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Abstract

Background: Heat shock proteins (Hsps) are widely reported in normal cellular dynamics under stress and non-
stress conditions, and parallelly, the studies regarding its role in disease condition are also progressing steadily. The
function of Hsps in neurodegenerative disorders is puzzling and not fully understood. This review aims to focus on
the role of Hsp27 in normal and diseased conditions and emphasize its therapeutic potential.

Hsp27: Hsp27, in particular, has shown to be involved in cell viability and actin cytoskeleton remodeling and also
shown to improve many disease conditions. Phosphorylated Hsp27 modulates the p53 pathway by downregulating
cellular senescence and also lowers reactive oxygen species to protect TNFα-mediated apoptosis. Hsp27 is also
known to interfere with mitochondria-dependent and mitochondria-independent cell apoptotic stimulation.

Conclusion: This article will highlight the various functions of Hsp27 especially as an anti-apoptotic factor and
stress response factor and its therapeutic potential in preventing neuronal apoptosis in neurological diseases. This
review also includes a comparison of the therapeutic potential of Hsp27 with regard to other small Hsps.
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Background
Heat shock proteins (Hsps) were discovered by Ferruccio
Ritossa in 1960 in Drosophila melanogaster. Hsps are a
group of proteins expressed by cells in response to any
environmental stress. For example, during stressful con-
ditions such as exposure to toxins or hypoxia, Hsps are
upregulated to generate proteins that will be identified
as antigens to stabilize the condition. Hsps also function
as molecular chaperones that are involved in folding and
unfolding of different proteins to prevent the aggrega-
tion of unwanted protein and facilitate proper refold of
damaged proteins. Hsps constitute of many different
proteins separated based on their molecular masses. The
main Hsps comprise of Hsp100, Hsp90, Hsp70, Hsp60,
Hsp40, and small heat shock proteins (sHsps). Small
heat shock proteins (HspB1–HspB10) have a molecular
weight of monomeric forms between 12 and 43 kDa and
are characterized by the presence of α-crystallin domain
that is flanked by less conserved N-terminal domain and

C-terminal extension. Among the sHSPs, Hsp27 (also
known as HspB1) has a significant responsibility in in-
creasing the cell viability and acts in multiple roles as an
anti-apoptotic protein and antioxidant as well as being
involved in actin cytoskeleton remodeling [1, 2].
By targeting Hsp27, apoptosis of α-synuclein may be

prevented and regulated which makes it useful in treat-
ing neurodegenerative disorders like Parkinson’s disease.
With the use of its stress response, it is possible to elim-
inate the aggregation of amyloid plaques and thus pre-
vent the progression of Alzheimer’s disease. Due to its
numerous roles within the cell, Hsp27 is a promising
therapeutic candidate for neurological diseases. This re-
view discusses the possible therapeutic strategies of
Hsp27 against few neurological diseases and also in-
cludes a critical comparison of other Hsps having thera-
peutic activity.

Functional regulation and inhibitory actions of
Hsp27
Cells activate various signaling pathways when exposed to
environmental stress conditions. This stress can cause
damage to the cellular mechanism by causing mitochon-
drial dysfunction, protein misfolding, and finally neuronal
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cell death. During stress conditions, Hsp27 stabilizes the
cytoskeleton with actin capping to prevent cellular injury.
It scavenges the reactive oxygen species (ROS) by raising
the levels of intracellular glutathione and is associated
with independent and dependent apoptotic pathways in
mitochondria. In unstressed cells, these Hsps are actively
involved in folding, assembly, intracellular localization, se-
cretion, regulation, and degradation of proteins [3].
The functions of Hsp27 are influenced by post-

translational modifications via phosphorylation with dif-
ferential effects in cellular functions. The expression of
Hsp27 gene during stress is caused by the binding of
HSF1 (heat shock transcription factor-1) to HSE (heat
shock element) which incorporates the promoters of
Hsp27 [4]. During mitosis, HSF2 (heat shock transcrip-
tion factor-2) binds to HSE to induce normal stress-
inducible expression of genes [5]. The main role of
HSF1 is to induce the expression of Hsps. This can be
seen in studies where HSF1 protein levels are elevated in
cancer, whereas in neurodegenerative disorders, the
levels are depleted. The elevated expression of HSF1 has
shown to enhance the pro-survival function in neurode-
generative disorder studies [4].
The expression levels of Hsp27 vary among different cells

as well as species based on their sites of phosphorylation. In
humans, Hsp27 gets phosphorylated at specific serine resi-
dues such as Ser15 (Serine 15), Ser78 (Serine 78), and
Ser82 (Serine 82) which acts as a common substrate for
MK2 (Mapkap kinase 2), MK3 (Mapkap kinase 3), and
MK5 (Mapkap kinase 5), respectively [6, 7]. Hsp27 occurs
in two pathways—p38MAPK (p38 mitogen-activated pro-
tein kinases) and PKA (p21-activated protein kinases) path-
ways. MK2, a major Hsp27 kinase, phosphorylates Hsp27
by an activated p38MAPK pathway in response to cellular
stress. Similarly MK5, another Hsp27 kinase, also phos-
phorylates Hsp27 by the PKA pathway [7, 8].
Upon phosphorylation, Hsp27 has a role in actin fila-

ment regulation where it promotes polymerization con-
tributing to microfilament network maintenance by
preventing filament degeneration and also blocking the
early response of actin to growth factors [9]. In the unpho-
sphorylated form [10], Hsp27 has an alternative role in
actin capping thereby inhibiting assembly of wild-type
proteins [11]. During platelet activation, Hsp27 undergoes
conformational changes by phosphorylation, promotes
interaction between Hsp27 and actin or between Hsp27
and other actin-associated proteins, and facilitates trans-
location of proteins to the cytoskeleton [12].
Hsp27 phosphorylation also modulates the p53 path-

way by inhibiting the accumulation of p21 which down-
regulates cellular senescence. p21 is an inhibitor of
cyclin-dependent kinases that are important for the pro-
gression of the cell cycle. On the inhibition of Hsp27
phosphorylation, an increased accrual of p21 may occur,

due to decreased p53, leading to apoptosis [1]. During
stress conditions, as an antiapoptotic agent, Hsp27 ex-
pression inhibits mitochondrial injury and apoptosis of
cells [13]. When Hsp27 expression is suppressed, it will
lead to an increase in cellular susceptibility to apoptosis
contributing to organ dysfunction [14]. This makes
Hsp27 hold a pivotal post that can control cell death
and cell survival. Hsp27 interferes with the apoptotic sig-
naling pathway by interacting with both mitochondria-
dependent and mitochondria-independent pathways
(Fig. 1). It affects different key components of the apop-
totic pathway in various ways as follows: (a) It enhances
PI3-K which activates Akt-Bax interaction, inhibiting
Bax activation and translocation to mitochondria pre-
venting the release of cytochrome c from mitochondria
[14]. (b) It inhibits the Ask1-JNK pathway leading to
cytochrome c leakage [15]. (c) It prevents apoptosome
formation [16]. (d) It interacts with Daxx in the nucleus
preventing its translocation to cytosol which is essential
for interaction with the Fas receptor involving apoptosis
[17]. (e) Hsp27 seems to be involved in inhibition of the
Smac from mitochondria, and this may lead to inhibition
of caspases [14]. (f) It also downregulates tBID released
from caspase 8 [16].
Besides its activity in apoptosis inhibition, Hsp27 also

acts as an antioxidant by lowering the levels of ROS and
iron by raising intracellular glutathione levels [18]. ROS
plays a role in intracellular signaling and regulation and
acts as redox messengers at cellular concentrations. Under
normal conditions, ROS is produced in small amounts,
during the formation of ATP, in the electron transport
chain (ETC) by oxidative phosphorylation in mitochondria
[19]. Many non-cellular processes like inflammatory reac-
tions and ionizing radiations, and cellular processes like
mitochondrial oxidative respiratory reactions, NADPH ox-
idases, and nitric oxide synthases (NOSs) contribute
greatly to oxidative stress. These processes generate excess
ROS resulting in imbalanced redox state and mitochon-
drial dysfunction. Hsp27 promotes a balanced redox state
by reducing the ROS levels to avoid mitochondrial dys-
function, cell damage, and cell death [19].

The convincing therapeutic potentials of Hsp27 in
neurological diseases
A study was performed to demonstrate Hsp27 neuropro-
tective effects by mutating serine residues to either ala-
nine (Hsp27-A) or aspartate (Hsp27-D). In both in vivo
and in vitro conditions, overexpression of Hsp27 wild-
type and Hsp-D by phosphorylation provided neuropro-
tection by inhibiting the Ask-1 signaling pathway. In
unphosphorylated form, it was insufficient to suppress
the Ask-1 pathway or to provide protection [20]. In a
study involving glial cell inclusion bodies, the response
of Hsp27 to induced stress was studied. The bodies were
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transfected with OLN-3 cells carrying plasmids encoding
Hsp27 expressed in three ways—wild-type, pseudopho-
sphorylated form, and nonphosphorylatable form. The
study revealed that Hsp27 regulated by phosphorylation

protected the cytoskeleton and provided resistance from
apoptotic stimuli upon stress conditions [21].
In another study, human neuroblastoma cell lines

IMR-32 were treated with Cu2+ resulting in increased

Fig. 1 Schematic representation showing the regulatory and inhibitory actions of Hsp27. Through induction of stress, the expression of hsp27
gene occurs when HSF-1 trimer binds to HSE. Hsp27 expression level gets varied when phosphorylated at specific serine residues such as Ser15,
Ser78, and Ser82. Phosphorylated Hsp27 interferes with apoptotic signaling pathway by affecting its key components like cytochrome c,
apoptosome, Daxx, Smac, tBID, caspase 9, and ASK1-JNK through interaction with both mitochondria-dependent and mitochondria-independent
pathways of apoptosis
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stress to the cells. This indirectly stimulated an increased
level of endogenous Hsp27 and the overexpression of
Hsp27, in turn, protecting the cells from Cu2+-induced
cell death. Hsp27 hindered the upstream mechanism by
inhibiting ROS production, decreasing the cascade
events of Cu2+-induced inflammation and oxidative
stress, and playing a protective role in maintaining Cu2+

homeostasis [22]. Studies have also shown that activated
microglia-derived TNFα causes inflammation and de-
generation processes [23]. When treated with Hsp27,
which is an antioxidant, the cells were protected from
TNFα-mediated apoptosis by lowering the levels of re-
active oxygen intermediate (ROI) formation by modulat-
ing glutathione content.

Alzheimer’s disease
Alzheimer’s disease (AD) is neuropathologically charac-
terized by memory impairment, and it is the most com-
mon type of dementia which alters cognitive abilities.
The characteristics observed in the brains of people with
AD are amyloid plaques and neurofibrillary tangles [24].
The amyloid plaques are primarily composed of Aβ42
(42 residues β-amyloid peptide) which is hydrophobic in
nature. Increased amounts of insoluble β-amyloid pep-
tides cause an imbalance between Aβ production and
clearance in the central nervous system [25]. The most
important function of tau protein is providing stability
and promoting assembly of microtubules. Neurofibrillary
tangles in AD indicate neuronal dysfunction induced by
hyperphosphorylation of tau which aggregates into insol-
uble paired helical filaments (PHFs) [26]. The altered
structure of tau in AD is due to abnormal post-
translational modifications like hyperphosphorylation,
acetylation, glycosylation, and truncation [27]. Tau
hyperphosphorylation can also lead to several other
events like Aβ-mediated toxicity, inflammation, an in-
crease in oxidative stress, and covalent modifications of
tau [28]. Increase in oxidative stress results in overpro-
duction of ROS which in turn leads to a cascade of
events ultimately ending in apoptosis [29].
Other than Hsp27, sHsps like Hsp20, Hsp22, and α-

crystallins also have similar functions as anti-apoptotic;
chaperone activity and preventing cell death pathway
through the effect of the sHsps varies widely. Table 1
gives a detailed account of the phosphorylation sites and
the different modes of action against the aggregation of
amyloid proteins. Though being small in size, Hsp27 has
a wide range of therapeutic potential. Limited studies
were focused on its therapeutic abilities on AD, but
there have been reports that have shown a restoration in
the amyloid plaque and tangle formation [31–34].
Research has shown that the inhibition of tau hyper-

phosphorylation restores neuronal dysfunction and
modifies disease progression in AD which could be a

therapeutic target for treatment. A study [35] in human
neuroblastoma cell line SH-SY5Y was performed by in-
ducing hyperphosphorylation of tau with okadaic acid.
For effective delivery, Hsp27 protein was fused with HIV
Tat protein (Tat-Hsp27) and introduced to the hyper-
phosphorylated tau aggregates where it resulted in a re-
duction of hyperphosphorylated tau levels conferring
protection against apoptotic cell death. It was also dem-
onstrated that without ubiquitination, degradation of
hyperphosphorylated tau was carried out by Hsp27 [31].
Abisambra et al. confirmed that tau fibril formation can
be prevented in in vitro condition by the addition of re-
combinant Hsp27. Similarly, he also verified that tau
protein levels were reduced in in vivo conditions by
overexpressing Hsp27 inhibiting the formation of tau fi-
brils [36]. A study by Chang et al. showed that synthetic
indole derivatives upregulated Hsp27 expression which
in turn reduced tau misfolding [32].
Several researches are also carried out to study the in-

hibition of Aβ aggregation and to attenuate Aβ toxicity
with Hsp27 as the target protein. Hsp27 binds to Aβ inhi-
biting its aggregation into mature fibrils [30]. A study was
also performed to determine and compare the mechanism
of interaction among three sHsps namely Hsp20 from Ba-
besia bovis, Hsp17.7 from carrot, and Hsp27 from humans
and their capability in lowering toxicity of Aβ aggregation.
It was seen that Hsp27 interacts only at a later stage after
forming Hsp27-Aβ mixture thus inhibiting the formation
of fibrils [37]. In a mouse model of AD, overexpression of
Hsp27 improved the learning abilities, increased the excit-
ability of synaptic neurons, and decreased the Aβ aggre-
gates [33]. Additionally, it was also observed that the
increase in Hsp27 expression after exercises prevented the
aggregation of plaques and greatly improved brain func-
tion of elderly women [34].
The above studies exhibited that Hsp27 provides an al-

most untouched avenue for therapeutic intervention by
exerting a beneficial effect in reducing oxidative stress as
an antagonistic effect on apoptosis and its inhibitory ac-
tions through interaction with the amyloid formation and
also in tau pathologies by providing neuronal protection.

Parkinson’s disease
The deposition of α-synuclein (α-syn) into fibrillar protein
aggregates is the characteristics of many neurodegenera-
tive diseases collectively called α-synucleinopathies includ-
ing Parkinson, dementia with Lewy bodies, and multiple
system atrophy. α-Synuclein is a neuronal protein found
in presynaptic terminals which modulates the synaptic ac-
tivities like neurotransmitter release and vesicular traffick-
ing [38]. The α-synuclein aggregation was sensitive to
inhibition of autophagy and the proteasome which lead to
an increase in proportions of α-synuclein inclusion cells.
Parkinson’s disease (PD) is a neurodegenerative disorder
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which is characterized by selective degeneration of dopa-
minergic neurons with Lewy bodies composed of α-
synuclein and sHsps [39].
Studies have revealed that sHsp upregulation in disease

progression of PD prevents the degeneration of neurons
[40]. Overexpression of α-B crystallin and Hsp27 [41] by
using bicistronic expression plasmids prevented the intra-
cellular aggregation of α-syn. It was also suggested that
the effectiveness of Hsp27 was dependent on the kinetics
of α-syn aggregation. Hsp27 was found to be less effective
at a faster rate of aggregation [38]. A study showed that
the expression of Hsp27/70 in SH-SY5Y cells induced by
FLZ (a synthetic novel derivative of squamosamide from a
Chinese herb) provided neuroprotective effects against
MPP+-induced cytotoxicity where MPP+ is a neurotoxin
used in mimicking PD model [42].
A recent study revealed that Hsp27 binds to the α-syn

fibrils thus decreasing their hydrophobicity and cellular
toxicity. It was also shown that Hsp27 was capable of
inhibiting the elongation of α-syn [43]. Additionally,
Hsp27 also prevents the aggregation of monomeric α-
syn fibrils along with α-crystallins [38]. All these proper-
ties highlight the therapeutic potential of Hsp27 in
preventing aggregation of α-synuclein and the progres-
sion of α-synucleinopathies.

Therapeutic strategy of Hsp27 in other
neurological diseases
Amyotrophic lateral sclerosis
Hsp27 may also have a therapeutic role in amyotrophic
lateral sclerosis (ALS). ALS is a rare neurodegenerative
disorder characterized by progressive muscle weakness
and atrophy due to the death of motor neurons in the
spinal cord, cortex, and brainstem. In a study conducted,
Hsp27 levels were increased and delivered to ND7 cells.
When these cells were subjected to serum removal to in-
duce apoptosis, overexpressed Hsp27 protected G93A or
G93R SOD1 mutants from apoptotic cell death [44].

Neuronal injury
Neuronal injury after ischemia initiates a series of signaling
cascades contributing to delayed neuronal death. In Hsp27
transgenic mice, overexpression of Hsp27 protected the
cells against subsequent neuronal injury by inhibiting
ASK1-dependent MKK4/JNK activation. This reflects that
Hsp27 has a therapeutic potential during a stroke [45].

Ataxia telangiectasia
Ataxia telangiectasia is a neuromotor dysfunction neuro-
degenerative disorder of childhood caused by the disrup-
tion of gene ATM. In this disease, neurons lose their
ability to divide and function. A study revealed that dif-
ferential expression of Hsp27 in the frontal cortex can
protect cortical neurons from degeneration, whereas in

the cerebellum, proliferating glial cells were found to
synthesize Hsp27 [46]. This again opens up the possibil-
ities of using Hsp27 in treatment purposes.

Charcot-Marie-Tooth disease
Charcot-Marie-Tooth (CMT) neuropathies constitute a
group of monogenic diseases that primarily affect the per-
ipheral nervous system [47]. Mutations in Hsp27 can lead
to adverse pathological neuromuscular disease as in distal
hereditary motor neuropathy (dHMN) and also have been
reported to cause CMT. These may be either due to toxic
gain of function as a result of misfolding and aggregation or
due to loss of function leading to decrease in the ability of
cells to tolerate stress. Four mutant transgenic mouse
models of dHMN were developed, and treatment with a se-
lective HDAC6 inhibitor showed a reversal of the clinical
phenotype of both S135F and P182L transgenic mice [48].

Conclusion
The therapeutic possibilities of Hsp27 are still not fully
understood in most neurological diseases, but their role
in these diseases cannot be ignored. Though not a lot of
focus is placed on these small molecules, it is possible
that these tiny molecules can shift the typical paradigm
and open a new pathway to developing therapies for
neurological diseases. Hsp27 has shown, in multiple dis-
eases, that there is a chance to improve the condition of
the cells affected and not just temporarily relieve the
modifications. From the abovementioned studies, it is
clear that Hsp27 may be a promising novel therapeutic
target in treating neurological diseases.
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