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CASE REPORT

A novel variant luteinizing hormone 
receptor in the first transmembrane helix of two 
homozygous Iranian patients: case report
Samaneh Sharif1*, Saba Vakili1, Moein Mobini2, Malihe Lotfi1, Fatemeh Zarei2, 
Mohammad Reza Abbaszadegan1 and Rahim Vakili1,2* 

Abstract 

Background:  Leydig cell hypoplasia (LCH) is a rare autosomal recessive endocrine syndrome that affects the normal 
development of male external genitalia in 46, XY individuals and is one of the causes of disorder of sexual differentia-
tion (DSD) in males. The responsible gene of LCH is LHCGR​ which is located on the chromosome 2 and its various 
mutations lead to different degrees of the disease ranging from micropenis to complete XY DSD.

Case presentation:  In this study, we have investigated the clinical presentation and molecular findings of two sib-
lings with complete male LCH and XY DSD. This is the first detailed report of individuals with LCH from Iran. It aimed 
to study the molecular and clinical characteristics of two sisters with type 1 LCH. Whole exome sequencing was used 
for these patients to find the underlying genetic cause of the disease. Our Iranian DSD patients had external genitalia 
(normal labia major and minor, the external opening of the urethra beneath the clitoris) and bilateral testicular tissues 
in the inguinal region, which were removed by surgical exploration.

Conclusions:  Genetic sequencing showed the homozygous variants of the LHCGR​ gene in the patients, a novel 
duplication variant in exon 11, c.1091dupT -or pLeu365Profs*5. This mutation is described as likely pathogenic. We 
think that this case report can widen the genotypic spectrum of the LHCGR​ variants. Moreover, this study emphasizes 
the significant rule of Whole Exome Sequencing in differentiating various causes of disorder of sexual differentiation.
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Background
Male sexual differentiation basically depends on gonado-
tropic hormones, luteinizing hormone (LH), and placen-
tal human chorionic gonadotropin (hCG). The impact of 
both glycoprotein hormones is mediated by luteinizing 
hormone/chorionic gonadotropin receptor (LHCGR), 
whose impairment may lead to diminished or lack of viri-
lization in utero and reproductive dysfunction. During 
embryogenesis, hCG binds to LHCGR receptors in utero 

and produces testosterone and dihydrotestosterone, 
which are necessary for male sexual differentiation [1]. 
In pubertal maturation, male sexual fertility and func-
tion depend on the interaction between LH and LHCGR. 
The LHCGR​ gene consists of 11 exons and 10 introns, 
spans > 80  kb on chromosome 2p21, and is mainly 
gonadal. It is highly expressed in testicular Leydig cells 
and ovarian theca cells. Exons 1–10 and a part of exon 11 
encode for the extracellular domain, which accounts for 
ligand binding. The remaining parts of exon 11 encode 
the seven transmembranes and intracellular domains 
involved in signal transduction [2]. Both activating and 
inactivating variants of the LHCGR​ gene may lead to 
diseases. In 46, XY individuals, constitutive activation of 
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LHCGR​ results in male precocious puberty and Leydig 
cell adenomas, while inactivating mutations chiefly cause 
LCH and hypergonadotropic hypogonadism. In 46, XX 
individuals, loss-of-function mutations usually present 
with normal external genital and breast development. 
However, they may have absent or delayed menarche. 
The 46, XX individuals who have LHCGR mutations with 
decreased function of receptors are resistant to LH and 
although the follicle maturation may be normal, ovula-
tion is rarely observed in them [3].

Leydig cell hypoplasia (LCH) is an autosomal recessive 
disorder which founds in two major types. Type I is a less 
frequent and sevier form of 46, XY disorder of sex devel-
opment with total dysfunction of receptor that results in 
a complete female phenotype and male disorder of sexual 
differentiation (DSD). It may present with a blind vagina, 
amenorrhea, and absence of breast development. Type 
II LCH, which is more common, is associated with 46, 
XY male DSD with micropenis and/or hypospadias and/
or cryptorchidism [4]. The varying degrees of receptor 
gene mutations are responsible for different phenotypes 
in patients as there is a phenotype-genotype correla-
tion in this disorder. Heretofore, more than 83 LHCGR​ 
mutation variants have been reported in male genital and 
gonadal development disorders. Herein, we report the 
first detailed cases of LCH in Iran due to a novel homozy-
gous duplication mutation (c.1091dupT) in two siblings 
with 46, XY to widen the genotype–phenotype correla-
tion spectrum of the LHCGR​ variants.

Case presentation
The target patients were two sisters. The first patient 
(referred to as patient 1) was 19  years old and the sec-
ond one (referred to as patient 2) was 13 as of the time 
of writing. The social gender of both patients was female. 
The two patients were born full-term by vaginal deliv-
ery, and their parents were healthy with consanguineous 
marriage (Fig. 1).

Patient 1 had referred to Imam Reza hospital with 
bilateral inguinal masses when she was 6 years old. The 
patient had no other symptoms at the time of presenta-
tion. At her first presentation, observations were stable 
and physical examination revealed that the patient had 
female external genitalia, with normal bilateral labia 
majora and minora, and external opening of urethra 
beneath the clitoris. However, bilateral palpable masses 
were found in inguinal regions, initially assumed to be 
inguinal herniation.

The patient underwent abdominopelvic ultrasonog-
raphy, which revealed testicular tissues in the inguinal 
region of both sides, sized 17 × 8 mm2. The ultrasound 
did not show any sign of the uterus or other Mullerian 
structures in the pelvic cavity. Based on the ultrasound 

findings, the patient was diagnosed with androgen insen-
sitivity syndrome (AIS).

Genetic analysis showed the patient’s karyotype as 46, 
XY; however, no pathogenic variant was found in her SRY 
gene. Moreover, cystourethroscopy was performed for 
the patient and revealed a blind vaginal pouch, 1–1.5 cm 
in depth. However, the urethra and the bladder were 
normal.

Surgical removal of the inguinal masses was performed 
for the patient based on recommendations from pediat-
rics surgeons and endocrinologists. Histopathological 
study of the excised sample showed seminiferous tubules 
lined by Sertoli cells without germ cells, which confirmed 
the presence of testicular tissue. The patient underwent 
treatment with ethinyl estradiol at 14  years of age to 
induce the presence of secondary sexual characteristics 
in her.

The younger sibling, patient 2, was born with female 
external genitalia and had female social gender. However, 
physical examinations and abdominopelvic ultrasonogra-
phy revealed that this sibling was suffering from the same 

Fig. 1  The pedigree of the patients’ family. Circles indicate females; 
squares indicate males, and diamonds indicate no specific sex

Table 1  Laboratory results of the patient 2

No. Test Result Normal range

1 Testosterone 1.0 ng/dl 8–86 ng/dl

2 D.H.E.A SO4 3.3 ng/ml 100–600 ng/ml

4 17OH Progesterone 0.3 ng/ml 0.8–5 ng/ml

5 Cortisol (8AM) 16.6 µg/dl 9.4–26 µg/dl

6 Androstenedione 0.1 ng/dl 0.3–2.4 ng/dl

7 Dihydro Testosterone 0.5 pg/ml 24–368 pg/ml
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condition and had testicular tissues in inguinal regions. 
Genetic analysis also showed the patient’s karyotype as 
46, XY without any pathogenic variant in the SRY gene. 
Surgical removal of inguinal masses was also done for 
patient 2.

Laboratory results of patient 2 before surgery, sum-
marized in Table 1, indicated deficient levels of male sex 
hormones. This finding was not consistent with the typi-
cal biochemical findings of AIS. Due to the occurrence of 
a similar case in the family, genetic sequencing was per-
formed for the patient to reach a definite diagnosis.

Genetic sequencing
To reach a more precise genetic diagnosis, the whole-
exome sequencing (WES) analysis was performed to 
screen for causal variants. To this end, a total amount 
of more than > 1 μg of genomic DNA from proband was 
subjected to WES at Macrogen (Seoul, South Korea) 
on the Genome Analyzer HiSeq 4000 (Illumina, San 
Diego, CA, USA). Briefly, genomic DNA was sheared 
to an apparent size range of 150–200 bp of DNA frag-
ments. The library had been prepared using SureSelect 
V6 Library Pre-Kit and guidelines (Agilent Technolo-
gies, CA, USA). An output file with VCF format was 
generated that included all single nucleotide variants 
(SNVs) and indels annotated with the reference genome 
using the existing databases to indicate the information 
of each variant. The obtained variants were annotated 
with ANNOVAR software. Homozygous missense, 
splice site, start codon change, stop loss, and indel vari-
ants with minor allele frequency < 1% were further fil-
tered in dbSNP (version 138), 1000 Genomes Project, 
Exome Aggregation Consortium (ExAC), and gno-
mAD. The process was followed by an analysis of the 
potential pathogenicity of the novel variant, based on 
ACMG standards and guidelines for the interpretation 
of sequencing variants and using bioinformatics tools, 
including SIFT (sift.jcvi.org), PolyPhen-2 (http://​genet​
ics.​bwh.​harva​rd.​edu/​pph2), CADD, Mutation Taster 
(http://​www.​mutat​ionta​ster.​org), FATHMM (fathmm.
biocompute.org.uk), and MutationAssessor) http://​
www.​Mutat​ionAs​sessor.​org). Conservation scores of 
variation sites were predicted using GERP +  + and 
PhyloP. Allele frequency in the normal Iranian popula-
tion was analyzed by Iranome (http://​www.​irano​me.​ir).

Identification of the causal variants and pathogenicity 
prediction
WES yielded a total of 22,449 reads and the mean tar-
get coverage was 106.956 reads. 95.7499% of reads 
had 20 × coverage, 82.3248% had 50 × coverage, and 
47.4527% had 100 × coverage. In the first step, filtra-
tion of the candidate variants was carried out using 
these criteria: minor allele frequency (MAF) under 1% 
in genome Aggregation Database (gnomAD, http://​
gnomad.​broad​insti​tute.​org/), and the benign variants, 
including harmless and synonymous missenses. Based 
on the obtained scores, the following predictions were 
made: the variant is probably damaging (1.00 score by 
PolyPhen-2), affects the protein function (0 scores by 
SIFT), and can be damaging (27.3 scores by CADD). 
Besides, this variant has not been reported in the Ira-
nian normal population according to the Iranome data-
base. Genomic DNA was extracted from the peripheral 

Fig. 2  Genetic sequencing of the LHCGR gene. a Sanger sequencing 
of DNA control individuals (Wild Type; WT) and b homozygous 
duplication mutation c.1091dupT in patient

http://genetics.bwh.harvard.edu/pph2
http://genetics.bwh.harvard.edu/pph2
http://www.mutationtaster.org
http://www.MutationAssessor.org
http://www.MutationAssessor.org
http://www.iranome.ir
http://gnomad.broadinstitute.org/
http://gnomad.broadinstitute.org/
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whole blood of the two probands. Genotype analysis 
was performed on the extracted DNA using specific 
primer sets for the LHCGR gene. Sequencing of the 
purified amplicons was performed using an Applied 
Biosystems ABI 3730 XL automated DNA Sequencer. 
The sequences were compared to the human GenBank 
sequence for the LHCGR using Sequencher sequence 
alignment software (Version 4.10.1). The results of 
Sanger sequencing are shown in Fig.  2. Unfortunately, 
we were not able to confirm the carrier status of the 
parents.

The variant amino acid at codon 365 and wild type 
was modeled into the 3D structure of the LHCGR pro-
tein by RaptorX (publicly available at http://​rapto​rx.​uchic​
ago.​edu) to obtain more insight about the frameshift 
variant. The wild-type LHCGR domain data were taken 
from Uniprot databases (can be accessed online at http://​
www.​unipr​ot.​org/) and compared with this structure. It 
was predicted that a change of amino acid at the 365th 
position (p.L365P) results in a stop codon in codon 370 
and produce a truncated protein without transmembrane 
domain (Fig.  3). In conclusion, it can be said that our 
analysis results show that the variant (c.1091dupT pLeu-
365Profs*5) is expected to have harmful effects on pro-
tein functionality.

Discussion
In this study, we report novel homozygous variants in the 
LHCGR​ gene of two Iranian sibling patients with 46, XY 
DSD and type 1 LCH. Further, a novel frameshift muta-
tion (c.1091dupT, p.Leu365) was found in the LHCGR​ 
gene and related to their physiological conditions. The 

patients had clinical features compatible with the molec-
ular diagnosis. Orchidectomy had been performed for 
the patients when they were about 6 years old. Right after 
the sex assignment at the age of 13, ethinyl estradiol (EE) 
had been prescribed for the development of secondary 
female characteristics.

Based on the variant interpretation guidelines from the 
American College of Medical Genetics and Genomics/
the Association for Molecular Pathology (ACMG‐AMP) 
[5], the found missense variant is taken together and 
by considering the clinical and molecular aspects, the 
patients were diagnosed with type 1 LCH.

After developing testicular structures, both fetal LH 
and maternal hCG act on the testicular LHCGR to ele-
vate the synthesis and secretion of testosterone, which 
is critical for normal reproductive development. Espe-
cially, the functional differentiation of Leydig cells by 
the onset of fetal life seems to be independent of LH/
hCG, while in contrast, differentiation and proliferation 
in the subsequent development stages are LH/hCG-
dependent [6]. So far, 83 variants have been reported 
for the LHCGR​ gene in Human Gene Mutation Data-
base (HGMD, http://​www.​hgmd.​cf.​ac.​uk/). Among 
these, 53 are nonsenses and missenses, 5 are gross dele-
tions, 6 are small deletions, 5 are small insertions, 5 are 
splicing variants, and one of them is gross insertion. 
The number of inactivating compound heterozygous 
and homozygous variants, which have the capability 
of altering the structure of the LHCGR protein and its 
functionality, is more than the number of activating 
variants. In Table 2, the variants of the exon 11 of the 
LHCGR​ gene are listed, which are extracted from the 
literature.

a) b)

L365

Fig. 3  The 3D structure model of the LHCGR protein a Wild type LHCGR, and b Mutant LHCGR that alters the receptor structure. The arrow indicates 
amino acid 365, leucine in the wild type and proline in the mutant receptor, respectively

http://raptorx.uchicago.edu
http://raptorx.uchicago.edu
http://www.uniprot.org/
http://www.uniprot.org/
http://www.hgmd.cf.ac.uk/
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Most of the variants are in exon 11 of the LHCGR​ 
gene since this is its largest exon. Thus far, 21 inactivat-
ing mutations have been identified in exon 11 of this 
gene that can encode the receptor intracellular domains 
and the 7-transmembrane (TM). Various kinds of muta-
tions can cause functional deactivation of the LH recep-
tor gene product. A number of nonsense mutations have 
been identified in distinct regions of the transmem-
brane domain. Laue et al. have reported the first case of 

a nonsense mutation (A1635C) in exon 11 of the human 
luteinizing hormone receptor (hLHR) gene in two sisters 
with LCH [31]. They found that this mutation results in 
the receptor loss of function by introduction of a stop 
codon at residue 545 in transmembrane helix 5 of the 
hLHR. Richter-Unruh et al. have identified a LCH patient 
with premature termination codon at position 491 
(TGG–TGA; W491*), truncated before the third intracel-
lular loop that leads to deficiency in signaling pathways 

Table 2  The variants of the exon 11 of the LHCGR gene

EC Extracellular, TM transmembrane segment, IL intracellular loop, fs Frame shift, Term Terminal Codon, hom Homozygote, het Heterozygote

No. Base change Amino acid change Location Phenotype References

1 c.1027 T > A (het) p.C343S (het) EC Domain Pseudohermaphroditism (46, XY) [7]

2 c.1060G > A(hom) p.E345K EC Domain Pseudohermaphroditism (46, XY) [8]

3 c.1103 T > C(het) p.L368P TM1 Male precocious puberty [9]

4 c. 1126C > T(het) p.A373V TM1 Male precocious puberty [10]

5 c.1121 T > C (hom) p.I374T TM1 Pseudohermaphroditism (46, XY) [11]

6 c.1175C > T(hom) p.T392I IL1 Leydig cell hypoplasia & male pseudo-
hermaphroditism

[11]

7 c.1192 T > C p.T398M TM2 Male precocious puberty [12]

8 c.1199A > G (hom) p.N400S TM2 Empty follicle syndrome [13]

9 c.1244 T > C (hom) p.I415T TM2 Leydig cell hypoplasia II [14]

10 c.1370 T > G p.L457R TM3 Male precocious puberty [15]

11 c.1395G > A (hom) p.W465Term IL2 Primary amenorrhea [16]

12 c.1435C > T (hom) p.R479Term IL2 Primary amenorrhea [17]

13 c.1448C > A (hom) p.A483D TM4 Pseudohermaphroditism (46, XY) [18]

14 c.1473G > A (hom) p.W491Term TM4 Pseudohermaphroditism (46, XY) [17]

15 c.1505 T > C (hom) p.L502P TM4 Pseudohermaphroditism (46, XY) [19]

16 c.1573C > T (hom) p.Q525Term EC Domain Primary amenorrhea [17]

17 c.1624A > C (hom) p.I542L TM5 Male precocious puberty [20]

18 c.1627 T > C p.C543A TM5 Pseudohermaphroditism [20]

19 c.1627 T > C p.C543A TM5 Pseudohermaphroditism [7]

20 c.1635C > A (hom) p.545Term TM5 Leydig cell hypoplasia [21]

21 c.1660C > T(hom) p.R554Term IL3 Luteinizing hormone resistance [3]

22 c.1691A > G p.G564N IL3 Male precocious puberty [21]

23 c.1703C > T (hom) p.A568V EC Domain Male precocious puberty [9]

24 c.1713G > A p. M571I TM6 Male precocious puberty [22]

25 c.1715C > T (het) p.572A > V TM6 Male precocious puberty [23]

26 c.1723A > C (het) p.I575L TM6 Male precocious puberty [21]

27 c.1730C > T p.T577I TM6 Male precocious puberty [24]

28 c.1733A > G p.A578G TM6 Male precocious puberty [25]

29 C1741T > C p.C581A TM6 Male precocious puberty [25]

30 c.1757_1758del (het) p.S586Ffs19 TM6 Infertility [16]

31 c.1764dupT (hom) p.A589Cfs17 TM6 Pseudohermaphroditism (46, XY) [26]

32 c.1777G > C (hom) p.A593P TM6 Pseudohermaphroditism (46, XY) [27]

34 c.1824_1829del (hom) p.V609_L610del TM7 Pseudohermaphroditism (46, XY) [28]

35 c.1836 T > G (hom) p.Y612Term TM7 Pseudohermaphroditism (46, XY) [29]

36 c.1847C > A (hom) p.S616Y TM7 Pseudohermaphroditism (46, XY) [17]

37 c.1850delG (hom) p.C617Lfs22 TM7 Pseudohermaphroditism (46, XY) [4]

38 c.1874 T > A (hom) p.I625K TM7 Pseudohermaphroditism (46, XY) [30]
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[30]. Latronica et  al. have reported two new homozy-
gous missense and nonsense mutations in the LH-recep-
tor gene (Ser616 → Tyr616 and Arg554 → stop codon554 
(TGA), respectively) in 3 46,XY siblings with Leydig-cell 
hypoplasia, a boy with micropenis and primary hypog-
onadism, and a 46,XX sister with amenorrhea [3]. They 
have shown that the found stop codon in the 3rd intra-
cellular loop of the LH receptor interrupts the translation 
process of the LH-receptor mRNA and hence eliminates 
a large part of the receptor. It is further proposed that this 
truncated mutant receptor cannot transfer the hormonal 
signal even if expressed in the target cell membranes [3]. 
On the other hand, Newton et al. have reported on com-
parative and detailed functional analyses of deactivat-
ing disease-producing mutations of the LHR. They have 
performed a combined study by ligand-binding assays, 
in vitro signaling assays, and by determination of cell sur-
face expression of mutant and wild-type receptors. They 
have shown that existence of proline residues within the 
TM helix regions (e.g., L502P and A593P) can produce 
helix kinks that disrupt the structure and the correct 
folding of the 7TM domain [32]. Consistent with these 
reports, it can be predicted that the frameshift mutations 
in c.1091dupT and L365P at the first TM produce trun-
cated protein due to loss of its function and cannot trans-
fer the hormonal signal.

Based on the modeling results in this study, the substi-
tution of L365 with proline in the TM1 alters the struc-
ture and folding of the LHCGR receptor, results in a stop 
codon in codon 370, and produces a truncated protein 
without transmembrane domain. In our case, the per-
formed analysis shows a novel duplication variant in exon 
11, c.1091dupT, and pLeu365Profs*5. Two patients with 
46, XY DSD and type 1 LCH are studied in this report 
and it is found that they have novel homozygous variants 
in their LHCGR​ gene. By introduction of a stop codon, 
this frameshift variant can result in premature termina-
tion and hence formation of a truncated protein with 
impaired protein function. We are of the opinion that the 
found frameshift variant in our case can lead to loss of 
function in the LHCGR​ protein that in turn influences 
the intracellular signaling cascades. Future studies must 
be directed towards the functional analysis investigations 
of this variant.

Conclusion
Leydig cell hypoplasia (LCH) is a rare autosomal reces-
sive disorder presenting with abnormal development 
of male external genitalia in 46, XY individuals and one 
of the causes of disorder of sexual differentiation (DSD) 
in males. The present study discussed the phenotype 
and genotype of patients with LCH and demonstrated a 

novel homozygote variant among the Iranian population. 
By virtue of this case report, it can be said that Whole 
Exome Sequencing (WES) and genetic counseling should 
be considered in the diagnosis and management of 
patients with a disorder of sexual differentiation (DSD).
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