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Abstract 

Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping 
signal frequencies, we propose a new inter-system double-difference model with single difference ambiguity esti-
mation, which can be applied for both overlapping and non-overlapping signal frequencies. The single difference 
ambiguities of all satellites and Differential Inter-System Biases (DISB) are first estimated, and the intra-system double 
difference ambiguities, which have integer characteristics, are then fixed. After the ambiguities are successfully fixed, 
high-precision coordinates and DISB can be obtained with a constructed transformation matrix. The model effectively 
avoids the DISB parameter filtering discontinuity caused by the reference satellite transformation and the low preci-
sion of the reference satellite single difference ambiguity calculated with the code. A zero-baseline using multiple 
types of receivers is selected to verify the stability of the estimated DISB. Three baselines with different lengths are 
selected to assess the positioning performance of the model. The ionospheric-fixed and ionospheric-float models 
are used for short and medium-long baselines, respectively. The results show that the Differential Inter-System Code 
Biases (DISCB) and Differential Inter-System Phase Biases (DISPB) have good stability regardless of the receivers type 
and the signal frequency used and can be calibrated to enhance the strength of the positioning model. The position-
ing results with three baselines of different lengths show that the proposed inter-system double-difference model 
can improve the positioning accuracy by 6–22% compared with the intra-system double-difference model which 
selects the reference satellite independently for each system. The Time to First Fix (TTFF) of the two medium-long 
baselines is reduced by 30% and 29%, respectively.

Keywords  Global navigation satellite systems, Real-time, Inter-system biases, Ambiguity resolution, Medium-long 
baselines

Introduction
Global Navigation Satellite System (GNSS) has entered a 
multi-constellation and multi-frequency era (Tao et  al., 
2022), which can provide more powerful positioning ser-
vices, but also increases the complexity of data process-
ing (Teunissen & Khodabandeh, 2022). Compared with a 
single system, multiple systems can position with higher 
accuracy and reliability (Xiao et  al., 2020). Similarly, 
multi-frequency data can also improve the positioning 
performance ( Wu et al., 2022). More and more attention 
has been paid to the high-precision positioning technol-
ogy of multi-frequency and multi-systems.
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Double-difference Real-Time Kinematic (RTK) is a 
commonly used model of high-precision positioning. 
In multi-system RTK positioning, each system usually 
selects its reference satellite, which is called the intra-
system double difference model (Robert Odolinski & 
Teunissen, 2020). Compared with the intra-system dou-
ble difference model, the inter-system double difference 
model uses a common reference satellite for all the sys-
tems, resulting in more observations, which can theo-
retically enhance the strength of the model and improve 
the positioning accuracy (Chen et  al., 2021; Paziewski 
& Wielgosz, 2015). The inter-system double-difference 
model must consider the effect of Differential Inter-Sys-
tem Biases (DISB). DISB is caused by different systems 
related to the receiver hardware delay (Paziewski & Wiel-
gosz, 2015).

Odijk and Teunissen (Odijk & Teunissen, 2013) ana-
lyzed the stability of DISB, and the results show that 
DISB is stable for the overlapping signal frequency 
regardless of the receiver types. The influence of DISB 
can be ignored when the receiver type is the same. Gao 
et al. (Gao et al., 2018) analyzed the DISB characteristic 
for the non-overlapping signal frequency, and the results 
show that the DISB for non-overlapping frequency can-
not be ignored, but has good stability independent of 
receiver types.

Inter-system RTK models are usually divided into two 
types: the DISB-float and DISB-fixed, according to the 
ways of handling DISB (Zhao et al., 2022). The DISB-float 
model estimates the DISB parameters together with the 
receiver coordinates and ambiguity parameters. In the 
single epoch mode, the DISB-float model has the same 
model strength as the intra-system RTK model (Wu et al., 
2018). In the multi-epoch mode, the stability of the DISB 
parameter can be used to improve the model strength 
and positioning accuracy. Odijk and Teunissen (Odijk & 
Teunissen, 2013) used the method of parameter renor-
malization to integrate the double difference ambiguity 
between reference satellites into the DISB parameters, 
and the influence of the reference satellite transforma-
tion must be considered in the multi-epoch mode. This 
method is suitable for overlapping signal frequencies, and 
the influence of the single difference ambiguity of the ref-
erence satellite must be considered for non-overlapping 
frequencies (Jia et  al., 2019). Mi et  al. (2019) proposed 
an inter-system RTK model based on a single difference 
model, which can be adapted for non-overlapping signal 
frequencies. Both single difference and double difference 
DISB-float model use the feature of stable multi-epoch 
DISB to improve the positioning accuracy.

The DISB-fixed model uses a priori DISB to correct the 
model, and higher model strength and positioning accu-
racy can also be obtained in the single-epoch mode. Tian 

et  al. (2017) used particle filter to estimate DISB based 
on the DISB-fixed model, which does not require a priori 
DISB. Sui et al. (2018) used particle swarm optimization 
algorithm to search DISB based on the DISB-fixed model, 
which does not require a priori DISB. The principle of 
these two methods is to obtain the DISB parameter with 
the largest ratio value as the true value (Rui Shang et al., 
2021a, 2021b), which creates the DISB half-cycle prob-
lem (Tian et al., 2017). The half-cycle problem seriously 
affects the stability of the estimated DISB parameters and 
the positioning accuracy. Zhao et  al. (2021) proposed a 
method to effectively avoid the Inter-System Biases (ISB) 
half-cycle problem by transforming the search space of 
ISB.

In this contribution, we propose a new inter-system 
double difference RTK model with single difference ambi-
guity estimation that can be applied for both overlapping 
and non-overlapping signal frequencies. In this model, a 
satellite among multiple systems is selected as the com-
mon reference satellite to form the inter-system double 
difference observation equation. Compared with the tra-
ditional intra-system double difference RTK model, the 
number of observation equations is increased, and the-
oretically higher positioning accuracy can be obtained. 
Compared with other inter-system double difference 
models suitable for non-overlapping signal frequencies, 
the proposed model does not need to calculate the single 
difference ambiguity of the reference satellite in advance. 
Because the model estimates the single difference ambi-
guity, the influence of the reference satellite transforma-
tion is not considered. Because of the existence of DISB, 
the inter-system double difference ambiguity no longer 
has integer characteristics, so we form the intra-system 
double difference ambiguity which has integer character-
istics. After the ambiguity is successfully fixed, the high-
precision coordinates and DISB can be obtained with a 
constructed transformation matrix. Benefiting from the 
stability of the DISB parameters, with the multi-epoch 
observations the model can achieve better positioning 
results than the traditional inter-system model. We first 
evaluate the stability of DISB using this model, which is 
a prerequisite for precise positioning. We finally use this 
model with the ionospheric-fixed and ionospheric-float 
to test the positioning performance with the baselines of 
different lengths.

In the next section, a new inter-system double-differ-
ence model with single difference ambiguity estimation 
is introduced. The model is divided into the ionospheric-
fixed model and ionospheric-float model according to 
different ionospheric processing modes. Subsequently, 
we analyze the DISB stability of dual- frequencies signals 
for Global Positioning System (GPS), BeiDou Navigation 
Satellite System (BDS), Galileo navigation satellite system 
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(Galileo), which contains overlapping and non-overlap-
ping signal frequencies, and multiple types of receivers 
are also considered. Finally, we test the positioning per-
formance with the proposed model using three baselines 
of different lengths, a short baseline and two medium-
long baselines.

Methods
This section first introduces the proposed inter-system 
double-difference model. The model can be extended to 
multiple systems and multiple frequencies, but only if 
these frequencies are allowed to be combined (Tian et al., 
2018). In addition, to make the model applicable to the 
baselines of different lengths, we also introduce the iono-
spheric-fixed and ionospheric-float models.

Ionospheric‑fixed inter‑system double‑differenced model
The double difference RTK model can eliminate the 
effects of the ionosphere and troposphere for short base-
lines (Odolinski et  al., 2014). The ionospheric-fixed sin-
gle-differenced observation equations are formulated as

where b and r represent two different Global Navigation 
Satellite System (GNSS) receivers, S represents GNSS 
satellite, A represents a satellite system, i represents fre-
quency, �P and �ϕ represent the observed single dif-
ference code and single difference phase in meters, and 
� represents wavelength. We further have the single dif-
ferences between receivers �ρsA

br (distance), �dtbr (clock 
error), �dAbr,i (code hardware delay), ��br,i (initial phase 
bias), �δAbr,i (carrier phase hardware delay), �N

sA
br,i (inte-

ger ambiguity), and �e and �ε represent the code and 
phase measurement errors.

A satellite is selected as the reference satellite for 
both systems, and the intra-system and inter-system 
double-differenced observation equations are formed 
simultaneously. The ionospheric-fixed inter-system dou-
ble-differenced observation equations are formulated as 
follows:
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where �∇ is the double-difference operator, 1A and sA 
represent the reference and non-reference satellite of 
system A , respectively. The hardware delay and other 
parameters are reorganized as follows:

where bDISCB and bDISPB represent Differential Inter-Sys-
tem Code Biases (DISCB) and Differential Inter-System 
Phase Biases (DISPB), respectively. The state vector is 
rearranged as follows:

Since the single difference ambiguity and the DISB 
parameter are linearly dependent, this equation is 
rank deficient. A feasible approach is to use the S-basis 
method to reorganize the linearly dependent parameters 
(Khodabandeh & Teunissen, 2016; Odijk et  al., 2016). 
In this paper we assign an approximate initial value and 
an approximate initial variance to all the state param-
eters (Takasu & Yasuda, 2009). It is important to point 
out that only at the initial epoch, the value and variance 
of the state vector need to be assigned. After obtaining 
the initial values and variances of all the states, we can 
use the Kalman filter to update measurements to obtain 
the float solutions of the state parameters. Although we 
obtain float solutions for the parameters, there is still a 
linear dependence between them. We need construct-
ing a transformation matrix to reorganize the linearly 
dependent parameters. This is equivalent to the S-basis 
method. The difference is that the S-basis method reor-
ganizes the parameters before parameter estimation, 
while the method in this paper reorganizes the param-
eters after parameter estimation. Due to the existence of 
DISB, the single difference ambiguity is not directly com-
posed of the inter-system double difference ambiguities. 
We can construct a transformation matrix to convert the 
single difference ambiguity into the intra-system double 
difference ambiguity. This is because the intra-system 
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ambiguity parameters are not affected by DISB and the 
intra-system double difference ambiguity still has the 
integer characteristics. The transformation matrix D is 
constructed as follows:

where O is zero matrix.
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We assume that both systems A and B have n observ-
able satellites in (5). It is used to convert the single dif-
ference ambiguity into the double difference ambiguity, 
and the converted double difference ambiguity is com-
posed of the single difference ambiguities of two same 
systems, not of two different systems. This is the same 
as the traditional intra-system double difference RTK 
model. Compared with the traditional intra-system dou-
ble difference model, this model adds the inter-system 
double difference observation equation. The addition of 
the inter-system double difference observation equation 
also introduces DISB parameter, not directly increas-
ing the model strength. However, this model can use 
the time stability of ISBs and impose time constant con-
straints on ISBs by Kalman filter to improve the accu-
racy of the residual parameter solution. After using the 
Least Squares Ambiguity Decorrelation Adjustment 
(LAMBDA) (Teunissen, 1995) to fix the ambiguity, the 
high precision solution can be obtained by the following 
formula:

(6)ÛN = ŨN − Q̃UNQ
−1
N (N̂ − Ñ )

where N̂  and Ñ  represent the fixed and float solutions of 
the ambiguity parameter, respectively, ÛN and ŨN rep-
resent the fixed and float solutions of the non-ambiguity 
parameter, respectively, and Q represents the covariance 
matrix.

However, since DISB is linearly dependent of the ambi-
guity parameter, using (6) can only obtain the ambigu-
ity fixed solution for the coordinate parameters, not for 
DISB. This makes impossible to analyze the stability of 
DISB. To obtain the ambiguity fixed solution of DISPB 
parameters, we must reorganize the parameters to elimi-
nate the linear correlation between DISB and ambiguity. 
The ambiguity and DISB parameters are reorganized as 
follows:

The state vector after parameter reorganization is repre-
sented as follows:

where ŨN represents all the non-ambiguity parameters, 
including the coordinates and DISBs, and X̃ contains the 
ŨN and ambiguity parameters. Finally, we present the 
transformation matrix F  from (4) to (8):

where 1DISPB represents the coefficient 1 corresponding 
to the state parameter DISPB, and 
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the coefficient 
{

−�i/�j
}

 corresponding to single differ-
ence ambiguity of the reference satellite of system A.

Formula 5 can convert the single difference ambiguity 
without integer characteristics into the intra-system double 
difference ambiguity with integer characteristics. After fix-
ing the ambiguity, (6) can be used to obtain the fixed solu-
tion for high precision coordinates. However, (5) eliminates 
the linear correlation between ambiguity parameters, but 
not between DISB and ambiguity parameters, so accurate 
DISB cannot be obtained. Through the derivation of for-
mula (7), we can construct the transformation matrix (10). 
The transformation matrix (10) contains (5), which means 
that it eliminates the linear correlation not only between 
ambiguity parameters, but also between DISB and ambigu-
ity. Thus, an absolute DISB can be obtained.

In summary, the Kalman filter is first used to obtain the 
float solution of (4), and the transition matrix (10) is sub-
sequently used to convert the state vector (4) to (8), and 
the converted intra-system double difference ambiguity is 
fixed. After the ambiguity is fixed successfully, the accurate 
coordinates and DISB are obtained by (6).

Ionospheric‑float inter‑system double‑differenced model
In a medium-long baseline, the ionospheric and tropo-
spheric errors cannot be completely eliminated because 
the two stations are far apart (Li et al., 2015). The iono-
spheric-float single-differenced observation equations 
are formulated as follows:

where I sAbr,i represents single-difference ionospheric delay, 
Tr represents tropospheric Zenith Wet Delay (ZWD) for 
receiver r, µsA

i  is the frequency dependent ionospheric 
delay coefficient, and MsA

b  is the tropospheric mapping 
function.

Similarly, one satellite is selected from the multiple 
systems to form the double difference observation equa-
tions. The ionospheric-float inter-system double-differ-
ence observation equations are formulated as follows:
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The state vector is as follows:

Since the frequencies of satellites A and B may not be 
the same, the single-difference ionospheric delay is still 
estimated here. In this way, the destruction of the dou-
ble difference ionospheric coefficient for non-overlapping 
frequencies can be avoided. Similar to the ionospheric-
fixed inter-system double-differenced model, after 
the float solution of the state parameters is obtained 
with the Kalman filter, the F1 matrix is used for the 
transformation.

Similarly, after completing the transformation using the 
F1 matrix, the LAMBDA method can be used to obtain 
the fixed solution.

Experimental results
We first test the stability of DISB using the proposed 
model. The positioning performance of the proposed 
model is then tested on three baselines with different 
lengths. The dual-frequency observation data of GPS/

BDS/Galileo are used in all the experiments, and the 
sampling interval is 30 s.

Experiments for the stability analysis of DISB
In this section, the stability of DISCB and DISPB is ana-
lyzed, including L1–B1 and L2–B2 of GPS/ BDS as well 
as L1–E1 and L2–E5a of GPS/Galileo. It is worth noting 
that among these frequencies, only L1-E1 are overlap-
ping frequencies, and the others are all non-overlapping 
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frequencies. We used two sets of baseline data with the 
same and different types of receivers. The satellite cut-
off elevation angle was set at 15 degrees. To obtain more 
accurate results, the single epoch model was used to esti-
mate DISB (Gao et al., 2017).

Two sets of zero baseline data were used to test the 
stability of DISB. Their specific information is shown in 
Table 1. CUT0-CUT2 uses the same type of receiver, and 
CUT0-CUT1 uses different types of receivers.

Figures 1, 2, 3, and 4 illustrate the DISB time series for 
these two baselines. Their mean and STandard Deviations 

(STD) are in Table 2. Since the integer part of the DISPB 
is affected by the reference satellite transformation, we 
only focus on the fractional part of the DISPB (Shang 
et al., 2021a, 2021b).

Figures 1 and 2 illustrate the DISB time series of CUT0-
CUT2. This is a baseline with the same type of receivers. 
As can be seen in Fig. 2, both DISCB and DISPB are close 
to 0 for overlapping frequencies. However, the DISBs for 
the non-overlapping frequencies are not close to zero and 
cannot be ignored. The DISB for both non-overlapping 

Table 1  Information of baselines for analyzing the stability of DISB

Baseline Receivers Duration (h) Length (m)

CUT0-CUT2 Trimble NETR9- Trimble NETR9 24 0

CUT0-CUT1 Trimble NETR9- SEPT POLARX4 24 0
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Fig. 1  DISB time series for L1-B1 and L2-B2 with same receiver types
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Fig. 2  DISB time series for L1-E1 and L2-E5a with same receiver types
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frequency and overlapping frequency has good stability 
with the same type of receiver used.

Figures  3 and 4 illustrate the DISB time series of 
CUT0-CUT1. This is a baseline with the different types 
of receivers. As can be seen from the figures, even for the 
overlapping frequency the DISB is not 0. Although the 
STD of DISB with different types of receivers are slightly 
larger than those with the same type, they are still within 
an admissible range. All in all, DISB has good stability 
regardless of the receiver type and the frequency of the 
signals used. In the multi-epoch positioning mode, the 
stability of DISB can be used to enhance the strength of 
the model and thus improve the positioning accuracy.

Experiments for positioning accuracy
In this section, the inter-system double-difference RTK 
model is tested using three baselines of different lengths 
and compared with the intra-system RTK model. The 
baselines information is in Table  3. All of them have a 
sampling interval of 30  s. GPS/BDS/Galileo dual fre-
quency data was used in the three baselines. Ionospheric-
fixed model is used to deal with the CUTB-CUTC 
baseline and ionospheric-float model is used to deal with 
the CUTB-PERT and CUTB-NNOR baselines. To further 
test the validity of the model, the satellites cut-off eleva-
tion angles were artificially set at 40 degrees to simulate 

a rare observation environment. Figure  5 presents the 
number of visible satellites for the three baselines.

Figure  6 shows the positioning errors with the inter-
system RTK model and the traditional intra-system 
RTK model in E, N and U directions for baseline CUTB-
CUTC. The ambiguity fixed rates are 100% for both inter-
system RTK model and the traditional intra-system RTK 
model. As can be seen from the figures, the inter-system 
RTK model gives higher positioning accuracy than intra-
system RTK model. The Root Mean Square (RMS) of 
positioning errors obtained with these two methods are 
shown in Table 4. The RMSs of the positioning errors in 
E, N and U directions are 0.20 cm, 0.23 cm, and 0.93 cm 
for intra-system RTK model, and 0.18  cm, 0.18  cm, 
and 0.83  cm for inter-system RTK model, respectively. 

Table 2  Mean and STD of DISB for the two baselines

Baseline Frequency Results of DISCB 
(m)

Results of DISPB in 
cycle

Mean STD Mean STD

CUT0-CUT2 L1-B1 0.5436 0.0965 − 0.1914 0.0053

L2-B2 0.3160 0.1249 − 0.0834 0.007

L1-E1 0.0380 0.0861 − 0.0009 0.0044

L2-E5a 0.2781 0.1115 − 0.0822 0.007

CUT0-CUT1 L1-B1 − 4.3046 0.1589 0.2222 0.0076

L2-B2 3.2621 0.1607 0.2279 0.0107

L1-E1 − 0.1451 0.1442 − 0.0021 0.0045

L2-E5a 3.3844 0.1522 − 0.0156 0.0105

Table 3  Information of three baselines with different lengths for positioning

Baseline Receivers Duration (h) Length 
(km)

CUTB-CUTC​    Trimble NETR9- Trimble NETR9 24 0

CUTB-PERT   Trimble NETR9- Trimble NETR9 24 22.4

CUTB-NNOR   Trimble NETR9-SEPT POLARX4 24 109.6
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Fig. 5  The number of visible satellites for the three baselines
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Compared with the intra-system RTK model, the posi-
tioning accuracy of the inter-system RTK model in E, 
N and U directions is improved by 10%, 22% and 11%, 

respectively. The ambiguity fixed rate is 100% for both 
inter-system RTK model and intra-system RTK model.

Figure  7 shows the positioning errors with the 
inter-system RTK model and the traditional intra-
system RTK model in E, N and U directions for base-
line CUTB-PERT. It is a medium-long baseline with a 
length of 22  km, which means that it is difficult to fix 
the ambiguity at the beginning. Even with our proposed 
inter-system RTK model, it also requires a certain 
convergence time. The RMSs of positioning errors are 
shown in Table 5, which also includes large errors that 
are converging. The RMSs of the positioning errors in 
E, N and U directions are 3.35 cm, 1.40 cm, and 13.6 cm 
for intra-system RTK model, and 3.14 cm, 1.25 cm, and 
12.61  cm for inter-system RTK model, respectively. 
Compared with the intra-system RTK model, the posi-
tioning accuracy of the inter-system RTK model in E, 
N and U directions is improved by 6%, 11%, and 7%, 
respectively. In addition, we also counted the Time to 
First Fix (TTFF) of the two models. It is worth not-
ing that only the time when the ambiguity is success-
fully fixed in 10 consecutive epochs is considered 
as the first fix. The intra-system RTK model and the 
inter-system RTK model reach the first fix at the 66th 
and 46th epoch, respectively. Compared with the intra-
system RTK model, the TTFF of the inter-system RTK 
model is shortened by 30%. The ambiguity fixed rates of 

Table 4  RMS of positioning errors with the inter-system RTK 
model and the traditional intra-system RTK model in east (E), 
north (N) and up (U) directions for CUTB-CUTC​

Items RMS in directions (cm) Ambiguity 
fixed rate 
(%)E N U

Intra-system RTK 0.2 0.23 0.93 100%

Inter-system RTK 0.18 0.18 0.83 100%

Improvement 10% 22% 11% 0
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Fig. 7  Positioning errors of the inter-system RTK model 
and the traditional intra-system RTK model in E, N and U directions 
for CUTB-PERT

Table 5  RMS of positioning errors of the inter-system RTK 
model and the traditional intra-system RTK model in E, N and U 
directions for CUTB-PERT

Items RMS in different 
directions (cm)

TTFF in epoch Ambiguity 
fixed rate 
(%)

E N U

Intra-system RTK 3.35 1.40 13.6 66 96%

Inter-system RTK 3.14 1.25 12.61 46 97%

Improvement 6% 11% 7% 30% 1%
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Fig. 8  Positioning errors of the inter-system RTK model 
and the traditional intra-system RTK model in E, N and U directions 
for CUTB-NNOR

Table 6  RMS of positioning errors of the inter-system RTK 
model and the traditional intra-system RTK model in E, N and U 
directions for CUTB-NNOR

Items RMS in different 
directions (cm)

TTFF in epoch Ambiguity 
fixed rate 
(%)

E N U

Intra-system RTK 2.33 2.02 12.28 221 91

Inter-system RTK 1.82 1.68 9.84  156 94

Improvement 22% 17% 20% 29% 3%
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Fig. 6  Positioning errors with the inter-system RTK model 
and the traditional intra-system RTK model in E, N and U directions 
for CUTB-CUTC​
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intra-system RTK model and inter-system RTK model 
are 96% and 97%, respectively.

Figure 8 shows the positioning errors of the inter-sys-
tem RTK model and the traditional intra-system RTK 
model in E, N and U directions for baseline CUTB-
NNOR. It is a longer baseline, which means that it is more 
challenging to obtain accurate positioning results. Com-
pared to the baseline CUTB-PERT, the baseline CUTB-
NNOR requires a longer convergence time. The RMSs of 
positioning errors are shown in Table 6. The RMSs of the 
positioning errors in E, N, and U directions are 2.33 cm, 
2.02 cm, and 12.28 cm for intra-system RTK model, and 
1.82  cm, 1.68  cm, and 9.84  cm for inter-system RTK 
model, respectively. Compared with the intra-system 
RTK model, the positioning accuracy of the inter-system 
RTK model in E, N and U directions is improved by 22%, 
17%, and 20%, respectively. The intra-system RTK model 
and the inter-system RTK model reach the first fix at the 
221st and 156th epoch, respectively, which is longer com-
pared to baseline CUTB-PERT. Compared with the intra-
system RTK model, the TTFF of the inter-system RTK 
model is shortened by 29%. The ambiguity fixed rates of 
intra-system RTK model and inter-system RTK model 
are 91% and 94%, respectively.

Conclusions
In this study, we developed a new inter-system double 
difference RTK model with single difference ambiguity 
estimation that can be applied for both overlapping and 
non-overlapping signal frequencies. By estimating the 
single difference ambiguity, the model effectively avoids 
the DISB parameter discontinuity caused by the reference 
satellite transformation. Compared with the traditional 
non-overlapping frequency double difference model, it 
is not necessary to use the code observations to calculate 
the single difference ambiguity of the reference satellite in 
advance. We also present the ionospheric-float mode and 
the ionospheric-fixed mode of this model. This makes the 
model applicable not only to short baseline scenarios but 
also to medium-long baseline scenarios. Specifically, we 
use this model to analyze the stability of DISB as well as 
the positioning performance.

The stability of DISCB and DISPB is tested extensively 
with multi-frequency, multi-system, and multi-type 
receiver. The conclusion is that both DISCB and DISPB 
have good stability, regardless of the frequency of the sig-
nal and the type of the receiver used. This means that the 
positioning accuracy with this model can benefit from 
the stability of DISCB and DISPB, which is the key reason 
for analyzing the stability of DISCB and DISPB.

We compare our proposed inter-system double-dif-
ference RTK model with the traditional intra-system 
double-difference RTK model in terms of positioning 

accuracy using three baselines with different lengths. 
Benefiting from the stability of DISB, the proposed 
inter-system double-difference model can improve the 
positioning accuracy by 6–22% compared with the intra-
system double-difference model. The positioning results 
in two medium-long baselines show that the TTFF of 
inter-system double-difference RTK model is shortened 
by 30% and 29%, respectively, compared with that of tra-
ditional intra-system double-difference RTK model.
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