrophages
Omentin reduces the development of 
atherosclerosis by reducing inflammatory 
response of macrophages through the Akt-
dependent mechanisms

[127]

SFRP5 Human adipocytes and skeletal muscle cells 
(hSkMC)

– Sfrp5 lowered IL-6 release and NF-κβ 
phosphorylation in cytokine-treated human 
adipocytes

[128]

Mice – Sfrp5 have important roles in glucose 
regulation and β-cell function

[133]

3T3‐L1 pre‐adipocytes – Sfrp5 mRNA expression and protein secretion 
were increased during the differentiation of 
3T3-L1 pre-adipocytes
Upregulation of Sfrp5 expression and secretion 
in adipocytes is one crucial mechanism by 
which rosiglitazone and metformin improve IR

[134]

Epicardial adipose tissue (EAT) and 
subcutaneous adipose tissue (SAT)

– Sfrp5 mRNA levels were higher in EAT samples 
than in the paired SAT samples in both CAD 
and non-CAD group
Sfrp5 is secreted by visceral fat and that its 
local concentration in EAT may greatly exceed 
that in SAT
Low Sfrp5 and high Wnt5a levels are associated 
with the presence of CAD

[135]

Rat – Sfrp5 overexpression reverses the effects of 
microRNA-199a inhibitor on proliferation, 
migration, and cardiac fibroblast-to-myo 
fibroblast transformation of cardiac fibroblasts

[132]
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of transcription 3 (JAK2/STAT3) signaling.  However, 
in obesity this pathway is blocked by several mecha-
nisms.  One of the mechanisms includes, STAT3-medi-
ated induction of SOCS3 protein, impairs leptin induced 
signaling by binding to phosphorylated Tyr985 resi-
dues of LRb [122]. Animal studies proved that SOCS3 
is responsible for leptin resistance [123]. In inflamma-
tion leptin levels are increased in AT as well as in serum 
and acts on monocytes/macrophages, neutrophils, and 
T cells, and enhance the production of the pro-inflam-
matory cytokines and suppresses anti-inflammatory 
cytokines [124, 125].  Leptin suppresses the production 
of TH-2 type cytokine, IL-4 and increases the TH1 type 
cytokines and polarized T cells towards TH1 phenotype 
[124, 126]. Many preclinical and clinical studies have 
proved the link of leptin with atherogenesis and meta-
bolic syndrome.  Circulating levels of leptin is positively 
correlated with metabolic syndrome and cardiovascular 
disease [127]. Increased leptin levels significantly alarms 
the pathogenic risk of coronary heart disease (CHD) 
[128]. Leptin levels are increased after myocardial infarc-
tion in humans [129].  Greater cardiac hypertrophy was 
observed in leptin deficient mice and provided greater 
cardiac remodeling in response to chronic ischemic 
injury [130, 131].

Leptin shows both insulin sensitizing and insulin resist-
ance effects. However, these effects if we consider directly 
attributed to leptin is debatable. This is because of AT, a 
dynamic endocrine organ where when leptin concentra-
tion changes, may lead to changes in other metabolically 
active hormones also [132]. Leptin acts both peripherally 
(skeletal muscle, liver, pancreas, and fat)  as well as cen-
trally via central nervous system  (CNS)  to control basal 
and insulin-mediated glucose homeostasis. In-vitro stud-
ies suggest that leptin has an important inhibitory role in 
glucose metabolism.  However, insulin sensitizing effect 
also has been proposed in in-vivo studies which depends 
on the central mechanism.

Interleukin‑6 (IL‑6)
IL-6 is a versatile, pleiotropic adipokine reported to be 
engaged in vital roles such as regulation of inflamma-
tion, hematopoiesis, immune responses, and host defense 
mechanisms [133]. It is a PAK, and AT is responsible for 
secretion of 15–30%  of IL-6 in normal healthy people 
[134].IL-6 is produced by macrophages, fibroblast and 
the stromal vascular fraction of visceral WAT [51]. VAT 
releases more IL-6 than SAT and acts as a marker for vis-
ceral adiposity [120]. IL-6 is one of the major PAK which 
is actively involved in chronic inflammatory disease such 

Table 1  (continued)

Adipokines In-vitro model/in-vivo model Administration mode Action or application type References

Mice – Sfrp5 decreases the infarct size. Suppress 
pro-inflammatory Wnt5a/JNK signaling within 
the macrophages that infiltrate the infarct and 
pro-apoptotic Wnt5a/JNK signaling within 
myocytes

[123]

INS-1E cells – Sfrp5 reduces markers of cell proliferation, 
increases parallelly dose-dependently glucose-
stimulated insulin secretion in INS-1E cells

[134]

CTRPs Wistar Rats – CTRP3 protein expression levels are decreased 
in VAT at the pathogenic stages of insulin 
resistance and in T2DM

[135]

3T3-L1 adipocytes – CTRP12 improves the glucose metabolism 
3T3-L1 adipocytes

[136]

C57BL/6 mice – CTRP12 have anti-diabetic actions that 
preferentially acts on adipose tissue and liver to 
control whole body glucose metabolism

[137]

CTRP1 transgenic (TG) mice – CTRP1 stimulated glucose uptake through the 
glucose transporter. GLUT4 translocation to the 
plasma membrane and also increased glucose 
consumption by stimulating glycolysis

[114]

Rats Jugular vein injection CTRP9 attenuates atrial inflammation and 
fibrosis via toll-like receptor 4/NF-κβ and 
Smad2/3 signaling pathways

[138]

Sprague–Dawley rats Tail vein injection CTRP3 protects cardiomyopathy via activating 
AMPKα pathway

[139]
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as atherosclerosis [135]. Genetic polymorphism studies 
have confirmed the linkage of IL-6 receptor signaling and 
its association with CAD [136]. IL-6 levels are positively 
correlated with increased risk of MI [137]. Further, IL-6 
and its receptor are linked to plaque instability [138]. It is 
believed that production of IL-6 is stimulated by TNF-α.

The link between obesity and T2D has been well doc-
umented and suggests the relation between obesity and 
insulin resistance. It should be noted that circulating lev-
els of IL-6 is two or three fold higher in obese patients 
with T2D compared to normal person [139].  However, 
obesity and its link to metabolic syndrome is controver-
sial [140].  Some researchers suggest the existence of a 
relationship with elevated levels of IL-6 and insulin resist-
ance or T2D [141, 142]; however, several argue against 
the existing relationship. They suggest that increased fat 
mass and elevated IL-6 levels are not independent risk 
factors for development of insulin resistance [143]. This 
is because visceral fat releases a much higher quantity of 
IL-6 and is a stronger predictor of diabetes than total fat 
mass [144].

Resistin
Resistin is 10 KDa polypeptide with 114 amino acids in 
roden, similar in molecular structure to adiponectin 
and first identified in obese mice, affects in glucose 
homeostasis and mediate insulin resistance [117, 145]. 
Large population based studies confirm the positive 
correlation between circulating resistin and fasting serum 
TG [146]. Resistin levels are increased in obesity and 
insulin resistance in rodents [147]. Insulin resistance is 
mainly due to the interference in normal insulin signaling 
by decreasing the expression of insulin receptors, IRS1 
and IRS2 [148]. Resistin also decreases the activation of 
AMPK which is a potential insulin sensitizing molecule 
[149]. Recombinant resistin administration to normal 
animals produce insulin resistance, however, immune 
neutralization of resistin improves insulin sensitivity 
in obese animals with insulin resistance [147]. Resistin 
injures endothelium by inducting adhesion molecules 
VCAM-1 and MCP-1 expression and secretions and 
synthesizing endothelin-1 by endothelial cells [72]. 
Insulin resistance in humans by resistin is not clear as in 
rodents. Resistin is expressed in macrophage in humans, 
signifying a pro-inflammatory action rather than their 
involvement in glucose metabolism. Resistin induces 
oxidative stress and inhibits eNOS in human endothelial 
cells [150]. In human macrophages, resistin support 
foam cell formation and induce platelet activation by 
increasing P-selectin expression [151, 152]. Therefore, 
the findings suggest that human resistin might play an 
important role in development of atherosclerosis.

Visfatin
Visfatin is produced mainly by the adipocyte in 
visceral AT. It is a 52  kDa multifunctional protein with 
several activities. Visfatin, also known as nicotinamide 
phosphoribosyl transferase (NAMPT), or pre-B cell 
colony-enhancing factor (PBEF), is known to play a 
crucial role in regulating numerous pathophysiological 
functions [153]. In metabolic disease, circulating visfatin 
level increases and has been positively correlated with 
cardiovascular diseases. High plasma levels of visfatin are 
also associated with vascular inflammation, endothelial 
dysfunction and atherosclerotic plaque destabilization 
[154].

Anti‑inflammatory adipokines(AAKs)
Adipokines have diverse functions depending on their 
properties.  However, there are certain adipokines that 
are beneficial for human health and categorized as 
AAKs.  Numbers of adipokines are available with their 
categorized functional properties, but in this paper we 
are discussing those AAKs which have direct or indirect 
impact on the metabolic health considering atherogenic 
dyslipidemia and insulin resistance as reference.  The 
reason for choosing few adipokines can be explained 
by their exploratory role mainly on atherogenesis, and 
insulin resistance.

Adiponectin
Adiponectin is adipocyte-derived hormones compris-
ing of four distinct domains, e.g., a signal peptide at the 
N terminus, a short variable region, collagenous domain 
and a C-terminal globular domain homologous to C1q 
[155]. Mouse and human adiponectin have 83%  homol-
ogy and contain 247 and 244 amino acid sequences, 
respectively [156]. The crystal structure of adiponec-
tin is similar to that of TNF-α [157].  Adiponectin and 
C1q/TNF-related protein  (CTRP)  share the common 
structure as mentioned earlier.  Adiponectin exists 
in three multimeric forms: a trimer, low molecular 
weight (LMW), a hexamer medium multimer and larger 
multimeric high molecular weight  (HMW) [156, 158]. 
Adiponectin is secreted by adipocytes and its expres-
sion is ≈100 fold during adipocyte differentiation [159]. 
In healthy adults, the adiponectin concentration varies in 
human serum from 1.9 to 17.0  g/ml [159]. Plasma level 
of adiponectin in healthy people or mice is 1000 times 
higher than leptin accounting 0.01% of total plasma pro-
tein [160].  Adiponectin is a well-established biomarker 
of increased risk of insulin resistance, CVDs, etc. [161]. 
Despite adiponectin being secreted exclusively by AT, 
during obesity the level of adiponectin decreases, but 
paradoxically increases during caloric restriction  (CR), 
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anorexia nervosa (AN). The paradox of adiponectin may 
be explained in this way that in insulin resistance or obe-
sity with insulin resistance state, decreased adiponectin 
may results from the decreased expression and transcript 
protein of adiponectin which may be from mitochon-
drial dysfunction, hypoxia and or ER stress [162]. How-
ever, the increased expression of adiponectin in CR and 
AN remained unclear although few studies have shown 
increased expression of adiponectin in extensive CR 
[163]. Most of the study including animals and humans 
reported that serum adiponectin levels are increased with 
prolonged CR and weight loss, but not from the WAT or 
without affecting expression or secretion in WAT [164, 
166].   Moreover, the human subject shows decrease in 
adiponectin expression in WAT during AN and clear-
ances of adiponectin remain unaltered during CR [163, 
166]. Moreover, changes of circulating adiponectin in 
response to treatment with insulin or thiazolidinedione 
are also not related to adiponectin transcript expres-
sion in WAT [167]. The question is during CR or AR, 
where does adiponectin come from if the expression of 
adiponectin remains unaltered in WAT?  The question 
remained unanswered until Cawthorn et al. investigated 
the bone marrow AT  (MAT)  that secret adiponectin in 
the circulation [168]. In normal healthy subjects, MAT 
comprises 13%  of total adipose mass, where as in AN, 
31.5%  MAT clearly suggest that the expansion of MAT. 
In AN subject, MAT comprises 30% of total body fat and 
is sufficient to be a major contributor of adiponectin to 
the circulating adiponectin [168]. Using Wnt10b mice 
with specific MAT ablation with CR, shows increased 
resistance in both MAT and serum adiponectin without 
having any impact on WAT mass as well as adiponectin 
expression in WAT. On the other hand, MAT expansion 
increases serum adiponectin and adapts skeletal muscle 
during CR. Thus, all the evidence gives conclusive results 
that MAT is a key source of adiponectin and reaches the 
circulation through endocrine action [168].

Adiponectin regulates endothelial function by influenc-
ing adhesion and transmigration of leukocyte and mac-
rophages which are mediated by ICAM1, VCAM and 
E-selectins. Adiponectin level is decreased in obesity and 
in insulin resistance and low adiponectin levels are found 
to be associated with endothelial dysfunction [169]. Ani-
mal disease model and in-vivo study confirms the lower 
adiponectin level exacerbates vascular injury and over-
expression of adiponectin protects from atherosclerosis 
[170, 171]. Adiponectin protects vascular endothelium 
by anti-inflammatory action against oxidative stress and 
inflammatory cytokines suggests molecular mechanism 
involves mainly inhibition of inflammatory signal in-
vivo [172]. Adiponectin deficiency enhances leukocyte–
endothelial cell interactions via reduced availability of 

eNO at the vascular wall and upregulation of endothelial 
CAMs, leading to vascular inflammation and atheroscle-
rosis [61]. Administration of pharmacologically active 
doses of the recombinant globular adiponectin (gAd) 
reverts the endothelial dysfunction associated with adi-
ponectin deficiency and attenuates cytokine-induced 
vascular inflammation in wild type (WT) mice and 
maintains the expressing of physiologic concentrations 
of adiponectin in the blood [61]. Adiponectin deficiency 
increases the leukocyte rolling and adhesion. Increased 
leukocyte rolling flux decreases the velocities of rolling 
leukocytes and increases the adhesion to the vascular 
wall. WT mice when treated with gAd, show normal-
ized leukocyte rolling flux, leukocyte rolling velocity and 
leukocyte adhesion which supports the hypothesis that 
vascular inflammation due to adiponectin deficiency 
may be treatable with the with similar adiponectin iso-
forms, i.e., gAd [61]. gAd has been reported to reverse 
the TNF-α induced leukocyte-endothelium interactions 
in WT mice. TNF-α downregulate eNOs/NO signaling 
and upregulates endothelial CAM [66, 173]. Treatment 
with gAd inhibits TNF-α mediate leukocyte–endothelial 
interaction and reverses the TNF-α signaling in endothe-
lial cell culture study [61, 174]. Endogenous adiponectin 
and gAd regulates the availability of NO in endothelium. 
Adiponectin deficiency shows 40% reduction in eNO 
availability, and treatment with gAd maintains the physi-
ological levels of adiponectin. The ability to suppress 
TNF-α till 55% clearly demonstrates the anti-inflamma-
tory action of adiponectin [61]. The ability to mitigate 
the anti-inflammatory effect in endothelium, suppression 
of CAM and availability of eNO reflects the possibili-
ties of anti-atherogenic activity of adiponectin, thereby 
cardioprotection.

Adiponectin exerts its anti-inflammatory action 
through its receptor Adiponectin R1 (adipoR1), adi-
ponectin (adipoR2) and T-cadherin [175]. Numbers of 
study reported direct action of adiponectin on inflam-
matory cells and NF-κβ. Adiponectin suppress foam 
cell transformation from macrophages by inhibiting the 
function of mature macrophages [176], stimulates the 
macrophage production of anti-inflammatory cytokine 
IL-10 and inhibits TNF-α induced VCAM-1, E-selectin 
expression on endothelial cells [177], inhibits NF-κβ acti-
vation in macrophages which is induced by TLR [178]. 
Adiponectins action on NF-κβ is complex presenting 
both inhibitory as well as stimulatory effects. Adiponec-
tin possess inhibitory action on NF-κβ, inhibits lipopoly-
saccharide (LPS) induced NF-κβ activation in adipocytes 
[179],TNF-α induced NF-κβ pathways in endothelial cells 
[174]and NF-κβ pathway in macrophage [180]. Inhibition 
of NF-κβ pathway results in anti-inflammatory action 
of adiponectin and decreases the pro-inflammatory 
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cytokines. On the other hand, the action of gAd and high 
molecular weight (HMW) adiponectin were compared 
on NF-κβ pathways in vascular endothelial cells [181]. 
High molecular weight (HMW) adiponectin when under-
going proteolytic cleavage forms globular adiponectin. 
HMW adiponectin activates NF-κβ modestly compared 
to gAd which activates very strongly. HMW requires a 
shorter period to inhibit TNF-α induced NF-κβ activa-
tion, whereas gAd induces expression of various PAKs, 
adhesion molecules and requires a longer period to 
inhibit cytokine-induced NF-κβ activation. Therefore, 
HMW adiponectin may act as an anti-inflammatory 
whereas cleavage of adiponectin at an inflammatory site 
may enhance inflammation. However, the dual nature 
of adiponectin is not clearly understood, and questions 
remain unresolved regarding the timing of the effects.

Researchers have unveiled the link between adiponec-
tin and its microvascular connection in the regulation of 
insulin. Skeletal muscle acts as a major organ participat-
ing in insulin stimulated glucose metabolism accounting 
80% of total body glucose [182]. Insulin is secreted by the 
pancreatic β-cells, and to act in the muscle it has to be 
delivered to the muscle cells via capillaries nurturing the 
muscle cells followed by transportation through the cap-
illary endothelium which enters interstitial space where 
they bind to the insulin receptor called myocyte to exert 
metabolic action [183].

Muscle microvasculature plays critical roles in the reg-
ulation of insulin secretion in muscle. Insulin action in 
the muscle cells starts, when it is delivered to the capil-
laries which nurture the muscle cells, followed by trans-
portation of insulin through capillaries of endothelium 
to enter the interstitial space [184]. Microcirculation 
comprises all vessels including venules, arterioles and 
venules (< 150  µm in diameter). Their functions are to 
deliver and exchange an adequate amount of nutrients, 
hormones, oxygen, between the plasma and tissue inter-
stitium. During normal or rested state approximately 
30% of the capillaries are functionally perfused, but in 
response to increased demand especially during exercise 
more capillaries become functionally perfused via more 
relaxation of the pre-capillary terminal arterioles [82]. 
This process is called microvascular recruitment. Insulin 
mediated microvascular recruitment dispossesses insu-
lin mediated glucose in muscle and blocks the insulin’s 
action on microvascular recruitment. It is reported that 
insulin-mediated capillary recruitment in skeletal muscles 
is impaired with diabetes mellitus (DM) [185]. A clinical 
study reported that obesity blunts the insulin mediated 
microvascular recruitment in forearm muscle. They 
assumed that the blunted recruitment in obese individu-
als are involved at least one part of the insulin mediated 
glucose disposal and absence of microvascular response 

[186]. Therefore, insulin and microvascular are appeared 
to be important for enhancing delivery of insulin and 
glucose to skeletal muscle and the impaired responses to 
insulin in the obese subjects might contributes impaired 
metabolic response. Adiponectin is a potent vasodilator 
and the action is mediated via NO-dependent mecha-
nisms [187]. Adiponectin modulates muscle insulin action 
and the expansion of endothelial exchange surface area 
due to its potent vasodilatory effect via NO-dependent 
mechanism [183, 187]. Muscle microvasculature is the 
regulatory site of insulin’s metabolic action and mounting 
evidence suggests that since adiponectin has both vasodi-
latory and insulin sensitizing actions, adiponectin modu-
late microvascular recruitment thereby insulin delivery as 
well as action in muscle [183].

Omentin‑1
The endemic problem of the T2DM is a major problem 
associated with the modern sedentary lifestyle. Impor-
tantly, early diagnostic tools are needed for detection of 
insulin resistance. Moreover, novel therapeutic agents also 
need to be explored. One such molecule is omentin-1. It 
has multiple activities including insulin-sensitizing activ-
ity. Omentin-1 is a novel 34KDa adipokine first identified 
in human omental AT, also called intestinal lactoferrin 
receptor [188, 189]. The physiological, pathophysiological 
and clinical features of omentin-1 have gained attention 
due to its experimental and clinical evidence showing its 
involvement in metabolic disorders [190, 191]. In obesity, 
plasma omentin-1 and mRNA expression was decreased 
in VAT [192]. Reduced omentin-1 levels are found to be 
closely related to metabolic syndrome in morbidly obese 
women [193]. The expression of omentin-1 is most abun-
dantly found in epicardial adipose tissue (EAT)  and vis-
ceral fat surrounding the heart and coronary arteries 
[194].  EAT is attached to the myocardium.  Therefore, 
omentin-1 secreted in EAT directly affects the cardiac 
function [195]. Omentin-1 suppresses ICAM-1, VCAM-1 
and cyclooxygenase-2(COX-2)  in human umbilical vein 
endothelial cells  (HUVECs)  through ERK/NF-kβ, JNK/
AMP-activated protein kinase  (AMPK), and eNOS sign-
aling pathways [196, 197].  Omentin-1 does not affect 
monocyte differentiation to macrophages but is respon-
sible for shifting the balance differentiation preferentially 
in favor of anti-inflammatory M2 macrophages instead 
of M1 phenotype [198].  Omentin-1 level is negatively 
correlated with waist circumference, BMI, systolic blood 
pressure, carotid intima-media thickness, stiffness, and 
insulin resistance [199].  It inhibits vascular inflamma-
tion and pathological remodeling that are involved in the 
development of atherosclerosis and also possesses vaso-
dilatory effects as well.  Omentin-1 suppresses oxidation 
of LDL thereby inhibiting the formation of foam cell by 
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downregulating scavenger receptors like CD36, scav-
enger receptor type A and the ratio of acyl-coenzyme A 
and cholesterol acyl-transferase-1 in human monocyte-
derived macrophages [198].

It is well documented that omentin is a protective 
adipokine for CVD as it induces vasodilation, reduces 
endothelial dysfunction, and inhibits vascular inflamma-
tion and angiogenesis.  These beneficial effects of novel 
adipokine omentin can be expected to play more roles in 
the protection of CVD in the future.

Secreted frizzled‑related protein 5 (Sfrp5)
Secreted frizzled-related protein 5  (Sfrp5) is an 
adipocytokine, highly expressed in mature adipocytes of 
WAT [200] and its detectable in plasma [201]. It inhibits 
wingless-type family member 5A  (WNT5A)  signaling 
pathways, including non-canonical WNT5A/Ca2 + and 
WNT5A/c-jun N-terminal kinase  (JNK)  signaling 
pathways [202].  The expression of WNT5A has been 
reported to play a crucial role in the development of 
obesity, T2DM and atherosclerosis [203]. The link 
between obesity, insulin resistance and T2DM has been 
discussed in many research articles.  Insulin resistance 
is considered as the main responsible factor involved 
in the pathogenesis of T2DM.  Insulin resistance is 
a low grade inflammation linked to macrophages 
mediated inflammation in AT [26]. Sfrp5 is an anti-
inflammatory adipokine which is capable of inhibit 
endogenous WNT5A pathways, might be effective to 
prevent macrophage mediated inflammation in AT to 
improve insulin sensitivity, thereby prevent development 
of T2DM [204]. Mice lacking Sfrp5 show impaired 
glucose clearance with high macrophage mediated AT 
inflammation and reduced insulin sensitivity, however, 
administration of Sfrp5 increases insulin sensitivity 
[200]. Furthermore, upregulation of Sfrp5 in 3T3  –L1 
adipocyte cell line prevents inflammation and insulin 
resistance  via  blocking WNT5A. Although preclinical 
study in animal and cell line shows the protective 
role of Sfrp5 in T2DM, but clinical study has shown 
controversial results. Therefore, it is necessary that Sfrp5 
deserves more clinical study with a large sample size, 
along with many ethnic group to further explore its role.

The involvement of Sfrp5, in cardiometabolic health, 
deserves more exploration.  Serum levels of Sfrp5 are 
decreased in patients with CAD indicating the associa-
tion of the adipokines in atherosclerosis [204]. Deple-
tion of Sfrp5 in mice causes cardiac ischemia reperfusion 
injury along with increased inflammation and higher 
rates of cardiomyocyte deaths. Deficiency of Sfrp5 
enhances WNT5A influx into the ischemic limb and 
also impairs revascularization [205]. Numbers of stud-
ies have demonstrated the atheroprotective role.  Low 

serum levels of Sfrp5 are linked to CAD [206]. Sfrp5 were 
found to be inversely associated with multiple CMDs 
[207]. Higher levels of Sfrp5 inhibit endothelial dysfunc-
tion and arterial stiffness  via  downregulating Wnt5a/
JNK pathways with reduced NO production [208].  The 
evidence provided by the different studies suggests that 
Sfrp5 may attenuate cardiometabolic symptoms and can 
be useful in the treatment or management of cardiometa-
bolic diseases.

C1q/TNF‑related proteins (CTRPs)
CTRPs are a new family of secreted proteins which have 
sequence homology with the adiponectin [208]. Till now 
15 functional CTRPs have been identified which have 
different actions [209].  Out of 15, only a few numbers 
of CTRP have been ascribed to have implication in 
metabolic disorders whereas many others are still under 
investigation. All the CTRPs have common feature 
with four distinct domain, namely a signal peptide at 
N-terminus sequence, a short non-homologous or 
variable region, a collagenous domain consist of variable 
numbers of Gly-X–Y repeats and C-terminal globular 
domain homologous to complement factor C1q domain 
[210].  Most CTRPs are expressed in AT and can be 
detected in plasma.  CTRPs have unique biological and 
signaling properties and they exist in the circulation as 
trimmers, assembling themselves into hexamaric and 
high molecular weight oligomeric complexes with their 
basic structural unit [211].

Sex, age and genetic background modulate the meta-
bolic hormone levels as well as signaling pathways in 
both human and animals, and thus have variable impact 
in the development obesity and other  metabolic disor-
ders such as insulin resistance, and T2D [212, 213]. Inter-
estingly, most of the CTRPs also circulate in the blood 
with variable concentration as per the sex and genetic 
background.  A study reported that serum levels of adi-
ponectin, CTRP1, CTRP2, CTRP3, CTRP5 and CTRP6 
in six different genetic background mice showed signifi-
cant variation [214]. The selected strain for the study was 
taken with varying degrees of susceptibility to insulin 
resistance or diabetes or diet-induced obesity. Biological 
activity of CTRPs depends on their multimeric forms. All 
CTRPs exist as trimer forms, however, accumulating 
evidence suggests that CTRPs, e.g., CTRP3, CTRP5, 
CTRP9, CTRP6, CTRP8, CTRP10, CTRP11, CTRP12, 
CTRP13 and CTRP15 happen to occur into multimeric 
complexes, via N-terminal cysteine residue or by oxido-
reductase [207].  Adiponectin and CTRP 9 assemble to 
heterotrimers and exert the same biological action, i.e., 
cardioprotection via the same receptor [214]. Apart from 
forming as homo-oligomer, CTRP6/  CTRP1, CTRP7/
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CTRP2, and CTRP2/adiponectin form heterotrimers and 
generates functionally distinct ligands for secreted glyco-
proteins to provide new outline of action in normal and 
disease condition [215].  CTRP 9 exists as two isoforms 
namely 9A and 9B and CTRP 9B requires interaction 
with CTRP 9A and adiponectin for its action [216].

CTRPs are secreted as hormones and subjected to post 
translational modifications at their highly conserved 
residues.  CTRP 12 has isomeric forms after post 
translational modifications such as glycosylated on the 
39th  asparagine amino acid and 85th  cysteine modified 
with oligosaccharides [217].  The two isomeric forms 
of CTRP12 diverge from the oligomeric structure and 
function. It is reported that full length CTRP 12 activates 
Akt signaling in adipocytes, however, the globular 
form activates the MAPK signaling [218].  Adiponectin 
exists in multimeric forms where trimers and hexamers 
activate AMPK signaling in muscle thereby enhancing 
glucose uptake, deposition of glycogen as well as 
fatty acid oxidation.  However, high molecular weight 
oligomers act on the liver and decrease glucose 
production [219]. Distinctively, CTRP1 and CTRP 2 are 
primarily secreted as trimmers in transfected HEK-293 
cells.  Primarily, CTRP2 in the mouse serum was found 
to be trimer form. Though CTRP3 secreted as trimmers, 
hexamers and HMW oligomers in transfected cells, it 
exists as HMW oligomers in mouse serum.  Similar to 
CTRP3, CTRP5 also secreted in their multimeric forms 
but exists as trimmers in mouse serum. During exercise 
and treatment of metabolic complications such as obesity, 
T2DM, etc., the ratio of oligomeric CTRPs changes. The 
ratio of HMW and trimers CTRPs has been reported 
to serve as an index of insulin sensitivity. However, it is 
still required to determine whether metabolic disorders 
hinder the distribution of CTRPs oligomeric forms 
presence in the serum and their biological activities of 
these oligomeric proteins [220].

CTRPs reported to possess biological activity
Out of several CTRPs many of them possess biological 
activities and may be beneficial in the management or 
treatment of dyslipidemia and insulin resistance. CTRP1 
has important roles in glucose metabolism by activating 
serine/threonine protein kinase Akt and MAPK p42/44 
signaling in mouse myotube [210]. CTRP1 has been 
reported to possess anti-thrombotic properties and 
blocks platelet activation and aggregation by specifically 
binding to fibrillar. CTRP1 shows anti-thrombotic 
action by indirectly acting on the von Willebrand factor. 
CTRP1 creates an environment where less binding 
efficient COL-III is formed by inhibiting binding of the 
A3 domain of von Willebrand factor to COL-I without 
affecting the association of the A3 domain with platelet 

[214]. Therefore, the anti-thrombotic activity of CTRP1 
may protect MI and stroke following rupturing of 
atherosclerotic plaques [214]. CTRP1 has been reported 
to prevent neointimal formation following arterial 
injury via a cAMP-dependent pathway by suppressing 
vascular smooth muscle cell growth [221]. In obesity 
and hypertension, inflammatory cytokines induce 
CTRP1 where there is a deficiency of adiponectin. Drug 
rosiglitazone found to be elevating CTRP1 level. Since 
CTRP1 administration reduces the blood glucose; it 
can be considered that the increased CTRP1 in obesity 
may be the compensatory action towards its resistance 
[205]. The pre-clinical and clinical data of CTRPs family 
members are been listed in Tables 1 and 2.

Conclusions
As obesity is responsible for various diseases, including 
CVDs and metabolic disorders. Management of obesity 
and its co-morbid diseases are major challenges for 
the medical community.  Alteration of the normal 
physiology of microcirculation in AT builds favorable 
conditions for the development of CMD. The knowledge 
of  AT microcirculation is necessary to understand 
the underlying mechanism that regulates metabolic 
health. Despite the advancement of anti-obesity drugs, 
the main objective of sustained and non-recurrent 
weight loss could not be achieved due to the variable 
efficacy.  Inherent side effects of drugs and poor patient 
compliance is also a major issue.

We are still in quest of an ideal agent for the manage-
ment of obesity to prevent its comorbidities. Adipokines 
represent a very promising avenue in this regard.  AAKs 
have a profound protective effect against metabolic 
risk. These agents conserve the normal physiology in AT 
microcirculation, prevent hypoxia and block polarization 
of M1 macrophage.  AAKs suppress the oxidative stress 
and reduce ER stress  via  numerous pathophysiological 
pathways. AAKs are very potent anti-obesity molecules, 
higher levels of AAK in leaner patients in comparison to 
obese patients, and patients with disturbed lipidemic pro-
file substantiate their anti-obesity and anti-atherogenic 
potential. Although the clinical efficacy of the AAKs is 
under the pipeline of research and development, some 
of the promising adipokines that can act as promising 
therapeutic agents include adiponectin, omentin-1, Sfrp5 
and a few members of CTRP family which are shown in 
Tables 1 and 2.

Adiponectin is beneficial agents for obesity, as they 
inhibit gluconeogenesis in hepatocytes, thus controlling 
the deposition of fat. It also modulates angiogenesis and 
endothelial function and plays a crucial role in meta-
bolic disorders like insulin resistance through the AMPK 
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pathway. It also has an anti-atherogenic and anti-throm-
botic effect, and thus if used for therapeutic purposes, it 
can be beneficial for management and treatment of meta-
bolic disorders.

Similarly, omentin-1 is also a novel adipokine.  It sup-
presses ICAM-1, VCAM-1, COX-2 and oxidation of 
LDL, thus inhibiting the formation of foam cells from 
macrophages, and plays an important role in the preven-
tion of atherosclerosis. Proper modulation of its activity 
can be very useful for management of disorders of meta-
bolic diseases.

Sfrp5 is among one of the AAKs which inhibits 
endothelial dysfunction, arterial stiffness and exhibits 
atheroprotective activity.  CTRPs are the paralogs of 
adiponectin, and some members of CTRPs enhance 
insulin sensitivity and glucose metabolism.  These 
members of CTRPs improve mitochondrial dysfunction, 
inhibit platelet activation and aggregations thereby 
reducing the risk of CAD thus preventing MI and 
stroke. They enhance the uptake of glucose by adipocytes 
thus conferring glucose homeostasis and also enhance 
cardiomyocyte survival and reduce fibrosis.

If properly designed and delivered, AAKs can represent 
a novel approach for anti-obesity, insulin sensitizing 
agents and anti-atherogenic therapies.  For now, we can 
say that  though novel and efficacious, adipokines still 
need to undergo considerable research for clinical safety 
and efficacy before we can see them in the market. At last 
we conclude that the diverse action of AAks has gained 
the attention of prominent researchers across the world 
and in future we may expect the use of these AAks as 
therapeutic agents for the metabolic disorders and its 
associated comorbidities.
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