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Abstract 

Background:  Chronic myelogenous leukemia (CML) is a type of blood cancer that affects hematopoietic stem cells 
and is often characterized by the presence of the Philadelphia chromosome. The Philadelphia chromosome encodes 
for a protein with high tyrosine kinase activity which acts as a tumorigenic factor.

Main body:  This review article reports an update on the pathophysiology of CML and highlights the role of cytoge-
netic and molecular biology in screening, diagnosis, therapeutic monitoring as well as evaluating patients’ response 
to treatment. Additionally, these genetic tests allow identifying additional chromosomal abnormalities (ACA) and BCR-
ABL tyrosine kinase domain mutations in intolerant or resistant patients. Thus, therapeutic advances have enabled this 
pathology to become manageable and almost curable in its clinical course. The scientific literature search used in the 
synthesis of this paper was carried out in the PubMed database, and the figures were generated using online software 
named BioRender.

Conclusion:  The role of cytogenetic and molecular biology is crucial for the diagnosis and medical monitoring of 
patients. In-depth knowledge of molecular mechanisms of the BCR-ABL kinase facilitated the development of new 
targeted therapies that have improved the vital prognosis in patients. However, the emergence of ACA and new 
mutations resistant to tyrosine kinase inhibitors constitutes a real challenge in the quest for adequate therapy.
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Background
Chronic myeloid leukemia is a clonal myeloproliferative 
disease whose origin involves an alteration in the genome 
in the hematopoietic stem cell compartment. This change 
subsequently results in excessive production of granulo-
cytes in the bone marrow causing both splenomegaly and 
hyperleukocytosis [1, 2].

On a cytogenetic level, it is characterized by the pres-
ence of the Philadelphia chromosome, originating from 
a balanced reciprocal translocation t (9; 22) (q34; q11) in 
more than 90% cases of CML.

This translocation causes the fusion of the Abelson 
(ABL) proto-oncogene on chromosome 9 with the inter-
rupted end of the breakpoint cluster region (BCR) of 
chromosome 22. The chimeric gene encodes a protein 
with high tyrosine kinase activity which acts as a tumori-
genic factor [3, 4].

The etiological factors are globally not very known. 
Several epidemiological studies have demonstrated the 
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effect of ionizing radiation on the development of CML 
in exposed people, while others suggest a possible role of 
exposure to benzene in the onset of the disease [5].

The median age of people affected is approximately 
56  years and it accounts for about 15–20% of leukemia 
in adults. CML incidence worldwide varies from 0.6 to 
2.8/100,000 individuals per year [6]. The age-standard-
ized incidence rate for males was reported to be, respec-
tively, 1.8 in Australia, 1.7 in France, 1.3 in the United 
States, and 0.7 in Egypt (per 100,000 individuals). For 
females, it was, respectively, 1 in Australia, 0.8 in France, 
0.8 in the United States, and 0.8 in Egypt (per 100,000 
individuals) [7].

The WHO’s recent definition of CML stages divides 
disease progression into two phases: An accelerated 
phase (AP) with continuous or increasing splenomegaly, 
persistent or increasing leukocytosis. Blast cells count 
from 10 to 19%, basophils count exceeds 20% and plate-
lets count exceeds 1000 × 10/L. AP is also characterized 
by the presence of additional chromosomal aberrations 
(trisomy 8, isochromosome 17q, trisomy 19…) during 
treatment or at diagnosis as well as the occurrence of 
mutations (two or more) during therapy (mainly T315I). 
The blastic phase is characterized by 20% of blasts (in 
blood, bone marrow, extramedullary sites), splenomegaly 
and genomic evolution (emergence of ACA) [8, 9].

Cytogenetic and molecular biology techniques play a 
key role in the detection of chromosomal abnormalities 
and mutations involved in the oncogenesis of the disease. 
They also allow detailed cytogenetic and molecular mon-
itoring which will contribute to the choice of the appro-
priate therapeutic strategy for each patient [10].

As for the treatment of CML, advances in science have 
led to the introduction of tyrosine kinase inhibitors, as a 

targeted therapy, which acts directly on the kinase activ-
ity of the BCR-ABL oncoprotein. These breakthroughs 
have radically changed the vital prognosis in patients 
with CML in terms of efficacy and survival [11].

This article aims to provide an updated review on CML 
and to underline the importance of cytogenetic and 
molecular biology in the diagnosis and therapeutic moni-
toring of patients, as well as to discuss the evolution of 
treatment in the TKI era.

Main text
Cytogenetics of chronic myeloid leukemia
The Philadelphia chromosome is formed as a result of a 
reciprocal translocation between chromosome 9 at posi-
tion q34 and chromosome 22 at position q11. This chro-
mosome aberration leads to the formation of a chimeric 
gene BCR-ABL1 responsible for the oncogenic activity of 
the kinase (Fig. 1) [12]. According to the literature, there 
are several variants of simple or complex chromosomal 
rearrangements involved in CML (Table 2). We first men-
tion complex translocations involving chromosomes 9 
and 22 and at least one additional chromosome (from 5 
to 10%) [13]. In this case, the third chromosome is the 
recipient of the deleted part of 22q—while 9 is the recipi-
ent of the deleted part of the third chromosome. Then, 
simple translocations of the distal part of chromosome 
22 (22ql l-qter) to another chromosome than 9. A variant 
characterized by a Ph chromosome which has lost its typ-
ical 22q- aspect and finally cases considered as Ph nega-
tive (Ph−) or atypical where chromosome 22 is intact 
with a breakpoint at 9q34 [14]. The most frequent vari-
ants reported in a study were the complex translocations 
involving chromosomes 1 and 16 [15].

Fig. 1  Reciprocal translocation between chromosome 9 and chromosome 22 results in the formation of the Philadelphia chromosome (Created on 
BioRender)
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The prognostic impact of variant Ph translocations dif-
fers from a study to another. In one study, it was found 
that a variant translocation and ACA indicated a poor 
prognosis. Accordingly, a study suggests that the variants 
with four breakpoints or more confer unfavorable prog-
nostic value [16].

While in other studies, it is suggested that variant Ph 
chromosomes have no significant effect on vital progno-
sis in a way that CCyR and MMR were similar in patients 
with or without Ph Variant [17, 18].

In the course of CML progression, additional chromo-
somal abnormalities (ACA) appear in particular during 
AP and BP and can cause genetic instability.

These abnormalities (Table  1) which are found in the 
cells where the Philadelphia chromosome is visible (Ph+) 
are classified into major and minor. Major pathway ACA 
present 10% of ACA and include mainly trisomy 8, addi-
tional Ph derivation (+ der (22) t (9; 22), isochromosome 
17 (i (17) (q10)), trisomy 19 and others [19]. Minor path-
way ACA is less common and not sufficiently studied. It 
includes five aneuploidies (− 7, − 17, + 17, + 21, and − Y) 
and one balanced structural abnormality t (3; 21) (q26; 
q22) described by Mitelman [20]. In patients with Ph− 
cells, ACA found could be a reciprocal translocation t (6; 
9) (p21; q34.1), a chromosomal marker (+ mar), a trisomy 
8 and others. On the other hand, the absence of the Ph 
chromosome and the presence of − 7 (monosomy 7) con-
tribute to the evolution towards a myelodysplastic syn-
drome (MDS) or acute myeloid leukemia (AML) [12, 19].

Cytogenetic diagnosis
In the study of hematologic malignancies, chromosome 
abnormalities are detected by different cytogenetic tech-
niques. The standard karyotype aims primarily to analyze 

metaphases, using a light microscope, of cells blocked in 
mitosis [16].

When performing a karyotype, it is recommended to 
analyze at least 20 metaphases to assess the percentage of 
cells carrying the abnormality [10, 21]. For complex kar-
yotypes presenting additional chromosome aberrations 
(the presence of 3 or more chromosomal abnormalities 
in the same clone), the number of metaphases observed 
must be greater to recognize the primary and second-
ary abnormalities [22, 23]. In particular, a pathological 
karyotype indicates the presence of a Philadelphia chro-
mosome in more than 90% of cases (Ph+) [14]. The Ph 
chromosome is found in all cell lines of the bone marrow: 
myelocytic, monocytic, megakaryoblast and erythroblast 
precursor cells.

The majority of B lymphocytes are Ph+ unlike T lym-
phocytes which are Ph− (otherwise very rare Ph+ T 
cells) [12].

In molecular cytogenetics, the fluorescence in  situ 
hybridization (FISH) technique is relatively simple and 
rapidly detects chromosome abnormalities. In case of 
masked translocation in CML suspicion, the BCR-ABL 
fusion is sought using a complementary FISH [24]. Inter-
phase FISH does not require cellular culture and plays an 
essential role in the routine analysis since some leukemic 
cultures do not proliferate (almost 5% of bone marrow 
samples) [16]. Thus, interphase FISH permits the evalu-
ation of a large number of cells without the need for cell 
culture [25]. Moreover, to detect the genes involved in 
the pathogenesis of CML, FISH can identify all forms 
of the fusion gene: t (9; 22), variant translocations, hid-
den translocations or insertions, using a set of two-color 
probes: a probe of green color to mark the BCR gene, 
another of red color for the ABL1 gene. The fusion of 

Table 1  Cytogenetic variants of CML and examples of some additional chromosomal abnormalities in Ph+ cells and Ph− cells

Cytogenetic variants
Complex translocations including chromosome 9, 22 and at least one additional chromosome

Simple translocations of 22ql l-qter to a chromosome other than 9

Ph chromosome which has lost its typical 22q− aspect

Ph negative (Ph−)

Additional chromosomal abnormalities
Ph+ cells Ph− cells
Major pathway trisomy 8

trisomy 8 t(6; 9) (p21; q34.1)

+der (22) t(9; 22) + mar

i (17) (q10)

trisomy 19

Minor pathway

t(3; 21) (q26; q22)

(− 7, − 17, + 17, + 21, and − Y)
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both probes gives a chimeric BCR-ABL1 gene colored in 
yellow [26].

Studies indicate that, in bone marrow or peripheral 
blood, the FISH technique can identify less than 1% of 
cancer cells among 200–500 interphase nuclei [16, 27]. 
On the other hand, it fails to detect additional anomalies 
[27]. The FISH technique may also be useful in confirm-
ing complete cytogenetic remission [24].

Cytogenetic response monitoring and assessment 
of minimal residual disease (MRD)
The cytogenetic response is a decrease in the percentage 
of Ph+ cells evaluated by analysis of residual metaphases 
according to conventional or molecular cytogenetics. 
The National Comprehensive Cancer Network (NCCN) 
recommends to perform the analysis at 3–6  months 
intervals until a complete (CCyR) or major cytogenetic 
response (MCyR) is obtained [28]. CCyR is marked by 
the absence of Ph+ cells which is considered as a positive 
prognosis for CML.

The response could be partial (1–35% Ph+), minor 
(36–65% Ph+) or minimal (66–95% Ph+). The loss of 
complete cytogenetic response is defined as the increase 
in Ph+ metaphases (≥ 30%) and serves as an indicator for 
therapy failure with susceptibility of disease progression 
[11, 29, 30].

According to recent NCCN 2021 guidelines, cytoge-
netic assessment is maintained for diagnosis, failure to 
achieve response, loss of hematologic or cytogenetic 
response and thus qPCR has become the preferred 
method to monitor response to treatment [31].

Treatment resistance
TKI resistance is defined as a patient’s non-response after 
treatment. There are two types of resistance: Primary 
resistance which is resistance to a medication taken for 
the first time and secondary resistance which is a relapse 
that takes place after a previous response to the treat-
ment [29].

TKI resistance occurs through two different pathways: 
a BCR-ABL1 dependent or independent pathway.

Moreover, point mutations in the ABL1 domain, 
increase with the evolution of the pathology and become 
very important during the blastic phase; they can also 
affect biological processes leading to low TKI bioavail-
ability [32–34].

For BCR-ABL1-dependent resistance, amplification 
typically through the acquisition of a second Ph chro-
mosome or upregulation at the transcriptional level of 
BCR-ABL1 implies the presence of additional clones and 
therefore a high on coprotein level, generating resistance. 
Moreover, point mutations of the ABL1 domain increase 
with disease progression mostly during blast crisis. They 

also can affect biological processes leading to a low TKI 
bioavailability [32–34].

These mutations are less detected in primary resistance 
than in secondary resistance to TKIs and act through 
various mechanisms such as (1) a change in the three-
dimensional conformation of the TKI-binding site, (2) 
stabilization of the active form of the oncoprotein so that 
the TKI cannot bind to its site, elevating the TKI con-
centrations required for inhibition above the clinically 
achievable range, or (3) with induction of destabilizing 
interactions that will abolish self-inhibition of the BCR-
ABL1 tyrosine kinase [32, 33].

BCR-ABL1-independent pathways may be related to 
drug pharmacokinetics possibly influenced by CYT450 
and CYP3A4 which will elevate hepatic metabolism, 
induce changes in the activity of efflux protein (PgP) 
and impulse protein (hOCT1). The outcome would be 
a decrease in the intracellular concentration of the drug 
[35]. In addition, leukemia cells are usually character-
ized by genomic instability. These cancer cells can act 
by activating the phosphorylation of STAT3 through the 
cytokines of the stroma which stimulates cell growth, or 
by secretion of FGF2 which activates the MAPK signal-
ing, thereby promoting leukemia cells proliferation [36]. 
ATP-binding cassette transporters are also involved in 
the development of resistance when they are overex-
pressed [37, 38]. Another explanation for resistance is 
the quiescence of LSCs, allowing these cells to persist and 
enter a resting phase regardless of TKI treatment. The 
JAK2/STAT3 and BMP4 / BMPR1B pathways are con-
sidered to be important players in signaling and promot-
ing the persistence of residual leukemic stem cells in the 
bone marrow of patients [39].

A subpopulation of LSCs has been identified due to 
overexpression of signaling molecules such as TNF, 
CTNNB1, etc., considered as targets of several therapies 
[38]. The microenvironment is also involved in resist-
ance via surrounding stromal cells which act on LSCs 
by stopping their cell cycle through growth factors and 
cytokines [39]. For example CXCR4, a chemokine recep-
tor, is inhibited by the oncoprotein BCR-ABL1, causing 
the modification of the interactions between the medul-
lary stroma and the LSCs [40].

TKI resistance generates TKI failure which is mani-
fested on the cytogenetic level by the appearance of ACA. 
For example, the appearance of the chromosome abnor-
mality 3q26.2 in some patients was associated with a poor 
vital prognosis while its presence was associated with 
a high frequency of the ABL1 domain mutations thus 
supporting TKI resistance [35]. Another study suggests 
that other additional major chromosomal aberrations 
that appear following the failure of imatinib treatment 
such as the addition of an extra Ph chromosome, or the 
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isochromosome of the long arm of chromosome 17, are 
considered as a signal of disease progression [41].

In a randomized CML-study IV, 1510 CML patients 
treated with imatinib were analyzed for ACA and it was 
found that ACA such us (+ 8, + Ph, i(17q), 3q26.2, − 7/7q 
abnormalities) also called high-risk ACA’s had a negative 
impact on survival [42].

In another study, ACA’s such as trisomy 8, loss of Y and 
an extra Ph chromosome were associated with a rela-
tively good prognosis. In contrast, the isochromosome of 
the long arm of 17 i(17)(q10) and 3q26.2 rearrangements 
were associated with a relatively poor prognosis. Further-
more, the presence of 2 or more ACA conferred an infe-
rior survival prognosis and can be categorized into the 
poor prognostic group [43].

Survival results were not statistically significant or dif-
ferent in patients with ACA based on treatment with 
imatinib versus second-generation TKI following a sur-
vey [31].

Molecular biology’s part in the comprehension 
and management of CML
Pathophysiology of CML
In CML, breakpoints mainly occur in intronic regions, 
at the level of the ABL1 and BCR genes. On the ABL1 
gene (Fig. 2a), breakpoints are quite common between 
exon 1b and 1a. They can also occur upstream of exon 
1b or downstream of exon 1a. At the level of the BCR 
gene (Fig. 2b), breakpoints occur mainly in the M-BCR 

region either between exons e13 and e14, between e14 
and e15, rarely in the m-BCR region between exon e1 
and e2 or in the u-BCR region between exon e19 and 
e20 [44]. This recombination between ABL1 and BCR 
is responsible for the production of a variety of hybrid 
mRNAs (Fig. 2c). Overall, if the break takes place in the 
M-BCR region, two types of transcripts are obtained, 
the first e14a2 (exon 14 of BCR and exon a2 of ABL1) 
also called b3a2 and the second e13a2 (exon e13 BCR 
and exon a2 of ABL1) also called b2a2. These variants 
encode the typical protein of CML p210. Interruptions 
in the m-BCR or u-BCR regions lead, respectively, to 
e1a2 transcript encoding the p190 and e19a2 transcript 
encoding the p230.

P190 is mainly involved in acute lymphoblastic leuke-
mia with Philadelphia chromosome (Ph+), while p230 is 
incriminated in 0.1% of chronic myeloid leukemia with 
polymorphonuclear cells (CML-PN) [45].

Other atypical but rare transcript variants such as e6a2, 
e8a2, e1a3, e13a3 and e14a3 have been reported [46].

In Table  2, studies performed in different countries 
have reported the frequencies of fusion transcripts 
among patients with Ph chromosome.

In the studies conducted in Indonesia, Nigeria and 
Iran, the b3a2 (e14a2) variant was the most commonly 
found in patients with respective frequencies of 74.4%, 
67.3% and 63%. The studies established in Mexico and 
Sudan reveal a preponderance of the b2a2 (e13a2) with 
frequencies of 48% and 19.3%, respectively.

Fig. 2  The breaking points at the level of the ABL1 gene (a) and the BCR gene (b) lead to the formation of recombinant RNA transcripts e1a2, 
e13a2,e14a2 and e19a2 (c) (Created on BioRender)
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The co-expression of b3a2/b2a2, was found in studies 
carried out in Mexico and Sudan, with an approximately 
equal frequency. In Indonesia, the frequency of these two 
co-expressed variants reaches 1%.

The e1a2 variant was found in Iran with a frequency of 
1%.

These variations in frequencies may be linked to geo-
graphic differences or ethnic and genetic profiles.

Studies have suggested that the b3a2 and b2a2 tran-
scripts are different in their impact on disease outcome. 
B3a2 appeared to have lower tyrosine kinase activity than 
b2a2 and patients who expressed the b3a2 transcript 
treated with imatinib responded very well to treatment 
compared to those expressing the b2a2 transcript which 
appeared to have lower levels of MMR and MR4.5 [47, 
48]. It has also been reported that the presence of e14a2 
is associated with a high molecular response to imatinib. 
Overall, e14a2 transcript has better survival outcomes 
and patients expressing the e13a2 transcript receiving 
dasatinib or nilotinib responded very well to second-
generation TKI compared to those treated with imatinib. 
Additionally, e1a2 and e19a2 were associated with poor 
cytogenetic/molecular response after TKI treatment and 
poor survival outcomes [47, 49].

The mechanism of this homologous recombination 
between ABL and BCR genes, is suggested to be related 
to their juxtaposition during the cell cycle (between S 
phase and G2 phase) [44].

The p210BCR−ABL oncoprotein is strongly involved 
in the leukemic transformation of hematopoietic stem 
cells thanks to the overactivation of its tyrosine kinase. 
It is localized in the cytoplasm and although it retains 
the nuclear localization sequence (NLS) and the nuclear 
export sequence (NES), it cannot enter the nucleus. Dur-
ing the blast crisis, p210 is endowed with increased activ-
ity due to the absence of negative feedback [55].

This fusion protein comprises an oligomerization 
domain and a tyrosine residue at position 177 which are 
important for the oncogenic activity of BCR-ABL1. The 
domain of serine-threonine kinase activity includes two 
binding sites to Src Homology 2 (SH2) domains, a cen-
tral domain of Dbl homology (DH) that functions as a 

guanine exchange factor (GEF), a domain of homology 
SRC1 (SH1) responsible for the tyrosine kinase activ-
ity, an activation loop (major autophosphorylation site), 
a substrate-binding site, an ATP-binding site, a SH2 
domain positive regulator of the SH1 domain and an SH3 
domain negative regulator of the SH2 domain. Lastly, a 
proline-rich (PxxP) region that interacts with the CT10 
regulator of kinase-like protein (CRKL) or Growth fac-
tor receptor-bound protein 2 (GRB2), NLS and NES 
sequences, a DNA binding domain and an actin-binding 
domain in the C-terminus of the ABL kinase (Fig. 3) [56, 
57].

There are four main mechanisms involved in the induc-
tion of oncogenesis. These mechanisms are implicated in 
the continuous activation of the tyrosine kinase recep-
tor (TKR) in CML: (1) gain-of-function mutations, (2) 
genome amplification, (3) chromosome aberrations and 
(4) autocrine activation by CML stem cells. BCR-ABL1 
activates a variety of signaling pathways leading to cell 
proliferation, promotion of survival, inhibition of apopto-
sis, alteration of cell adhesion to the extracellular matrix 
and leukemic cells capability of self-renewal (Fig. 4) [57, 
58].

Molecular diagnosis
Mutations are detected by qRT-PCR, a hyper-sensitive 
technique used to detect and quantify mRNA transcribed 
into complementary DNA (cDNA) which will undergo 
PCR amplification [59]. DNA can be labeled in a non-
specific way (without a probe) or in a specific way (with 
a probe). SYBR Green I is non-specific radioactive DNA 
marker that binds to double-stranded or single-stranded 
DNA. With the Taqman probe, it hybridizes to its com-
plementary sequence (a single-stranded DNA) and in the 
course of polymerization, Taq polymerase degrades this 
probe and a fluorescent signal is released. The PCR prod-
uct fluoresces as it polymerizes in both ways [60].

Some patients may express variant transcripts, which 
makes the diagnosis more difficult. Hence the use of 
the RT-multiplex PCR allows to amplify more than 
one target sequence using multiple primer pairs and 
improve the detection of Typical and atypical BCR-ABL 

Table 2  Frequencies of expression of the BCR-ABL rearrangements in patients with CML from different studies

(N): Number of patients included in the study; (%): Frequency of the variant

Types of BCR-ABL fusion 
transcripts

[50] Mexico N = 250 [51] Iran N = 75 [52] Sudan N = 112 [53] Nigeria N = 42 [54] 
Indonesia 
N = 183

b3a2 (e14a2) 35% 63% 5.5% 67.3% 74.3%

b2a2 (e13a2) 48% 20% 19.3% 21.4% 22.4%

b3a2/b2a2 7% – 7.3% – 1%

e1a2 – 1% – – –
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transcriptions [61]. This multiplexing can be non-specific 
(isoguanosine and isocytosine together) or specific by 
using several oligonucleotides per target [62].

Molecular response monitoring and assessment of minimal 
residual disease (MRD)
Molecular response is evaluated by either quantitative 
RT-PCR or RQ-PCR, both consisting in amplifying and 
quantifying the BCR-ABL fusion transcript. The RQ-PCR 
gives the possibility of detecting a leukemia cell out of 1 
million cells allowing easy evaluation of minimal resid-
ual disease (MRD). MRD is considered to be a strong 
indicator of remission or relapse after treatment and an 
important factor in determining strategies for treatment 
[29, 30]. Recently, a new method has been developed by 
a Japanese team, entitled in-house RQ-PCR due to its 
conception in their laboratory, for MRD detection and 
monitoring. The clinical trials revealed that this tech-
nique appears to be well standardized, very effective and 
sensitive in the detection of MRD and could eventually 
be advantageous for hospital laboratories [63].

Early molecular response (EMR) is determined by 
a rate of BCR‐ABL1 IS ≤ 10% at 3 or 6  months of TKI 
therapy [64]. According to ELN, molecular monitoring 
can be classified as an optimal response post-treatment 
if by 3  months BCR-ABL1 ≤ 10%, by 6-months BCR-
ABL1 < 1% and by 12  months BCR-ABL1 ≤ 0.1% mark-
ing a major molecular response (MMR), associated with 
a higher probability of reaching deep molecular response 

(DMR) [65]. A stable molecular response is defined by 
persistence of the same molecular response in interna-
tional scale (IS) (MMR; BCR‐ABL1 IS ≤ 0.1%, MR4; BCR‐
ABL1 IS ≤ 0.01%, and MR4.5; BCR‐ABL1 IS ≤ 0.0032%) 
at three consecutive assessments [66]. When the 
response fails post-TKI, it is defined by BCR-ABL1 > 10% 
at 6-months and BCR-ABL1 > 1% at 12-months [11].

Treatment resistance
In molecular biology, the search for mutations is car-
ried out by conventional Sanger sequencing and more 
recently by next-generation sequencing (NGS) [67]. NGS 
allows distinguishing between polyclonal mutations 
that exist in different clones and compound mutations 
that exist within the same clone [68]. According to an 
investigation, the non-response to treatment in patients 
with CML revealed mutations undetectable by Sanger 
sequencing in 34% of patients knowing that these muta-
tions are relevant to find adequate treatment [69]. Thus, 
NGS is used to reveal these mutations as well as their co-
occurrence with somatic mutations in patients who do 
not respond to treatment [70].

Point mutations in the ABL1 domain are found in 50% 
of patients resistant to imatinib and lead to a loss of affin-
ity between the TKI and its binding site in the ABL1 
domain [71]. More than 80 amino acid substitutions have 
been reported in association with resistance to imatinib. 
In contrast, dasatinib, nilotinib and other TKIs have a 
much smaller spectrum of mutations of ABL1 domain 

Fig. 3  The resulting oncoproteins (p190, p210 and p230) of the main transcripts (Created on BioRender)
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[29, 36]. Some mutations of ABL1 resistant to TKIs are 
cited in Fig. 5. Branford and al demonstrated that somatic 
variants included gene fusions, splicing abnormalities 
in addition to the BCR-ABL1 fusion, requiring multiple 
modes of variant detection [72].

Recently, some other mutations have been discovered 
in the polycomb repressive complex (PRC) pathway: 
PRC2 participates in gene silencing especially for the 
genes involved in myeloid cell line differentiation and 
PRC1 acts similarly on novel tumor suppressors [75].

Common mutant genes at blast crisis reported in the 
study of Branford were RUNX1, ASXL1 and IKZF1 exon 
deletions [76].

Advances in treatment of chronic myeloid 
leukemia
The management of chronic myeloid leukemia with 
Ph+ has undergone significant progress over a relatively 
short period, starting with allogeneic hematopoietic 
stem cell transplantation and recombinant interferon 
alfa (rIFNɑ) or drugs used as initial treatment such as 

Hydroxyurea, Cytarabine or Busulfan, and more recently 
tyrosine kinase inhibitors (TKIs) [77]. These inhibitors 
(Fig.  6) act directly on the kinase activity of the BCR-
ABL oncoprotein, changing radically the vital progno-
sis in CML patients in terms of remission and survival 
[78]. Approved TKIs may contribute, when combined 
with other antineoplastic drugs (such as interferon-ɑ), to 
enhancing the efficacy of the treatment [79].

In addition, new targeted BCR-ABL1 therapies are 
under development, focusing primarily on third-line 
therapy and carriers of T315I mutation [80].

For example, Vodobatinib is a new drug studied in 
CML patients who are resistant/intolerant to ≥ 3 TKIs or 
in the presence of comorbidities limiting the use of some 
TKIs. Its efficacy has been proven in vitro against most 
BCR-ABL mutations and it is under study as a potential 
new agent in CML therapy [81].

Olverembatinib is a third-generation TKI proven to be 
effective in a phase I study in particular for patients with 
T315I mutation or refractory/intolerant to other TKIs 
[82].

Fig. 4  Signaling pathways involved in p210 (the main protein) oncogenesis (Created on BioRender). Comment: Signalization is initiated by the 
TKR dimerization and activation of itself by autophosphorylation which generates the recruitment of adapter proteins [such as GRB-2, docking 
protein (DOK), CRKL, CRK and Casitas B-lineage Lymphoma protein (CBL)] necessary for protein to protein interactions and signal transduction. TKRs 
regulate several pathways and among the most important are RAS/MAPK, PI3K/AKT and JAK2/STAT​
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PF-114 is a 4th generation TKI, structurally simi-
lar to ponatinib that acts against BCR-ABL1 mutations 
at nanomolar concentrations. This drug is effective in 
patients with treatment failure to 2 or more TKIs or with 
T315I mutation [83].

Another new targeted therapy, asciminib (ABL001), 
the first allosteric inhibitor of BCR-ABL1 that acts on the 
myristoylated site of the ABL protein and allosterically 
inhibits the kinase activity of the oncoprotein BCR-ABL1 
by stabilizing the inactive conformation of the protein 
[79, 84].

Many clinical trials were elaborated in terms of testing 
the efficiency of Asciminib. Overall, they have demon-
strated the effectiveness of Asciminib for patients who 
were resistant or intolerant to a previous type of tyros-
ine kinase inhibitor. In each trial, the major molecu-
lar response (MMR) was reached within a period of 
24–48  weeks and the side effects noticed for the drug 
were approximately similar in all the studies [85–88].

Regarding therapeutic advances in hematologic malig-
nancies, targeting non-BCR-ABL1 mediated leukemia 
stem cells (LSCs) offers interesting prospects to address 
disease persistence [89]. These leukemia stem cells are 
considered to be the main cause for relapse or resistance 
to TKIs after treatment discontinuation, because TKIs 
alone are unable to eradicate them [80]. The mechanism 
of action upon these cells aims to inhibit other molecular 
pathways signaling by combining TKIs with other agents 
to help accelerate the elimination of residual leukemia 
stem cells and reduce the risk for adverse events [90]. 
As an example of these agents: Hypomethylating agents 
in combination with dasatinib and BCL-2 inhibitors in 
combination with ponatinib which have shown encour-
aging results [91, 92].

Along with the development of treatment, treatment 
goals have evolved from improving the vital prognosis, 
preventing disease progression, minimizing treatment-
related toxicities to treatment-free remission (TFR). 
Remission without treatment requires discontinuation of 
TKIs, which is possible in patients with prior TKI treat-
ment for 5 years and sustained DMR for ≥ 24 months. If 
these latter conditions were present, the potential to stop 
treatment and achieve TFR becomes possible [66, 93].

Fig. 5  Schematic representation of the kinase domain of BCR-ABL kinase showing the approximate location of resistant mutations reported 
in tyrosine kinase inhibitors studies. P-loop phosphate-binding loop, ATP BD ATP-binding domain, SH2 Src Homology 2 domain, Substrate BR 
Substrate-binding region, A-loop Activation loop [30, 33, 36, 44, 73, 74]

Fig. 6  ATP binding is essential for BCR-ABL to phosphorylate 
substrates (with a release of ADP) and then activate the signaling 
cascade which promotes cell survival and proliferation leading to 
CML. TKIs competitively bind to ATP-binding sites, thereby blocking 
signal transduction. Type 1 inhibitors bind to the active conformation 
of the kinase, while type 2 inhibitors target the inactive conformation 
of the kinase domain (Created on BioRender)
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In one study, DMR and duration of treatment played an 
important role in the success of TKI discontinuation in a 
group of patients [94].

Despite the possibility of treatment interruption, some 
patients experience molecular relapses after the loss of 
the MMR within the first 6 months after stopping TKIs. 
Recurrent patients have been reported to have fluctuat-
ing MRD measures during TFR. The rate of these patients 
has reached 14% after 2 years of TFR [95].

In the event of disease recurrence, a close long-term 
MRD monitoring is recommended to assess the molec-
ular response in these patients, by a monthly qRT-PCR 
required for 6–12  months to allow rapid intervention 
[96].

In clinical trials for TKIS, scoring systems have been 
used to stratify patient risk into 3 risk groups (low, 
intermediate and high): the Sokal score relies on several 
clinical variables (number of blasts, platelets, size of the 
spleen and age of the patients). The Euro score relies on 
the same clinical variables in addition to the percentage 
of basophils and eosinophils in the bloodstream [97].

More recently, European Leukemia Network validated 
a new risk score the “European treatment and outcome 
study long-term survival” (ELTS) which assesses the like-
lihood of death from CML in patients treated with TKI, 
taking into account the age parameter as a negative prog-
nostic value [98].

Another component of treatment for CML is hemat-
opoietic stem cell transplantation (HSC) which involves 
transplanting these cells (from a healthy donor to a 
patient) to eradicate the malignant clones. Over the dec-
ades, this treatment option has been improved, deaths 
caused by complications after cell transplantation have 
decreased, and transplantation at an early age with 
increased safety has been allowed [80, 99]. In the TKI 
era, it is considered to be a salvage therapy for patients in 
BP after responding to treatment, for patients in AP not 
responding to therapy or progressing towards BP phase 
and also for resistant/intolerant patients to multiple TKIs 
or at least one 2nd generation TKIs [11, 100, 101].

Conclusion
CML is among the most studied myeloproliferative syn-
dromes given its early discovery in the twentieth century. 
Following the understanding of CML’s pathogenesis, sci-
entists were able to implement new therapies for long-
term remission. Cytogenetic and molecular tests, 
however, are crucial in the diagnosis of CML, monitor-
ing MRD and observing the emergence of ACA or ABL1 
mutations prognostically significant. In the TKI era, new 
drugs and drug combinations were elaborated to over-
come resistance, intolerance and eliminate residual LSCs. 
For patients refractory to TKI in the advanced phase of 

the disease, allogeneic transplantation remains the best 
alternative solution. In general, chronic myeloid leukemia 
has become manageable and curable over the decades 
thanks to advances in cancer therapy. However, achiev-
ing remission without treatment is still controversial and 
remains a challenge after treatment discontinuation.
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