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Comprehensive analysis of an mRNA 
co‑expression network and a ceRNA network 
reveals potential prognostic biomarkers in oral 
squamous cell carcinoma
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Abstract 

Background  Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive oral cancer with a poor progno-
sis. Its polygenic risk is likely influenced by complex transcriptional disorders involving networks of co-expressed 
and functionally related genes, though such investigations are limited in OSCC.

Methods  We analyzed the GSE37991 dataset, comprising 40 OSCC and 40 normal oral tissue samples from the Gene 
Expression Omnibus. Tumor-specific modules were identified using weighted correlation network analysis (WGCNA), 
leading to the selection of hub mRNAs and lncRNAs. These lncRNAs were used to construct lncRNA–mRNA and com-
peting endogenous RNA networks. We further examined the expression profiles and survival data of these genes 
from the Cancer Genome Atlas. Prognostic markers were identified and validated through 5-year survival analysis 
and Cox proportional hazards modeling. RT-qPCR was used to validate the expression levels in clinical OSCC tissues.

Results  We identified 1847 differentially expressed genes in OSCC tissues. WGCNA revealed four OSCC-specific 
modules, screening 120 hub mRNAs and five hub lncRNAs. Two prognostic markers (AQP5, IL-26) from hub mRNAs 
and three (FRMD5, INHBB, GUCY1A3) from the lncRNA–mRNA network were associated with survival. Validation 
showed lower expression of AQP5 and GUCY1A3, and higher expression of FRMD5 and INHBB in OSCC compared 
to normal tissues.

Conclusion  This study enhances our understanding of transcriptional dysregulation in OSCC and may highlights 
AQP5, IL-26, FRMD5, INHBB, and GUCY1A3 as promising prognostic biomarkers.
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Introduction
Oral squamous cell carcinoma (OSCC) is one of the most 
aggressive malignancies, characterized by a high inci-
dence rate, locoregional metastases, and resistance to 
existing treatments. These factors contribute to a poor 
prognosis for patients with OSCC [1–3]. OSCC is highly 
prevalent and primarily linked to tobacco and excessive 
alcohol use and infection with the human papillomavi-
rus (HPV) [4–8]. The American cancer society estimates 
for oral cavity and oropharyngeal cancers in the United 
States for 2024 are about 58,450 new cases and 12,230 
deaths. Squamous cell carcinoma (SCC) accounts for 90% 
of head and neck cancers, originating from the epithelial 
lining of the oral cavity, pharynx, and larynx. OSCC is 
more prevalent in men and adults over 50, with the high-
est incidence in South and Southeast Asia due to area nut 
consumption. The global incidence of OSCC is rising, 
especially among younger populations, with a projected 
30% annual increase by 2030, driven by lifestyle changes 
and the growing prevalence of HPV-related oropharyn-
geal cancer. Various factors, from unhealthy behaviors 
to viral infections, contribute to the complexity and het-
erogeneity of OSCC pathogenesis. While, large-scale 
genomics [9], transcriptomics [10], and epigenomics 
[11] have identified potential molecular targets, further 
investigation is warranted to explore the networks of co-
expressed genes associated with OSCC prognosis, given 
its nature as a multi-step chronic disease.

In the era of big data, high-throughput data analysis and 
prioritized information network screening are emerging 
trends in cancer research. Unlike previous studies focus-
ing on individual molecules and pathways, high-through-
put data analysis emphasizes networks of co-expressed 
and functionally related genes. Various tools and algo-
rithms, such as weighted correlation network analysis 
(WGCNA), have been developed to identify key targets. 
WGCNA, a systemic biological algorithm, constructs co-
expression gene networks using high-throughput gene 
expression profiles to identify highly synergistic gene 
sets [12]. This tool effectively compares differentially 
expressed genes (DEGs) and identifies specific genes in 
cancer tissues, facilitating the exploration of gene inter-
actions in functional networks throughout cancer pro-
gression. WGCNA has been widely applied to various 
cancers [13–16], including OSCC [17].

With the vast amounts of RNA data uncovered through 
contemporary biological research, new terms and con-
cepts, such as competing endogenous RNAs (ceRNAs), 
continually emerge. CeRNAs represent a regulatory 
mechanism describing the interactions between RNAs, 
including pseudogene transcripts, long noncoding RNAs 
(lncRNAs), circular RNAs (circRNAs), and mRNAs. They 
regulate gene expression by competing with microRNA 

response elements (MREs) [18]. Dysregulation of the 
ceRNA network is intricately linked to the initiation 
and progression of various cancers [19–21]. Investigat-
ing ceRNA interactions offers novel insights into cancer 
pathogenesis and potential therapeutic approaches.

In this study, we used a comprehensive and step-
wise approach to uncover the potential molecular 
mechanisms of OSCC progression. Initially, we utilized 
GSE37991 microarray data to screen DEGs between 
tumor tissues and normal controls, identifying their 
biological functions and related pathways through gene 
ontology (GO) and Kyoto Encyclopedia of genes and 
genomes (KEGG) analyses. We then applied WGCNA 
to identify tumor-specific modules and their core genes. 
Within these modules, we focused on lncRNAs to con-
struct a competing ceRNA co-expression network. We 
meticulously analyzed the interactions between key lncR-
NAs and mRNAs, shedding light on the roles of lncRNAs 
in OSCC oncogenesis. To evaluate, clinical relevance, we 
conducted survival analysis and univariate and multivari-
ate Cox proportional hazard regression analyses on the 
screened mRNAs and lncRNAs. Finally, we validated the 
expression levels of hub genes in clinical OSCC patient 
tissues. The workflow of this study is shown in Figure S1. 
This study may led a light on the five hub genes in the 
pathogenesis of OSCC, and might be beneficial to further 
molecular mechanisms investigation and development of 
targeting therapeutics for OSCC.

Materials and methods
Data acquisition and preprocessing
The expression profile GSE37991 was downloaded from 
the GEO database (www.​ncbi.​nlm.​nih.​gov/​geo/), and was 
measured using Affymetrix Human Genome U133 Plus 
2.0 Array (Affymetrix, Santa Clara, CA, USA). GSE37991 
contains 40 OSCC samples and 40 normal oral tissues 
samples. Background adjustment, quantile normaliza-
tion, and summarization of the raw data were conducted 
using the R software Affy package [22]. The R software 
limma package [23] was used to identify DEGs using the 
empirical Bayes method. Genes with p < 0.05 and |log 
(fold change, FC)|> 1 were considered statistically signifi-
cant DEGs.

Functional enrichment analysis of DEGs
To understand the biological significance of the up-
regulated and down-regulated genes, we used the 
database for annotation, visualization and integrated dis-
covery (DAVID) for gene ontology (GO) analyses, cover-
ing biological process (BP), cellular component (CC), and 
molecular function (MF), as well as KEGG enrichment 
analyses [24]. Enrichment was considered significant 
when p < 0.05.

http://www.ncbi.nlm.nih.gov/geo/
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WGCNA module construction and visualization
WGCNA is a systems biology algorithm that identifies 
correlation patterns among genes in high-throughput 
data, effectively revealing modules and key hub genes 
[12]. In this study, we selected genes with p < 0.05 and 
FC > 1.5 or FC < 0.667 for WGCNA to reduce computa-
tional complexity and enhance data signals without losing 
important information [25]. After screening for outliers 
in cancerous and normal tissues using WGCNA, we con-
structed co-expression networks using soft thresholds 
(scale-free network structure R2 = 0.85) for both cancer-
ous and normal samples. Cancer set-specific modules 
were selected for further analysis. The top 30 genes with 
the highest intramodular connectivity within these mod-
ules were considered hub genes, and weighted gene co-
expression networks was constructed by Cytoscape [26].

Construction of lncRNA–mRNA co‑expression network
Human lncRNA data were sourced from the HUGO 
Gene Nomenclature Committee (HGNC). LncRNAs 
within each module were filtered by Entrez ID. Co-
expression relationships between lncRNAs and mRNAs 
were used to construct lncRNA–mRNA co-expression 
network, which was visualized with Cytoscape.

Construction of ceRNA network
To explore the role of co-expression relationships in 
the ceRNA network, we constructed a ceRNA network 
based on the lncRNA–mRNA co-expression network. 
LncRNA–microRNA interactions were predicted using 
LncBase Predicted v.2 (http://​carol​ina.​imis.​athena-​innov​
ation.​gr/​diana_​tools/​web/​index.​php?r=​lncba​sev2%​2Find​
ex-​predi​cted) with DIANA software (http://​carol​ina.​
imis.​athena-​innov​ation.​gr/​diana_​tools/​web/​index.​php) 
(only scores > 0.7 were considered) [27]. MicroRNA–
mRNA interactions were predicted using starBase v2.0 
(http://​starb​ase.​sysu.​edu.​cn/​starb​ase2/​index.​php) [28]. 
The resulting networks were visualized with Cytoscape.

Survival analysis and univariate analysis
Fragments per kilobase million (FPKM) data for head and 
neck tumors were obtained from TCGA (https://​portal.​
gdc.​cancer.​gov/) database. A 5-year survival analysis was 
performed after log2 conversion including 120 hub genes 
(top 30 genes from each tumor-specific module) and 
genes from the lncRNA–mRNA co-expression networks. 
Cases with overall survival (OS) > 1 month were analyzed 
to avoid including patients with advanced tumors at diag-
nosis, which may skew results. Patients were classified 
into high and low expression groups based on median 
gene expression levels, and genes detected in < 50% of 

samples were excluded. Univariate Cox regression analy-
sis, conducted with the survival package [29], identified 
genes with prognostic value.

Cox proportion hazard model multivariate analysis
To refine the prognostic gene signature, Cox Proportional 
Hazards Model Multivariate Analysis was performed 
using the survival R package. Both hub genes and genes 
from the lncRNA–mRNA co-expression networks were 
analyzed separately. The final model, containing only sig-
nificant prognostic genes (p < 0.05), was visualized using 
the survminer R package [30]. The analysis started with 
all included genes and sequentially eliminated those not 
statistically significant.

Quantitative real‐time PCR (qPCR)
Tumor blocks are surgically derived from the primary 
OSCC site in diagnosed patients. Normal tissues are 
obtained and histologically confirmed from the patient’s 
negative surgical margin, ensuring the absence of can-
cer cells. After homogenizing the OSCC tissue with a 
homogenizer, total RNA was extracted using Trizol rea-
gent (Invitrogen). Reverse transcription was performed 
with the PrimeScript RT kit with gDNA Eraser (Takara 
Bio, Shiga, Japan). Gene expression was measured using a 
fast two-step amplification program with 2 × SYBR Green 
Fast qPCR master mix (Biotool). The primer sequences 
used are listed (5′-3′): AQP5-F, TAC​GGT​GTG​GCA​CCG​
CTC​AATG, R, AGT​CAG​TGG​AGG​CGA​AGA​TGCA; 
IL-26-F, GGA​AGA​CGT​TTT​TGG​TCA​ACTGC, R, CTC​
TCT​AGC​TGA​TGA​AGC​ACAGG; FRMD5-F, CAT​CGG​
ATG​CTG​CCT​TGT​TAGC, R, GGA​ACT​TGG​AGC​
TGT​AGC​CTTC; INHBB-F, GAA​ATC​ATC​AGC​TTC​
GCC​GAGAC, R, GGC​AGG​AGT​TTC​AGG​TAA​AGCC; 
GUCY1A3-F, GCT​CTT​CTC​AGA​CAT​CGT​TGGG, R, 
ATA​GGC​ATC​GCC​AAT​GGT​CTCC; GAPDH-F, GTC​
TCC​TCT​GAC​TTC​AAC​AGCG, R, ACC​ACC​CTG​TTG​
CTG​TAG​CCAA.

Results
Identification of DEGs and gene functional enrichment 
analysis
A total of 1847 DEGs were identified between OSCC and 
normal tissue samples, with 697 up-regulated and 1150 
down-regulated (Figure S2). GO and KEGG enrichment 
analyses of these genes were performed using DAVID, 
with the top ten terms (p < 0.05) were shown in Fig. 1. GO 
analyses revealed that up-regulated genes were mainly 
associated with processes crucial to development, such as 
collagen and extracellular matrix (ECM) tissue decompo-
sition, cell adhesion, and the inflammation (Fig.  1A–C). 
Down-regulated genes were primarily related to mus-
cle contraction and exogenous metabolic processes 

http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=lncbasev2%2Findex-predicted
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://starbase.sysu.edu.cn/starbase2/index.php
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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Fig. 1  Gene enrichment analysis of up-regulated and down-regulated DEGs. GO enrichment analysis of up-regulated DEGs: A Biological Process 
(BP); B Cellular Component (CC); C Molecular Function (MF). KEGG analysis of up-regulated DEGs: D. GO enrichment analysis of down-regulated 
DEGs: E BP; F CC; G MF. KEGG analysis of down-regulated DEGs: H. The x-axis shows the GeneRatio of each term and the y-axis shows the GO 
and KEGG pathway terms
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(Fig. 1E–G). KEGG pathway analysis showed that up-reg-
ulated genes were enriched in pathways related to ECM 
receptor interaction, PI3K-AKT signaling, cytokines-
receptor interactions, amoebiasis, rheumatoid arthritis 
and systemic lupus erythematosus (Fig. 1D). Down-reg-
ulated genes were enriched in pathways such as sali-
vary secretion, tight junctions, calcium signaling, PPAR 
signaling, metabolic pathways, and cytochrome P450 
enzymes drug metabolism, retinol and tyrosine metabo-
lism (Fig. 1H).

Construction and analysis of WGCNA cluster tree
WGCNA analysis was performed using genes with 
|log(FC)|> 0.585 and p < 0.05. For the scale-free network 
structure, soft thresholds were chosen when the initial 
R2 value exceeded 0.9 (Fig. 2A for normal and Fig. 2B for 
tumor). Co-expression modules were calculated, with dif-
ferent colors representing gene modules and gray indi-
cating unmerged genes. Seventeen gene modules were 
identified in normal tissue (Fig. 2A) using a soft thresh-
old of 11 and a minimum module size of 30. Twenty gene 
modules were identified in OSCC tissue (Fig. 2B) using a 
soft threshold of six and a minimum module size of 30.

Additionally, we conducted a repeated analysis within 
each module of the two cluster trees (Fig. 3A). The OSCC 
modules in light cyan, green, cyan, and salmon did not 
overlap with any normal modules, suggesting that these 
modules are specific to OSCC. Using intramodular 
connectivity to identify key genes, we selected the top 
30 as hub genes and visualized them with Cytoscape 
(Fig. 3B,C).

Selection of lncRNAs from tumor‑specific modules
We selected lncRNAs from the hub sub-network to 
construct a lncRNA–mRNA co-expression network 
(Fig. 4A–D). The following lncRNAs were chosen for fur-
ther analysis: LOC441426 (cyan module), TTTY2 (light 
cyan module), PART1 (salmon module), MEG3 and 
C10orf85 (green module). These lncRNAs were used to 
build the lncRNA–mRNA co-expression network.

Construction of a ceRNA network
CeRNAs regulate microRNA-induced gene silencing 
by binding to microRNAs through microRNA response 
elements (MREs), thus serving as a communication net-
work among RNA transcripts. We predicted interactions 
between lncRNAs and microRNAs, as well as between 
microRNAs and mRNAs. Overlapping predictions within 
these interactions and the lncRNA–mRNA co-expression 
network were identified, and an lncRNA–microRNA–
mRNA ceRNA network was constructed (Fig. 5).

The ceRNA network helps determine whether hub 
lncRNAs influence hub genes and their pathways. For 

instance: PART1 in the salmon module acts as a ceRNA 
for miR-495-3p, miR-544a, miR-433-3p, miR-224-5p, 
miR-335-5p, miR-590-3p, miR-448, and miR-128-3p, 
targeting PANK1, and miR-149-5p, targeting SLC38A3. 
C10orf85 in the green module acts as a ceRNA for miR-
27b-3p and miR-147a, targeting ITGA11. MEG3 serves 
as a ceRNA for 19 miRNAs, including miR-4500, miR-
27b-3p, miR-122-5p, miR-372-3p, and miR-202-3p, 
also targeting ITGA11. These interactions provide new 
insights into the tumorigenesis of OSCC.

Survival analysis
First, we selected 120 hub genes (the top 30 genes 
from each tumor-specific module) and all the genes in 
the lncRNA–mRNA co-expression networks, exclud-
ing those not detected in over 50% of samples. Survival 
analysis was performed to identify genes with prognos-
tic significance. The analysis included hub genes (AQP5, 
CYP4X1, RSPO1, IL-26, CYP4Z1, PCP2, BCMO1, 
GUCY1A3, and CLK4) and lncRNA–mRNA network 
genes (RSPO1, FAP, FRMD5, TTTY14, SPP1, ZNF566, 
CEECAM1, INHBB, CLK4, OPN3, GUCY1A3, BCO1, 
TNFAIP6, TMEM56, FN1, and GFPT2). AQP5, IL-26, 
FRMD5, INHBB, and GUCY1A3 were found to be statis-
tically significant prognostic genes (Fig. 6A).

Expression of five hub genes in clinical OSCC tissues
We analyzed the expression levels of five hub genes in 
three normal and four OSCC tissue samples. The results 
are shown in Fig. 6B. AQP5 and GUCY1A3 were found 
to be expressed at lower levels in OSCC tissues as com-
pared to the normal samples, while FRMD5 and INHBB 
showed higher expression levels in OSCC samples. IL-26 
did not exhibit a significant difference between OSCC 
and normal tissues. These findings suggest potential new 
marker genes for OSCC tumorigenesis.

Discussion
OSCC is a prevalent and aggressive malignancy with 
a 5-year survival rate of 50% [31–34]. Despite advance-
ments in surgical methods, radiotherapy, and chemo-
therapy improving patient quality of life, the prognosis 
for OSCC remains poor [2]. Thus, exploring its molecular 
mechanisms is crucial for developing effective preven-
tion and treatment strategies. In this study, WGCNA was 
employed to identify OSCC-specific modules, revealing 
120 hub mRNAs and five hub lncRNAs. We constructed 
lncRNA–mRNA and ceRNA co-expression networks 
using these hub lncRNAs. By analyzing FPKM data from 
the TCGA database and applying survival analysis with 
the Cox proportional hazard model, we validated these 
hub mRNAs and lncRNA–mRNA network genes. Nota-
bly, AQP5 and IL-26 (from hub mRNAs), and FRMD5, 
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Fig. 2  WGCNA analysis. Analysis of the scale-free fit index for various soft-thresholding powers for A Normal and B Tumor. C, D Clustering 
dendrograms of genes for tumor and normal. Different colors are used to represent gene modules, where gray represents genes that cannot be 
merged
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Fig. 3  Identification of hub gens. Module comparisons: A Comparison of tumor and normal modules. The vertical axis represents tumor modules, 
while the horizontal axis represents normal tissue modules. The depth of red indicates the degree of overlap between modules, and the numbers 
in each rectangle show the number of overlapping genes. Top 30 hub genes: B, C The top 30 hub genes in tumor-specific modules (Cyan, Green, 
Lightcyan, and Salmon) are shown. Nodes represent hub genes, with node size reflecting intramodular connectivity, edge thickness indicating 
weight, and node color representing log(Fold Change). The top five hub genes are centrally located in the network
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Fig. 4  Construction of lncRNA–mRNA co-expression network. A LncRNA LOC441426; B LncRNA PART1; C LncRNA TTTY2; D LncRNA MEG3 
and C10orf85; Round nodes represent mRNA, diamond nodes represent lncRNA, and node colors represent log (Fold Change)
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INHBB, and GUCY1A3 (from the lncRNA–mRNA net-
work) were significantly associated with patient progno-
sis, suggesting their potential as prognostic biomarkers 
for OSCC. This study enhances our understanding of 
OSCC’s molecular mechanisms and could lead to more 
precise diagnostic methods and targeted therapies.

AQP5, a member of the aquaporin (AQP) family of 
membrane proteins, facilitates water and glycerol trans-
port and is primarily expressed in secretory glands and 

certain epithelial tissues [35–37]. Its overexpression 
is associated with increased cancer cell proliferation, 
metastasis, and migration in various cancers [38–41]. In 
OSCC, AQP5 is down-regulated compared to normal 
tissues and exhibits high intramodular connectivity in 
the OSCC regulatory network. Cox proportional hazard 
model analysis identifies AQP5 as an independent prog-
nostic factor for OSCC, suggesting it plays a significant 
role in OSCC progression. Furthermore, AQP5 may 

Fig. 5  Construction of ceRNA co-expression network. A LncRNA C10orf85; B LncRNA MEG3; C LncRNA PART1; The rhombus represents lncRNA, 
the round represents RNA, and the V-shaped represents microRNAs. Dark blue indicates down-regulation and red indicates up-regulation. The color 
of the microRNA node is meaningless
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influence gemcitabine sensitivity, with low AQP5 poten-
tially reducing drug efficacy and worsening prognosis 
[42, 43].

IL-26, a cytokine from the IL-10 family produced 
by Th17 cells, is involved in promoting inflammatory 
responses and microbial killing by inducing plasmocytoid 

Fig. 6  Expression of five hub genes in clinical OSCC versus normal tissues. A Overall survival analyses of five hub genes in the OSCC TCGA dataset. 
B Expression levels of AQP5, IL-26, FRMD5, INHBB and GUCYLA3 in OSCC tissues were detected by RT-qPCR. Statistically significant genes are 
highlighted in the figure, with red lines indicating high expression and blue lines indicating low expression
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dendritic cells (pDCs) to secrete type I interferon [44–
46]. Its role in cancer is debated: it can inhibit colorectal 
cancer cell proliferation [44] or enhance gastric cancer 
cell survival [47]. In this study, IL-26 was down-regulated 
in OSCC and associated with poor prognosis. While, 
IL-26 can stimulate type I interferon secretion and poten-
tially activate dormant cancer stem cells, its diminished 
expression might reduce drug efficacy [48] and worsen 
survival outcomes. However, the lack of a significant 
expression difference between OSCC and normal tissues 
may be due to the small sample size, and further research 
with additional samples is ongoing.

Cox proportional hazards model multivariate analysis 
revealed that FRMD5, INHBB, and GUCY1A3, identi-
fied from the lncRNA–mRNA network, are significant 
prognostic factors for OSCC. FRMD5, a member of the 
FERM protein family, was first identified as a down-
stream target of the mutant p53R273H protein [49]. It 
is highly expressed in colorectal cancer and predicts 
poor prognosis [50], a finding consistent with our OSCC 
results. INHBB is a cytokine in the TGF-β family [51]. 
Overexpression of INHBB is associated with poor sur-
vival in OSCC. INHBB forms activin B, which promotes 
OSCC metastasis by regulating EMT-related genes [51]. 
GUCY1A3, which encodes the α1 subunit of soluble 
guanylate cyclase [52], has limited research linking it to 
cancers. One study [53] showed that GUCY1A3 overex-
pression increases cyclic GMP production, promoting 
angiogenesis in gliomas. Our study found GUCY1A3 
down-regulated in OSCC, with low expression predict-
ing poor prognosis. Additionally, the lncRNA C10orf85 
regulates FRMD5, INHBB, and GUCY1A3. Although the 
precise role of C10orf85 and its regulatory mechanisms 
with these genes in OSCC are not fully understood, these 
findings suggest it is a key player.

We also constructed a ceRNA network with five hub 
lncRNAs (LOC441426, TTTY2, PART1, MEG3, and 
C10orf85). PART1, MEG3, and C10orf85 regulate top 
hub mRNAs through various miRNAs. For instance, 
PART1 positively regulates SLC38A3 and PANK1 in the 
salmon module, while ITGA11 in the green module is 
co-expressed with lncRNA C10orf85 and MEG3. These 
insights provide new strategies for exploring OSCC 
pathogenesis.

We acknowledge several limitations in our study that 
should be considered when interpreting the results. 
Although we performed extensive data collection and 
computational analysis, the findings are primarily based 
on data mining techniques and may require further 
validation. Specifically, while we validated the expres-
sion of five hub genes in clinical samples compared to 
normal tissues, these results have not been confirmed 

through experimental studies such as in  vivo animal 
models or functional assays. Additionally, the number 
of patient samples tested is limited. To robustly estab-
lish the significance of our findings, it is essential to 
conduct comprehensive experimental research, includ-
ing cellular and animal model studies. Such validation 
is crucial for corroborating our results and understand-
ing their biological relevance in the context of OSCC.

Conclusions
In summary, we used WGCNA to identify tumor-
specific modules and hub genes in OSCC. We con-
structed a functional competing endogenous RNA 
(ceRNA) network based on these modules and identi-
fied key genes—AQP5, IL-26, FRMD5, INHBB, and 
GUCY1A3—that are associated with OSCC patient 
survival and validated the differential expression levels 
of these genes in patient and normal tissues. The find-
ings may suggest that these genes could serve as novel 
biomarkers for prognostic assessment in OSCC and 
may offer new targets for therapeutic intervention.
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